Skip to main content

Differential Activation of Nitrergic Hypothalamic Neurons by Heat Exposure and Dehydration

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

Water is used both for evaporative cooling during external heat stress or exercise-induced heat load and for replenishment of the extracellular fluid (ECF) compartment under conditions of dehydration; thus, competing requirements for fluid or electrolyte balance and temperature regulation are well documented for homeothermic animals and humans. Hypothalamic control of salt and fluid balance is structurally well defined, whereas the neuronal cytoarchitecture for thermoregulation remains fragmentary. Employing classic and transsynaptic neuronal tracing techniques, diencephalic structures specifically involved in the perception and/or integration of thermoregulatory or osmoregulatory signals as well as the efferent pathways controlling respective effector systems could be determined. Stimulation of the osmoregulatory or thermoregulatory autonomic circuitries in the rat, using expression of c-fos as marker of neuronal activity, led to differential activation of specific neuronal populations in hypothalamic nuclei such as the SFO, OVLT, PVN, and SON for osmoregulation and MPA, VMPO, LHA, and LS for thermoregulation. The MnPO, activated by both thermal and osmotic stimuli, plays a major role as an integrative structure involved in both central control systems. The enzyme nNOS, generating NO as neuromodulatory agent involved in the centrally controlled homeostasis of body temperature and the ECF, was found to be upregulated in the respective hypothalamic structures during either heat exposure or osmotic stimuli. The latter induced coexpression of Fos protein with nNOS in the same neurons, whereas Fos-positive cells and nitrergic cells were found codistributed as a result of thermal stimulation, indicating NO-mediated neuronal activation in nearest-neighbor target neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mack GW, Nadel E (1996) Body fluid balance during heat stress in humans. In: Fregly KJ, Blatteis CM (eds) Handbook of physiology: Environmental physiology, vol 1. Oxford University Press, New York, pp 187214

    Google Scholar 

  2. Baker MA, Doris PA (1982) Effect of dehydration on hypothalamic control of evaporation in the cat. J Physiol (Lond) 322: 131-142

    Google Scholar 

  3. Baker MA, Doris PA, Hawkins MJ (1983) Effect of dehydration and hyperosmolality on thermoregulatory water losses in exercising dogs. Am J Physiol 244: R516-R521

    PubMed  CAS  Google Scholar 

  4. Turleska-Stelmasiak E (1974) The influence of dehydration on heat dissipation mechanisms in the rabbit. J Physiol (Paris) 68: 5-15

    Google Scholar 

  5. Mills PC, Scott CM, Marlin DJ (1997) Effects of nitric oxide inhibition on thermoregulation during exercise in the horse. In: Blatteis CM (ed) Thermoregulation. Ann New York Acad Sci 813: 591-599

    Google Scholar 

  6. Keil R, Gerstberger R, Simon E (1994) Hypothalamic thermal stimulation modulates vasopressin release in hyperosmotically stimulated rabbits. Am J Physiol 267: R1089-R1097

    PubMed  CAS  Google Scholar 

  7. Horowitz M (1994) Heat stress and heat acclimation: the cellular response-modifier of autonomic control. In: Pleschka K, Gerstberger R (eds) Integrative and cellular aspects of autonomic functions: Temperature and osmoregulation. Libbey, Paris, pp 87-95

    Google Scholar 

  8. Baker MA, Dawson D (1985) Inhibition of thermal panting by intracarotid infusion of hypertonic saline in dogs. Am J Physiol 249: R787-R791

    PubMed  CAS  Google Scholar 

  9. Horowitz M, Meiri U (1985) Thermoregulatory activity in the rat: effects of hypohydration, hypovolemia and hypertonicity and their interaction with short-term heat acclimation. Comp Biochem Physiol 82: 577582

    Google Scholar 

  10. Taylor CR (1970) Dehydration and heat: effects on temperature regulation of East African ungulates. Am J Physiol 219: 1136-1139

    PubMed  CAS  Google Scholar 

  11. Horowitz M, Samueloff S (1989) Dehydration, stress and heat acclimation. Prog Biometeorol 7: 87-95

    Google Scholar 

  12. Bie P (1980) Osmoreceptors, vasopressin and control of renal water excretion. Physiol Rev 60: 961-1048

    PubMed  CAS  Google Scholar 

  13. Gerstberger R, Müller AR, Hübschle T (1997) Hypothalamic control of osmoregulation. In: Harvey S, Etches RJ (eds) Perspectives in avian endocrinology. Journal of Endocrinology, Bristol, pp 289-303

    Google Scholar 

  14. Baker MA (1984) Influence of dehydration on panting in mammals. In: Hales JRS (ed) Thermal physiology. Raven Press, New York, pp 407-412

    Google Scholar 

  15. Horowitz M, Nadel ER (1984) Effect of plasma volume on thermoregulation in dogs. Pflugers Arch 400: 211-213

    Article  PubMed  CAS  Google Scholar 

  16. Thornton RM, Proppe DW (1988) Influence of dehydration on locally mediated hindlimb vasodilation in baboons. Am J Physiol 255: H266-H271

    PubMed  CAS  Google Scholar 

  17. Takamata A, Nose H, Mack GW, et al (1990) Control of total peripheral resistance during hyperthermia in rats. J Appl Physiol 69: 1087-1092

    PubMed  CAS  Google Scholar 

  18. Morimoto T (1990) Thermoregulation and body fluids: role of blood volume and central venous pressure. Jpn J Physiol 40: 165-179

    Article  PubMed  CAS  Google Scholar 

  19. Simon E, Pierau FK, Taylor DCM (1986) Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev 66: 235-289

    PubMed  CAS  Google Scholar 

  20. Simon E (1999) Thermoregulation as a switchboard of autonomic nervous and endocrine control. Jpn J Physiol 49: 297-323

    Article  PubMed  CAS  Google Scholar 

  21. Sadowski J, Kruk B, Chwalbinska-Moneta J (1977) Renal function changes during preoptic-anterior hypothalamic heating in the rabbit. Pflugers Arch 370: 51-57

    Article  PubMed  CAS  Google Scholar 

  22. Hayward JN, Baker MA (1968) Diuretic and thermoregulatory reponses to preoptic cooling in the monkey. Am J Physiol 214: 843-850

    PubMed  CAS  Google Scholar 

  23. Forsling ML, Ingram DL, Stanier MW (1976) Effects of various ambient temperatures and of heating and cooling the hypothalamus and cervical spinal cord on antidiuretic hormone secretion and urinary osmolality in pigs. J Physiol (Lond) 257: 673-686

    CAS  Google Scholar 

  24. Takamata A, Mack GW, Stachenfeld NS, et al (1995) Body temperature modification of osmotically induced vasopressin secretion and thirst in humans. Am J Physiol 269: R874-R880

    PubMed  CAS  Google Scholar 

  25. Swanson LW (1987) The hypothalamus. In: Björklund A, Hökfeld T, Swanson LW (eds) Handbook of chemical neuroanatomy, vol 5. Integrated systems of the CNS, part 1. Elsevier, Amsterdam, pp 1-120

    Google Scholar 

  26. Morris JF, Chapman DB, Sokol HW (1987) Anatomy and function of the classic vasopressin-secreting hypothalamus-neurohypophyseal system. In: Gash DN, Boer GJ (eds) Vasopressin: principles and properties. Plenum, New York, pp 1-89

    Chapter  Google Scholar 

  27. McKinley MJ, McAllen AM, Mendelsohn FAO, et al (1990) Circumventricular organs: neuroendocrine interfaces between the brain and the hemal milieu. Front Neuroendocrinol 11: 91-127

    Google Scholar 

  28. McKinley MJ, Gerstberger R, Mathai ML, et al (1999) The lamina terminalis and its role in fluid and electrolyte homeostasis. J Clin Neurosci 6: 289-301

    Article  PubMed  Google Scholar 

  29. Miselis RR (1981) The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Res 230: 1-23

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka J, Hayashi Y, Watai T, et al (1997) Angiotensinergic modulation of osmotic activation of neurosecretory neurons. Neuroreport 8: 2903-2906

    Article  PubMed  CAS  Google Scholar 

  31. Hartle DK, Brody MJ (1982) Hypothalamic vasomotor pathways mediating the development of hypertension in the rat. Hypertension 4 (suppl III): 68-71

    Google Scholar 

  32. Aradachi H, Honda K, Negoro H, et al (1996) Median preoptic neurones projecting to the supraoptic nucleus are sensitive to haemodynamic changes as well as to rise in plasma osmolality in rats. J Neuroendocrinol 8: 35-43

    Article  PubMed  CAS  Google Scholar 

  33. McKinley MJ, Hards DK, Oldfield BJ (1994) Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain Res 653: 305-314

    Article  PubMed  CAS  Google Scholar 

  34. Voisin DL, Simonian SX, Herbison AE (1997) Identification of estrogen receptor-containing neurons projecting to the rat supraoptic nucleus. Neuroscience 78: 215-228

    Article  PubMed  CAS  Google Scholar 

  35. Honda K, Aradachi H, Higuchi T, et al (1992) Activation of paraventricular neurosecretory cells by osmotic stimulation of the median preoptic nucleus. Brain Res 594: 335-338

    Article  PubMed  CAS  Google Scholar 

  36. Pierau FK, Sann H, Yakimova KS, et al (1998) Plasticity of hypothalamic temperature-sensitive neurons. In: Sharma HS, Westman J (eds) Brain function in hot environment. Prog Brain Res 115: 63-84

    Google Scholar 

  37. Zeisberger E (1990) The role of septal peptides in thermoregulation. In: Bligh JK, Voigt K (eds) Thermoreception and temperature regulation. Springer, Heidelberg, pp 273-284

    Chapter  Google Scholar 

  38. Roth J, Störr B, Voigt K, et al (1998) Inhibition of nitric oxide synthase attenuates lipopolysaccharide-induced fever without reduction of circulating cytokines in guinea pigs. Pflugers Arch 436: 858-862

    Article  PubMed  CAS  Google Scholar 

  39. Blatteis CM, Sehic E (1997) Fever: how may circulating pyrogens signal the brain? NIPS 14: 1-9

    Google Scholar 

  40. Cao C, Matsumura K, Yamagata K, et al (1996) Endothelial cells of the rat brain vasculature express cyclooxygenase-2 mRNA in response to systemic interleukin-1 beta: a possible role of prostaglandin synthesis responsible for fever. Brain Res 733: 262-272

    Article  Google Scholar 

  41. Atrens DM, Williams MP, Brady CJ, et al (1982) Energy balance and hypothalamic self-stimulation. Behav Brain Res 5: 131-142

    Article  PubMed  CAS  Google Scholar 

  42. Bernardi LL, Bellinger LL (1993) The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev 17: 141-193

    Article  Google Scholar 

  43. Chiba T, Murata Y (1985) Afferent and efferent connections of the medial preoptic area in the rat: a WGA-HRP study. Brain Res Bull 14: 261-272 Heat-Induced Activation of Hypothalamic Neurons 59

    Article  PubMed  CAS  Google Scholar 

  44. Kanosue K, Hosono T, Zhang YH, et al (1998) Neuronal networks controlling thermoregulatory effectors. In: Sharma HS, Westman J (eds) Brain function in hot environment. Prog Brain Res 115: 49-62

    Google Scholar 

  45. Staiger JF, Nürnberger F (1991) The efferent connections of the lateral septal nucleus in the guinea pig: projections to the diencenphalon and brainstem. Cell Tissue Res 264: 391-413

    Article  PubMed  CAS  Google Scholar 

  46. Tonelli L, Chiaraviglio E (1995) Dopaminergic neurons in the zona incerta modulate ingestive behavior in rats. Physiol Behav 58: 725-729

    Article  PubMed  CAS  Google Scholar 

  47. Elmquist JK, Scammell TE, Jacobson CD, et al (1996) Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J Comp Neurol 371: 85-103

    Article  PubMed  CAS  Google Scholar 

  48. Kanosue K, Zhang YH, Yanase-Fujiwara M, et al (1994) Hypothalamic network for thermoregulatory shivering. Am J Physiol 267: R275-R282

    PubMed  CAS  Google Scholar 

  49. Boulant JA (1996) Hypothalamic neurons regulating body temperature. In: Fregly KJ, Blatteis CM (eds) Handbook of physiology: Environmental physiology, vol 1. Oxford University Press, New York, pp 105-126

    Google Scholar 

  50. Bourque CW, Oliet SHR (1997) Osmoreceptors in the central nervous system. Annu Rev Physiol 59: 601-619

    Article  PubMed  CAS  Google Scholar 

  51. Hori T, Nakashima H, Koga H, et al (1988) Convergence of thermal, osmotic and cardiovascular signals on preoptic and anterior hypothalamic neurons in the rat. Brain Res Bull 20: 879-885

    Article  PubMed  CAS  Google Scholar 

  52. Boulant JA, Silva NL (1989) Multisensory hypothalamic neurons may explain interactions among regulatory systems. NIPS 4: 245-248

    Google Scholar 

  53. Travis K, Johnson AK (1993) In vitro sensitivity of median preoptic neurons to angiotensin II, osmotic pressure and temperature. Am J Physiol 264: R1200-R1205

    PubMed  CAS  Google Scholar 

  54. Smith JE, Jansen AS, Gilbey MP, et al (1998) CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res 786: 153-164

    Article  PubMed  CAS  Google Scholar 

  55. Hübschle T, McKinley MJ, Oldfield BJ (1998) Efferent connections of the lamina terminalis, the preoptic area and the insular cortex to submandibular and sublingual gland of the rat traced with pseudorabies virus. Brain Res 806: 219-231

    Article  PubMed  Google Scholar 

  56. Jansen ASP, Ter Horst GJ, Mettenleiter TC, et al (1992) CNS cell groups projecting to the submandibular parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res 572: 253-260

    Article  PubMed  CAS  Google Scholar 

  57. Bamshad M, Song CK, Bartness TJ (1999) CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Physiol 276: R1569-R1578

    PubMed  CAS  Google Scholar 

  58. Sly D, Colvill L, McKinley MJ, et al (1999) Identification of neural projections from the forebrain to the kidney using the virus pseudorabies. J Auton Nery Syst 77: 7382

    Google Scholar 

  59. Huang J, Weiss ML (1999) Characterization of the central cell groups regulating the kidney in the rat. Brain Res 845: 77-91

    Article  PubMed  CAS  Google Scholar 

  60. Kanosue K, Nakayama T, Tanaka H, et al (1990) Modes of action of local hypothalamic and skin thermal stimulation on salivary secretion in rats. J Physiol (Lond) 424: 459-471

    CAS  Google Scholar 

  61. Weekley LB (1992) Renal secretion rate and norepinephrine secretion rate in response to centrally administered angiotensin II: role of the medial basal forebrain. Clin Exp Hypertens A 14: 923-945

    Article  PubMed  CAS  Google Scholar 

  62. May CB, McAllen R, McKinley MJ (1997) Responses of renal sympathetic nerve activity to systemically and centrally administered angiotensin. J Auton Nery Syst 65: 81-82

    Google Scholar 

  63. Westerhaus MJ, Loewy AD (1999) Sympathetic-related neurons in the preoptic regions of the rat identified by viral transneuronal labeling. J Comp Neurol 414: 361378

    Google Scholar 

  64. Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14: 421-451

    Article  PubMed  CAS  Google Scholar 

  65. Sagar M, Sharp FR, Curran T (1988) Expression of c-Fos protein in brain: metabolic mapping at the cellular level. Science 240: 1328-1331

    Article  PubMed  CAS  Google Scholar 

  66. Patronas P, Horowitz M, Simon E, et al (1998) Differential stimulation of c-fos expression in hypothalamic nuclei of the rat brain during short-term heat acclimation and mild dehydration. Brain Res 798: 127139

    Google Scholar 

  67. Morten A, Garrard L, Rowland N (1999) Expression of Fos immunoreactivity in rat brain during dehydration: effect of duration and timing of water deprivation. Brain Res 816: 1-7

    Article  Google Scholar 

  68. Oldfield BJ, Badoer E, Hards DK, et al (1994) Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of hypertonic saline or angiotensin II. Neuroscience 60: 255-262

    Article  PubMed  CAS  Google Scholar 

  69. Xu Z, Herbert J (1996) Effects of unilateral or bilateral lesions within the anteroventral third ventricular region on c-fos expression induced by dehydration or angiotensin II in the supraoptic and paraventricular nuclei of the hypothalamus. Brain Res 713: 36-43

    Article  PubMed  CAS  Google Scholar 

  70. Rowland NE (1998) Brain mechanisms of mammalian fluid homeostasis: insights from use of immediate early gene mapping. Neurosci Biobehav Rev 32: 49-63

    Article  Google Scholar 

  71. Hochstenbach SL, Ciriello J (1996) Effect of lesions of forebrain circumventricular organs on c-fos expression in the central nervous system to plasma hypernatremia. Brain Res 713: 17-28

    Article  PubMed  CAS  Google Scholar 

  72. Han L, Rowland NE (1996) Dissociation of Fos-like immunoreactivity in lamina terminalis and magnocellular hypothalamic nuclei induced by hypernatremia. Brain Res 708: 45-49

    Article  PubMed  CAS  Google Scholar 

  73. Miyata S, Nakashima T, Kiyohara T (1994) Expression of c-fos immunoreactivity in the hypothalamic magno-cellular neurons during chronic osmotic stimulation. Neurosci Lett 175: 63-66

    Article  PubMed  CAS  Google Scholar 

  74. Rocha MJA, Beltz TG, Dornelles RCM, et al (1999) Anteroventral third ventricle (AV3V) lesions alter c-fos expression induced by salt loading. Brain Res 829: 197200

    Google Scholar 

  75. Giovannelli L, Bloom FE (1992) c-Fos expression in the rat subfornical organ following osmotic stimulation. Neurosci Lett 139: 1-6

    Google Scholar 

  76. Guldenaar SEF, Noctor SC, McCabe JT (1992) Fos-like immunoreactivity in the brain of homozygous diabetes insipidus Brattleboro and normal Long-Evans rats. J Comp Neurol 322: 439-448

    Article  PubMed  CAS  Google Scholar 

  77. Hamamura M, Nunez DJR, Leng G, et al (1992) c-fos may code for a common transscription factor within the hypothalamic neural circuits involved in osmoregulation. Brain Res 572: 42-51

    Google Scholar 

  78. Smith DW, Day TA (1995) Hypovolaemic and osmotic stimuli induce distinct patterns of c-fos expression in the rat subfornical organ. Brain Res 698: 232-236

    Article  PubMed  CAS  Google Scholar 

  79. Potts PD, Ludbrook J, Gillman-Gaspari TA, et al (1999) Activation of brain neurons following central hypervolaemia and hypovolaemia: contribution of baro-receptor and non-baroreceptor inputs. Neuroscience 95: 499-511

    Article  Google Scholar 

  80. Carlson SH, Beitz A, Osborn JW (1997) Intragastric hypertonic saline increases vasopressin and central fos immunoreactivity in conscious rats. Am J Physiol 272: R750–R758

    PubMed  CAS  Google Scholar 

  81. Morita H, Yamashita Y, Nishida, et al (1997) Fos induction in rat brain neurons after stimulation of the hepatoportal Na-sensitive mechanism. Am J Physiol 272: R913–R923

    CAS  Google Scholar 

  82. Scammell TE, Price KJ, Sagar SM (1993) Hyperthermia induces c-fos expression in the preoptic area. Brain Res 618: 303-307

    Article  PubMed  CAS  Google Scholar 

  83. Kiyohara T, Miyata S, Nakamura T, et al (1995) Differences in Fos expression in the rat brain between cold and warm ambient exposures. Brain Res Bull 38: 192-201

    Article  Google Scholar 

  84. Joyce MP, Barr GA (1992) The appearance of Fos protein-like immunoreactivity in the hypothalamus of developing rats in response to cold ambient temperatures. Neuroscience 49: 163-173

    Article  PubMed  CAS  Google Scholar 

  85. Hübschle T, Oldfield BJ, McKinley MJ, et al (1999) The median preoptic nucleus of the rat: a putative hypothalamic integration site of thermo-and osmoregulatory signals during heat stress. Pflugers Arch 437: P2410

    Google Scholar 

  86. Lin MT, Yang YL, Tsay HJ (1999) C-fos expression in rat brain during heat stress. J Therm Biol 24: 423-427

    Article  CAS  Google Scholar 

  87. Vellucci SV, Parrott RF (1994) Hyperthermia-associated changes in Fos protein in the median preoptic and other hypothalamic nuclei of the pig following intravenous administration of prostaglandin E2. Brain Res 646: 165169

    Google Scholar 

  88. Vellucci SV, Parrott RF (1995) Prostaglandin-dependent c-fos expression in the median peoptic nucleus of pigs subjected to restraint: correlation with hyperthermia. Neurosci Lett 198: 49-51

    Article  PubMed  CAS  Google Scholar 

  89. Miyata S, Ishiyama M, Shido O, et al (1995) Central mechanism of neural activation with cold acclimation of rats using Fos immunocytochemistry. Neurosci Res 22: 209-218

    Article  PubMed  CAS  Google Scholar 

  90. Velluci SV, Parrott RF, Mimmack ML, et al (1999) Endotoxin effects on hypothalamic gene expression in swine following sequencing of porcine c-fos mRNA. J Endotoxin Res 5: 31-35

    Article  Google Scholar 

  91. Hare AS, Calreke G, Tolchard S (1995) Bacterial lipopolysaccharide-induced changes in Fos protein expression in the rat brain—correlation with thermoregulatory changes and plasma corticosterone. J Neuroendocrinol 7: 791-799

    Article  PubMed  CAS  Google Scholar 

  92. Herkenham M, Lee HY, Baker RA (1998) Temporal and spatial patterns of c-fos mRNA induced by intravenous interleukin-1: a cascade of non-neuronal cellular activation at the blood-brain barrier. J Comp Neurol 400: 175196

    Google Scholar 

  93. Wood J, Garthwaite J (1994) Models of diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 33: 1235-1244

    Article  PubMed  CAS  Google Scholar 

  94. Vincent S (1995) Nitric oxide in the nervous system. Academic Press, London

    Google Scholar 

  95. Krukoff TL (1999) Central actions of nitric oxide in regulation of autonomic functions. Brain Res Rev 30: 52-65

    Article  PubMed  CAS  Google Scholar 

  96. Iwase K, Iyama K, Akagi K, et al (1998) Precise distribution of neuronal nitric oxide synthase mRNA in the rat brain revealed by non-radioisotopic in situ hybridization. Mol Brain Res 53: 1-12

    Article  PubMed  CAS  Google Scholar 

  97. Jurzak MR, Schmid HA, Gerstberger R (1994) NADPH-diaphorase staining and NO-synthase immunoreactivity in circumventricular organs of the rat brain. In: Pleschka K, Gerstberger R (eds) Integrative and cellular aspects of autonomic functions: temperature and osmoregulation. Libbey, Paris, pp 451-459

    Google Scholar 

  98. Wang F, Morris JF (1996) Constitutive nitric oxide synthase in hypothalami of normal and hereditary diabetes insipidus rats and mice: role of nitric oxide in osmotic regulation and its mechanisms. Endocrinology 137: 17451751

    Google Scholar 

  99. Villar M, Ceccatelli S, Ronnqvist M, et al (1994) Nitric oxide synthase increases in hypothalamic magnocellular neurons after salt loading in the rat. An immunohistochemical and in situ hybridization study. Brain Res 644: 273-281

    Google Scholar 

  100. Kadowaki K, Kishimoto J, Lang G, et al (1994) Up-regulation of nitric oxide synthase (NOS) gene expression together with NOS activity in the rat hypothalamohypophysial system after chronic salt loading: evidence of a neuromodulatory role of nitric oxide in arginine vasopressin and oxytocin secretion. Endocrinology 134: 1011-1017

    Article  PubMed  CAS  Google Scholar 

  101. Ciriello J, Hoechstenbach SL, Solano-Flores LP (1996) Changes in NADPH-diaphorase activity in forebrain structures of the lamina terminalis after chronic dehydration. Brain Res 708: 167-172

    Article  PubMed  CAS  Google Scholar 

  102. Ueta Y, Levy A, Chowdrey HS, et al (1995) Water deprivation in the rat induces nitric oxide synthase ( NOS) gene expression in the hypothalamic paraventricular and supraoptic nuclei. Neurosci Res 23: 317-319

    Google Scholar 

  103. Ueta Y, Levy A, Lightman SL, et al (1998) Hypovolemia upregulates the expression of neuronal nitric oxide synthase gene expression in the paraventricular and supraoptic nuclei of rats. Brain Res 790: 25-32

    Article  PubMed  CAS  Google Scholar 

  104. Liu H, Terrell ML, Bui V, et al (1998) Nitric oxide control of drinking, vasopressin and oxytocin release and blood pressure in dehydrated rats. Physiol Behav 63: 763-769

    Article  PubMed  CAS  Google Scholar 

  105. Kadekaro M, Terrell ML, Harmann P, et al (1994) Central inhibition of nitric oxide synthase attenuates water intake but does not alter enhanced glucose utilization in the hypothalamo-neurohypophyseal system of dehydrated rats. Neurosci Lett 173: 115-118

    Article  PubMed  CAS  Google Scholar 

  106. Zhu B, Herbert J (1997) Angiotensin II interacts with nitric oxide-cyclic GMP pathway in the central control of drinking behaviour: mapping with c-fos and NADPHdiaphorase. Neuroscience 79: 543-553

    Article  PubMed  CAS  Google Scholar 

  107. Calapai G, Squadrito F, Altavilla D, et al (1992) Evidence that nitric oxide modulates drinking behaviour. Neuropharmacology 31: 761-764

    Article  PubMed  CAS  Google Scholar 

  108. Nicolaidis S, Fitzsimons JT (1975) La dépendence de la prise d’eau induite par angiotensine II envers la fonction vasomotrice cérébrale locale chez le rat. CR Acad Sci Paris 281: 1417-1420

    CAS  Google Scholar 

  109. Rauch M, Schmid HA, DeVente J, et al (1998) Electrophysiological and immunocytochemical evidence for a cGMP-mediated inhibition of subfornical organ neurons by nitric oxide. J Neurosci 17: 363-371

    Google Scholar 

  110. Reid IA (1994) Role of nitric oxide in the regulation of renin and vasopressin secretion. Front Neuroendocrinol 15: 351-383

    Article  PubMed  CAS  Google Scholar 

  111. Gerstberger R, Seeman T, Rettig R (1996) Chronic central inhibition of neuronal nitric oxide synthase (nNOS) enhances NADPH-diaphorase activity in SON/PVN and vasopressin release in the conscious rat. Neuroforum 2 (suppl): 169

    Google Scholar 

  112. Ota M, Crofton JT, Festavan GT, et al (1993) Evidence that nitric oxide can act centrally to stimulate vasopressin release. Neuroendocrinology 57: 955-959

    Article  PubMed  CAS  Google Scholar 

  113. Chipodera P, Volpi R, Coiro V (1994) Inhibitory control of nitric oxide on the arginine-vasopressin and oxytocin response to hypoglycemia in normal men. Neuroreport 5: 1822-1824

    Article  Google Scholar 

  114. Gerstberger R (1999) Nitric oxide and body temperature control. NIPS 14: 30-36

    PubMed  CAS  Google Scholar 

  115. Harada S, Imaki T, Chikada N, et al (1999) Distinct distribution and time-course changes in neuronal nitric oxide synthase and inducible NOS in the paraventricular nucleus following lipopolysaccharide injection. Brain Res 821: 322-332

    Article  PubMed  CAS  Google Scholar 

  116. Simon E (1998) Nitric oxide as a peripheral and central mediator in temperature regulation. Amino Acids 14: 87-93

    Article  PubMed  CAS  Google Scholar 

  117. Eriksson S, Hjelmqvist H, Keil R, et al (1997) Central application of a nitric oxide donor activates heat defense in the rabbit. Brain Res 774: 269-273

    Article  PubMed  CAS  Google Scholar 

  118. Mathai ML, Hjelmquist H, Keil R, et al (1997) Nitric oxide increases cutaneous and respiratory heat dissipation in conscious rabbits. Am J Physiol 272: R1691-R1697

    PubMed  CAS  Google Scholar 

  119. Gautier H, Murariu C (1999) Role of nitric oxide in hypoxic hypometabolism in rats. J Appl Physiol 87: 104110

    Google Scholar 

  120. Taylor WF, Bishop VS (1994) A role for nitric oxide in active thermoregulatory vasodilation. Am J Physiol 264: H1355-H1359

    Google Scholar 

  121. De Luca B, Monda M, Sullo A (1995) Changes in eating behaviour and thermogenic activity following inhibition of nitric oxide formation. Am J Physiol 268: R1533-R1538

    PubMed  Google Scholar 

  122. Almeida MC, Trevisan FN, Barros RCH, et al (1999) Tolerance to lipopolysaccharide is related to the nitric oxide pathway. Neuroreport 10: 3061-3065

    Article  PubMed  CAS  Google Scholar 

  123. Riedel W, Maulik G (1999) Fever: an integrated response of the central nervous system to oxidative stress. Mol Cell Biochem 196: 125-132

    Article  PubMed  CAS  Google Scholar 

  124. Monda M, Amaro S, Sullo A, et al (1995) Nitric oxide reduces body temperature and sympathetic input to brown adipose tissue during PGE2-hyperthermia. Brain Res Bull 38: 489-493

    Article  PubMed  CAS  Google Scholar 

  125. Gourine AV (1995) Pharmacological evidence that nitric oxide can act as an endogenous antipyretic factor in endotoxin-induced fever in rabbits. Gen Pharmacol 26: 835-841

    Article  PubMed  CAS  Google Scholar 

  126. Amir S, De Blasio E, English AM (1991) NGMonomethyl-L-arginine co-injection attenuates the thermogenic and hyperthermic effects of E2 prostaglandin microinjection into the anterior hypothalamic preoptic area in rats. Brain Res 556: 157-160

    Article  PubMed  CAS  Google Scholar 

  127. Lin JH, Lin MT (1997) Nitric oxide synthase-cyclic oxygenase pathway in organum vasculosum laminae terminalis: possible role in pyrogen fever in rabbits. Br J Pharmacol 118: 179-185

    Article  Google Scholar 

  128. Scammel TE, Elmquist JE, Saper CB (1996) Inhibition of nitric oxide synthase produces hypothermia and depresses lipopolysaccharide fever. Am J Physiol 271: R333-R338

    Google Scholar 

  129. Roth J, Störr B, Voigt K, et al (1998) Inhibition of nitric oxide synthase results in a suppression of interleukin-lßinduced fever in rats. Life Sci 62: 345-350

    Article  Google Scholar 

  130. Krukoff TL, MacTavish D, Jhamandas JH (1997) Activation by hypotension of neurons in the hypothalamic paraventricular nucleus that project to the brainstem. J Comp Neurol 385: 285-296

    Article  PubMed  CAS  Google Scholar 

  131. Ying Z, Buggy J (1993) Nitric oxide neurons in hypothalamus and lamina terminalis express c-fos following dehydration treatments. Proc Soc Neurosci 19: 93

    Google Scholar 

  132. Petrov T, Harris KH, MacTavish D, et al (1995) Hypotension induces Fos immunoreactivity in NADPHdiaphorase positive neurons in the paraventricular and supraoptic hypothalamic nuclei of the rat. Neuropharmacology 34: 509-514

    Article  PubMed  CAS  Google Scholar 

  133. Tassorelli C, Joseph SA (1995) NADPH-diaphorase activity and Fos expression in brain nuclei following nitroglycerin administration. Brain Res 695: 37-44

    Article  PubMed  CAS  Google Scholar 

  134. Briski KP, Sylvester PW (1999) Site-specific induction of Fos immunoreactivity in preoptic and hypothalamic NADPH-diaphorase positive neurons during glucoprivation. Neuroendocrinology 69: 181-190

    Article  PubMed  CAS  Google Scholar 

  135. Dawson CA, Jhamandas JH, Krukoff TL (1998) Activation by systemic angiotensin II of neurochemically identified neurons in rat hypothalamic paraventricular nucleus. J Neuroendocrinol 10: 453-459

    Article  PubMed  CAS  Google Scholar 

  136. Tassorelli C, Joseph SA, Buzzi MG, et al (1999) The effects on the central nervous system of nitroglycerin—putative mechanisms and mediators. Prog Neurobiol 57: 607-624

    Article  PubMed  CAS  Google Scholar 

  137. Haby K, Lisovoski F, Aunis D, et al (1994) Stimulation of the cyclic GMP pathway by NO induces expression of the immediate early genes c-fos and junB in PC12 cell. J Neurochem 62: 496-501

    Article  PubMed  CAS  Google Scholar 

  138. Amir S, Edelstein K (1997) A blocker of nitric oxide synthase, NG-nitro-L-arginine-methyl ester, attenuates light-induced Fos protein expression in rat suprachiasmatic nucleus. Neurosci Lett 224: 29-32

    Google Scholar 

  139. Amir S, Rackover M, Funk D (1997) Blockers of nitric oxide synthase inhibit stress activation of c-fos expression in neurons of the hypothalamic paraventricular nucleus in the rat. Neuroscience 77: 623-627

    Article  PubMed  CAS  Google Scholar 

  140. Okere CO, Kaba H, Seto K, et al (1999) Intracerebroventricular injection of a nitric oxide donor attenuates Fos expression in the paraventricular and supraoptic nuclei of lactating rats. Brain Res 828: 101114

    Google Scholar 

  141. Briski KP (1999) Pharmacological manipulation of central nitric oxide/guanylate cyclase activity alters Fos expression by rat hypothalamic vasopressinergic neurons during acute glucose deprivation. J Chem Neuroanat 17: 13-19

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Gerstberger, R., Barth, S.W., Horowitz, M., Hudl, K., Patronas, P., Hübschle, T. (2001). Differential Activation of Nitrergic Hypothalamic Neurons by Heat Exposure and Dehydration. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics