Skip to main content

Responses of the Heart to Mechanical Stress

  • Chapter
Biomechanics
  • 244 Accesses

Summary

Adaptation of the heart to mechanical load is seen during normal development. A harmonized coordination between structure and function is observed on the integration of right and left ventricles as a low-pressure and a high-pressure pump, respectively. Both ventricles eject the same amount of blood to their respective peripheral circulation, but differ in intracavitary pressure, wall thickness, and shape. When coronary perfusion pressure is decreased below the level (critical pressure) of coronary flow autoregulation, regional wall motion deteriorates. The level of critical pressure is determined by the level of afterload, and is lower in the right than in the left coronary artery. The spatial distribution of the infarcted area following coronary branch ligation was quite different between the right and left ventricles, which is largely explained by the different level of inherent mechanical load between the respective ventricles. Abnormalities of mechanical load in mature heart also alter the structure and function not only of the vascular system but also of the four chambers of the heart. Although hypertrophic changes of the heart as a consequence of adaptation to mechanical overload are beneficial at the early phase for mitigating hemodynamic burdens noted in the diseased heart, chronic overload results in maladaptation or remodeling. In inevitable sequelae, changes in structure do not provide amelioration of cardiac pump performance, ultimately resulting in death. Recent clinical trials have provided clues to long-term structural improvement in the heart as a bonus of the reduced ventricular preload and afterload. These beneficial effects improve prognosis in heart failure. Altered gene expression and phenotypic alteration have drawn attention as being causative of hypertrophy and remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grossman W (1980) Cardiac hypertrophy: adaptation or pathologic process. Am J Med 69: 576–583

    Article  Google Scholar 

  2. Braunwald E, Ross J Jr (1963) The ventricular end-diastolic pressure: appraisal of its value in the recognition of ventricular failure in man. Am J Med 34: 147–150

    Article  Google Scholar 

  3. Ross J Jr, Sonnenblick EH, Taylor RR, Spotnitz HM, Covell JW (1971) Diastolic geometry and sarcomere lengths in the chronically dilated canine left ventricle. Circ Res 28: 49–61

    Google Scholar 

  4. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM, on behalf of the SAVE investigators (1992) The effects of captopril on mortality and morbidity in patients with left ventricular dysfunction following myocardial infarction: results of survival and ventricular enlargement ( SAVE) trial. N Engl J Med 327: 669–677

    Article  Google Scholar 

  5. Urabe Y, Tomoike H, Ohzono K, Koyanagi S, Nakamura M (1985) Role of afterload in determining regional right ventricular performance during coronary under-perfusion in dogs. Circ Res 57: 96–104

    Google Scholar 

  6. Henquell L, Honig CR (1976) O2 extraction of right and left ventricles. Proc Soc Exp Biol Med 152: 52–53

    Google Scholar 

  7. Ellis AK, Klocke FJ (1979) Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed. Circ Res 46: 68–77

    Google Scholar 

  8. Waters DD, da Luz P, Wyatt HL, Swan HJC, Forrester JS (1977) Early changes in regional and global left ventricular function induced by graded reductions in regional coronary perfusion. Am J Cardiol 39: 537–543

    Article  Google Scholar 

  9. Wyatt HL, Forrester JS, Tyberg JV, Goldner S, Ogan SE, Parmley WW, Swan HJC (1975) Effect of graded reductions in regional coronary perfusion on regional and total cardiac function. Am J Cardiol 69: 576–583

    Google Scholar 

  10. Banka VS, Bodenheimer MM, Helfant RH (1977) Relation between progressive decreases in regional coronary perfusion and contractile abnormalities. Am J Cardiol 40: 200–205

    Article  Google Scholar 

  11. Downey JM (1976) Myocardial contractile force as a function of coronary blood flow. Am J Physiol 230: 1–6

    Google Scholar 

  12. Sakai K, Tomoike H, Ootsubo H, Kikuchi Y, Nakamura M (1982) Preocclusive perfusion area as a determinant of infarct size in a canine model. Cardiovasc Res 16: 408–416

    Article  Google Scholar 

  13. Ohzono K, Koyanagi S, Urabe Y, Harasawa Y, Tomoike H, Nakamura M (1986) Transmural distribution of myocardial infarction: difference between the right and left ventricles in a canine model. Circulation 59: 67–73

    Google Scholar 

  14. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54: 1496–1508

    Article  Google Scholar 

  15. Hirzel HO, Nelson GR, Sonnenblick EH, Kirk ES (1976) Redistribution of collateral blood flow from necrotic to surviving myocardium following coronary occlusion in the dog. Circ Res 39: 214–222

    Google Scholar 

  16. Grayson J, Irvine M, Parrat JR, Cunningham J (1968) Vasospastic elements in myocardial infarction following coronary occlusion in the dog. Cardiovasc Res 2: 54–62

    Article  Google Scholar 

  17. Weiss HR, Neubauer JA, Lipp JA, Sinha AK (1978) Quantitative determination of regional oxygen consumption in the dog heart. Circ Res 42: 394–401

    Google Scholar 

  18. Downey JB, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 1975: 753–760

    Google Scholar 

  19. Sonnenblick EH, Strobeck JE (1977) Current concepts in cardiology: derived indexes of ventricular and myocardial function. N Engl J Med 296: 978–982

    Article  Google Scholar 

  20. McDonald KM, Garr M, Carlyle PF, Francis GS, Hauer K, Hunter DW, Parish T, Stillman A, Cohn JN (1994) Relative effects of alpha 1-adrenoceptor blockade, converting enzyme inhibitor therapy, and angiotensin II subtype 1 receptor blackade on ventricular remodeling in the dog. Circulation 90 (6): 3034–46

    Google Scholar 

  21. Cohn JN (1995) Structural basis for heart failure; ventricular remodeling and its pharmacological inhibition. Circulation 91: 2504–2507

    Google Scholar 

  22. Hatt PY (1990) 2. Experimental models. In: Swynghedauw B (ed) Cardiac Hypertrophy and Failure. Libbey Eurotext/INSERM, Paris, pp 13–22

    Google Scholar 

  23. Dodge HT, Baxley W (1969) Left ventricular volume and mass and their significance in heart disease. Am J Cardiol 23: 528–537

    Article  Google Scholar 

  24. Jouannot P, Hatt PY (1975) Rat myocardial mechanics during pressure-induced hypertrophy development and reversal. Am J Physiol 229: 355–364

    Google Scholar 

  25. Sasayama S, Ross J Jr, Franklin D (1976) Adaptations of the left ventricle to chronic pressure overload. Circ Res 38: 172–178

    Google Scholar 

  26. Izumo S, Lompre AM, Matsuoka R, Koren G, Schwartz K, Nadal-Ginard B, Mandavi V (1987) Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. J Clin Invest 79: 970–977

    Article  Google Scholar 

  27. Schwartz K (1990) Phenoconversion and mechanogenic transduction of the mammalian heart. Med Sci 6: 664–673

    Google Scholar 

  28. Katz AM (1990) Cardiomyopathy of overload: a major determination of prognosis in congestive heart failure. N Engl J Med 322: 100–110

    Article  Google Scholar 

  29. Kiuchi K, Shannon RP, Komamura K, Cohen DJ, Bianchi C, Homey CJ, Vatner SF, Vatner DE (1993) Myocardial beta-adrenergic receptor function during the development of pacing-induced heart failure. J Clin Invest 91 (3): 907–914

    Article  Google Scholar 

  30. Vatner DE, Sato N, Kiuchi K, Shannon RP, Vatner SF (1994) Decrease in myocardial ryanodine receptors and altered excitation-contraction coupling early in the development of heart failure. Circulation 90 (3): 1423–1430

    Google Scholar 

  31. Katz AM (1995) Scientific insights from clinical studies of converting-enzyme inhibitors in the failing heart. Trends Cardiovasc Med 5: 37–44

    Article  Google Scholar 

  32. Osler W (1892) The principles and practice of medicine. D Appleton, New York, p 634

    Google Scholar 

  33. Meerson FZ (1961) On the mechanism of compensatory hyperfunction and insufficiency of the heart. Cor Vasa 3: 161–177

    Google Scholar 

  34. Grossman W, Jones D, McLaurin LP (1975) Wall stress and pattern of hypertrophy in the human left ventricle. J Clin Invest 56: 56–64

    Article  Google Scholar 

  35. Cohen JJ (1993) Overview: mechanisms of apoptosis. Immunol Today 14: 126–130

    Article  Google Scholar 

  36. Izumo S, Nadal-Ginard B, Mandavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA 85: 339–343

    Article  Google Scholar 

  37. Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83: 13–25

    Google Scholar 

  38. Weisman HF, Bush DE, Mannisi JA, Bulkley BH (1985) Global cardiac remodeling after acute myocardial infarction: a study in the rat model. J Am Coll Cardiol 5: 1355–1362

    Article  Google Scholar 

  39. Crozatier B, Ross J Jr, Franklin D, Bloor CM, White FC, Tomoike H, McKown DP (1978) Myocardial infarction in the baboon: regional function and the collateral circulation. Am J Physiol 235: H413 - H421

    Google Scholar 

  40. Schuster EH, Bulkley BH (1979) Expansion of transmural myocardial infarction: a pathophysiologic factor in cardiac rupture. Circulation 60: 1532–1538

    Google Scholar 

  41. Erlebacher JA, Weiss JL, Weisfeldt ML, Bulkley BH (1984) Early dilation of the infarcted segment in acute transmural myocardial infarction: role of infarct expansion in acute left ventricular enlargement. J Am Coll Cardiol 4: 201–208

    Article  Google Scholar 

  42. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P (1990) Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67: 23–34

    Google Scholar 

  43. Anversa P, Loud AV, Levicky V, Guideri G (1985) Left ventricular failure induced by myocardial infarction: I. Myocyte hypertrophy. Am J Physiol 248: H876 - H882

    Google Scholar 

  44. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come GC, Nakao C, Alderman JD, Ferguson JJ, Safian RD, Grossman W (1986) Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74: 693–702

    Article  Google Scholar 

  45. Meggs LG, Tillotson J, Huang H, Sonnenblick EH, Capasso JM, Anversa P (1990) Noncoordinate regulation of alpha-1 adrenoreceptor coupling and reexpression of alpha skeletal actin in myocardial infarction-induced left ventricular failure in rats. J Clin Invest 86: 1451–1458

    Article  Google Scholar 

  46. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 81: 1161–1172

    Article  Google Scholar 

  47. Vaughan DE, Lamas GA, Pfeffer MA (1990) Role of left ventricular dysfunction in selective neurohumoral activation in the recovery phase of anterior wall acute myocardial infarction. Am J Cardiol 66: 529–532

    Article  Google Scholar 

  48. Baker KM, Chemin MI, Wixson SK, Aceto JF (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259: H324 - H332

    Google Scholar 

  49. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT (1990) Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67: 1355–1364

    Google Scholar 

  50. Schunkert H, Dzau VJ, Tahn SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. J Clin Invest 86: 1913–1920

    Article  Google Scholar 

  51. Yusuf S, Collins R, Peto R (1984) Why do we need some large, simple randomized trials? Stat Med 3: 409–420

    Article  Google Scholar 

  52. Cohn JN, Archibald DG, Ziesche S, Franciosa JA, Harston WE, Tristan FE, Dunkman WB, Jacobs W, Francis GS, Flohr KH, Goldman S, Cobb FR, Shah PM, Saunders R, Fletcher RD, Loeb HS, Hughes VC, Baker B (1986) Effect of vasodilator therapy on mortality in chronic congestive heart failure; results of a Veterans Administration Cooperative Study ( V-HeFT ). N Engl J Med 314: 1547–1552

    Article  Google Scholar 

  53. The CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 316: 1429–1435

    Article  Google Scholar 

  54. The SOLVD Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325: 293–302

    Article  Google Scholar 

  55. The SOLVD Investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fraction. N Engl J Med 327: 685–691

    Article  Google Scholar 

  56. Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344: 541–544

    Article  Google Scholar 

  57. Koch WJ, Rockman HA, Samama P, Hamilton R, Bond RA, Milano CA, Lefkowitz RJ (1995) Cardiac function in mice overexpressing the ß-adrenergic receptor kinase or a /APK inhibitor. Science 268: 1350–1353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Tomoike, H. (1996). Responses of the Heart to Mechanical Stress. In: Hayashi, K., Kamiya, A., Ono, K. (eds) Biomechanics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68317-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68317-9_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68319-3

  • Online ISBN: 978-4-431-68317-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics