Skip to main content

Manipulation of Genes for Nitrogen Metabolism in Plants

  • Chapter
Air Pollution and Plant Biotechnology

Abstract

A 1980 estimate puts the total natural and anthropogenic emissions of nitrogen oxides, which include nitric oxide (NO) and nitrogen dioxide (NO2) as the major components, at 150 million tons per year. Road transport, the major anthropogenic source of nitrogen oxides in many developed countries, accounted for up to 75% of the nitrogen oxides in some metropolitan cities in 1984. This value is still rising because of the increase in volume of road traffic. In many developing countries, petrofueled motor vehicles are also reported to be the principal source of nitrogen oxides (Yunus et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ameziane R, Bernhard K, Bates R, Lightfoot DA (1998) Metabolic engineering of C and N metabolism with NADPH-glutamate dehydrogenase. Abstracts, Annual Meeting of the American Society of Plant Physiologists, June 27–July 1,1998, Madison, WI, p 15

    Google Scholar 

  • Arimura G, Takahashi M, Goshima N, Morikawa H (1998) Metabolic fate of nitrogen dioxide nitrogen differs from that of nitrate nitrogen in plant leaves. Abstracts, Annual Meeting of the American Society of Plant Physiologists, June 27–July 1,1998, Madison, WI, p 59

    Google Scholar 

  • Aslam M, Oaks A, Huffaker RC (1976) Effect of light and glucose on the induction of nitrate reductase and on the distribution of nitrate in totalled barley leaves. Plant Physiol 58: 588–591

    Article  PubMed  CAS  Google Scholar 

  • Back E, Burkhart W, Moyer M, Privalle L, Rothstein S (1988) Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction. Mol Gen Genet 212: 20–26

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soils and water. CRC press, FL

    Google Scholar 

  • Bowsher CG, Hucklesby DP, Ernes MJ (1989) Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L. Planta 177: 359–366

    Article  CAS  Google Scholar 

  • Caboche M, Rouze P (1990) Nitrate reductase: a target for molecular and cellular studies in higher plants. Trends Genet 6: 187–192

    Article  PubMed  CAS  Google Scholar 

  • Campbell WH (1996) Nitrate reductase biochemistry comes of age. Plant Physiol 111: 355–361

    PubMed  CAS  Google Scholar 

  • Carvalho E, Pereira S, Sunkel C, Salema R (1992) Detection of cytosolic glutamine synthetase in leaves of Nicotiana tabacum L. by immunocytochemical methods. Plant Physiol 100: 1591–1594

    Article  PubMed  CAS  Google Scholar 

  • Colas des Francs-Small C, Ambard-Bretteville F, Small ID, Rémy R (1994) Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol 102: 1171–1177

    Article  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859–868

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Wilkinson JQ, LaBrie ST (1992) Metabolic control of nitrate reduction in Arabidopsis thaliana. Aust J Plant Physiol 19: 377–385

    Article  CAS  Google Scholar 

  • Crété P, Caboche M, Meyer C (1997) Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant J 11: 625–634

    Article  PubMed  Google Scholar 

  • Cure JD, Israel DW, Rufty TW Jr. (1988) Nitrogen stress effects on growth and seed yield of non-nodulated soybean exposed to elevated carbon dioxide. Crop Sci 28: 671–677

    Article  Google Scholar 

  • Dalling MJ, Tolbert NE, Hageman RH (1972) Intracellular location of nitrate reductase and nitrite reductase. Biochim Biophys Acta 283: 505–512

    Article  PubMed  CAS  Google Scholar 

  • Donnelly PK, Fletcher JS (1995) PCB metabolism by ectomycorrhizal fungi. Bull Environ Contam Toxicol 54: 507–513

    Article  PubMed  CAS  Google Scholar 

  • Dorbe M-F, Caboche M, Daniel-Vedele F (1992) The tomato nia gene complements a Nicotiana plumbaginifolia nitrate reductase-deficient mutant and is properly regulated. Plant Mol Biol 18: 363–375

    Article  PubMed  CAS  Google Scholar 

  • Dorlhac de Borne F, Vincentz M, Chupeau Y, Vaucheret H (1994) Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants. Mol Gen Genet 243: 613–621

    PubMed  CAS  Google Scholar 

  • Duncanson E, Gilkes AF, Kirk DW, Sherman A, Wray JL (1993) nir 1, a conditional-lethal mutation in barley causing a defect in nitrite reduction. Mol Gen Genet 236: 275–282

    Google Scholar 

  • Durmishidze SV, Nutsubidze NN (1976) Absorption and conversion of nitrogen dioxide by higher plants. Dokl Biochem 227: 104–107

    Google Scholar 

  • Eckes P, Schmitt P, Daub W, Wengenmayer F (1989) Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol Gen Genet 217: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Edwards JW, Walker EL, Coruzzi GH (1990) Cell-specific expression in transgenic plants reveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase. Proc Natl Acad Sci U S A 87: 3459–3463

    Article  PubMed  CAS  Google Scholar 

  • Ferrario S, Valandier M-H, Morot-Gaundry J-F, Foyer CH (1995) Effects of constitutive expression of nitrate reductase in transgenic Nicotiana plumbaginifolia L. in response to varying nitrogen supply. Planta 196: 288–294

    Article  CAS  Google Scholar 

  • Ferrario-Méry S, Murchie E, Galtier N, Quick WP, Foyer CH (1997a) Manipulation of the pathways of sucrose synthesis and nitrogen assimilation in transformed plants to improve photosynthesis and productivity. In: Foyer CH, Quick WP (eds) A molecular approach to primary metabolism in higher plants. Taylor & Francis, London, pp 125–153

    Google Scholar 

  • Ferrario-Méry S, Thebaud MD, Betsche T, Valadier M-H, Foyer CH (1997b) Modulation of carbon and nitrogen metabolism, and of nitrate reductase, in untransformed and transformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and in hydroponic culture. Planta 202: 510–521

    Article  Google Scholar 

  • Fisher W-F, Andre B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K, Frommer WB (1998) Amino acid transport in plants. Trend Plant Sci 3: 188–195

    Article  Google Scholar 

  • Forde BG, Day HM, Turton JF, Shen WJ, Cullimore JV, Oliver JE (1989) Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell 1: 391–401

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lescure JC, Lefebvre C, Vincentz M, Vaucheret H (1994) Adaptations of photosynthetic electron transport, carbon assimilation and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol 104: 171–178

    PubMed  CAS  Google Scholar 

  • Gojon A, Dapoigny L, Lejay L, Tillard P, Rufty TW (1998) Effects of genetic modification of nitrate reductase expression on 15NO3- uptake and reduction in Nicotiana plants. Plant Cell Environ 21: 43–53

    Article  CAS  Google Scholar 

  • Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 179–188

    Article  PubMed  CAS  Google Scholar 

  • Hemon P, Robbins MP, Cullimore JV (1990) Targeting of glutamine synthetase to the mitochondria of transgenic tobacco. Plant Mol Biol 15: 895–904

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Marsolier MC, Hoarau A, Hoarau J, Brangeon J, Schafer R, Verma DPS (1992) Forcing expression of a soybean root glutamine synthetase gene in tobacco leaves induces a native gene encoding cytosolic enzyme. Plant Mol Biol 20: 207–218

    Article  PubMed  CAS  Google Scholar 

  • Hocking PJ, Meyer CP (1991) Effects of CO2 enrichment and nitrogen stress on growth and partitioning of dry matter and nitrogen in wheat and maize. Aust J Plant Physiol 18: 339–356

    Article  CAS  Google Scholar 

  • Ida S (1987) Immunological comparisons of ferredoxin-nitrite reductases from higher plants. Plant Sci 49: 111–116

    Article  CAS  Google Scholar 

  • Ida S, Mikami B (1986) Spinach ferredoxin-nitrite reductase: a purification procedure and characterization of chemical properties. Biochim Biophys Acta 871: 167–176

    Article  CAS  Google Scholar 

  • Ip SM, Kerr J, Ingledew WJ, Wray JL (1990) Purification and characterization of barley leaf nitrite reductase. Plant Sci 66: 155–165

    Article  CAS  Google Scholar 

  • Jin T, Huppe HC, Turpin DH (1998) In vitro reconstitution of electron transport from glucose-6-phosphate and NADPH to nitrite. Plant Physiol 117: 303–309

    Article  PubMed  CAS  Google Scholar 

  • Kamachi K, Yamaya T, Hayakawa T, Mae T, Ojima K (1992) Vascular bundle-specific localization of cytosolic glutamine synthetase in rice leaves. Plant Physiol 99: 1481–1486

    Article  PubMed  CAS  Google Scholar 

  • Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Wallsgrove RM, Miflin BJ (1978) Photorespiratory nitrogen cycle. Nature 275: 741–743

    Article  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384: 557–560

    Article  CAS  Google Scholar 

  • Kronenberger J, Lepingle A, Caboche M, Vaucheret H (1993) Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet 236: 2030–2038

    Article  Google Scholar 

  • Krueger RJ, Siegel LM (1982) Spinach siroheme enzymes: isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Biochemistry 21: 2892–2904

    Article  PubMed  CAS  Google Scholar 

  • Lam HM, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh MH, Coruzzi G (1995) Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell 7: 887–898

    Article  PubMed  CAS  Google Scholar 

  • Lancaster J Jr, Stuehr DJ (1996) The intracellular reactions of nitric oxide in the immune system and its enzymatic synthesis. In: Lancaster J Jr (ed) Nitric oxide. Principles and actions. Academic Press, San Diego, pp 139–175

    Google Scholar 

  • Lea PJ, Robinson SA, Stewart GR (1990) The enzymology and metabolism of glutamine, glutamate and asparagine. In: Miflm BJ, Lea PJ (eds) The biochemistry of plants. Intermediary nitrogen metabolism, vol 16. Academic Press, San Diego, pp 121–159

    Google Scholar 

  • Lea PJ, Rowland-Bamford AJ, Wolfenden J (1996) The effect of air pollutants and elevated carbon dioxide on nitrogen metabolism. In: Yunus M, Iqbal M (eds) Plant response to air pollution. Wiley, New York, pp 319–352

    Google Scholar 

  • McKee IF, Woodward FI (1994) CO2 enrichment responses of wheat: interactions with temperature, nitrate and phosphate. New Phytol 127: 447–453

    Article  Google Scholar 

  • Morikawa H, Higaki A, Nohno M, Kamada M, Nakata M, Toyohara G, Fujita K, Irifune K (1992) “Air-pollutant-philic plants” from nature. In: Murata N (ed) Research in photosynthesis, vol IV, Kluwer, Dordrecht, pp 79–82

    Google Scholar 

  • Morikawa H, Higaki A, Nohno M, Takahashi M, Kamada M, Nakata M, Toyohara G, Okamura Y, Matsui K, Kitani S, Fujita K, Irifune K, Goshima N (1998a) More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant Cell Environ 21: 180–190

    Article  Google Scholar 

  • Morikawa H, Takahashi M, Irifune K (1998b) Molecular mechanism of the metabolism of nitrogen dioxide as an alternative fertilizer in plants. In: Satoh K, Murata N (eds) Stress responses of photosynthetic organisms. Elsevier, Amsterdam, pp 227–237

    Google Scholar 

  • Oji Y, Watanabe M, Wakiuchi N, Okamoto S (1985) Nitrite reduction in barley root plastids: dependence on NADPH coupled with glucose-6-phosphate and 6-phosphogluconate dehydrogenases and possible involvement of an electron carrier and a diaphorase. Planta 165: 85–90

    Article  CAS  Google Scholar 

  • Page L, Griffiths L, Cole J A (1990) Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria. Arch Microbiol 154: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Peterman TK, Goodman HM (1991) The glutamine synthetase gene family of Arabidopsis thaliana: light-regulation and differential expression in leaves, roots and seeds. Mol Gen Genet 230: 145–154

    Article  PubMed  CAS  Google Scholar 

  • Purvis AC, Peters DB, Hageman RH (1974) Effect of nitrogen supply on the accumulation of photosynthesis to elevated CO2. Photosynth Res 39: 389–400

    Google Scholar 

  • Quilleré I, Dufossé C, Roux Y, Foyer CH, Caboche M, Morot-Gaudry JF (1994) The effect of the deregulation of NR gene expression on growth and nitrogen metabolism of winter-grown Nicotiana pumbaginifolia. J Exp Bot 45: 1205–1212

    Article  Google Scholar 

  • Rhodes D, Rendon GA, Stewart GR (1975) The control of glutamine synthetase level in Lemna minor L. Planta 125: 201–211

    Article  CAS  Google Scholar 

  • Robinson SA, Slade AP, Fox CG, Phillips R, Ratciffe RG, Stewart GR (1991) The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol 95: 509–516

    Article  PubMed  CAS  Google Scholar 

  • Rogers HH, Campbell JC, Volk RJ (1979) Nitrogen-15 dioxide uptake and incorporation by Phaseolus vulgaris (L.). Science 206: 333–335

    Article  PubMed  CAS  Google Scholar 

  • Rogers GS, Payne L, Milham P, Conroy J (1993) Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO2 concentrations. Plant Soil 155 /156: 231–234

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468–474

    Article  PubMed  CAS  Google Scholar 

  • Schuster C, Mohr H (1990) Appearance of nitrite reductase mRNA in mustard seedling cotyledons is regulated by phytochrome. Planta 181: 327–334

    CAS  Google Scholar 

  • Schwab AP, Banks MK (2000) Phytoremediation of petroleum contaminated soils. In: Fiorenza, S., Oubre, C. L. and Ward, C. H. (Eds.) Phytoremediation of Hydrocarbon-Contaminated Soil. Lewis Publishers, Boca Raton, NY & Washington D.C., USA.

    Google Scholar 

  • Siegel LM, Wilkerson JQ (1989) Structure and function of spinach ferredoxin-nitrite reductase. In: Wray JL, Kinghorn JR (eds) Molecular and genetic aspects of nitrate assimilation. New York, Oxford University Press, pp 263–283

    Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol 41: 225–253

    Article  CAS  Google Scholar 

  • Srivastava H, Wolfenden J, Lea PJ, Wellburn A (1994) Differential responses of growth and nitrate reductase activity in wild type and NO2-tolerant barley mutants to atmospheric NO2 and nutrient nitrate. J Plant Physiol 143: 738–743

    CAS  Google Scholar 

  • Suzuki A, Oaks A, Jacquot JP, Vidal J, Gadal P (1985) An electron transport system in maize roots for reactions of glutamate and nitrite synthase. Plant Physiol 78: 374–378

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Yamaoka R, Nishi M, Ide H, Makino K (1996) Isolation and characterization of a novel product, 2’-deoxyoxanosine, from 2’-deoxyguanosine, oligodeoxynucleotide, and calf thymus DNA treated by nitrous acid and nitric oxide. J Am Chem Soc 118: 2515–2516

    Article  CAS  Google Scholar 

  • Takahashi M, Hara K, Caboche M, Morikawa (1998) Reduction of nitrate and nitrogen dioxide in plants that lack nitrite reductase activity. Abstracts, Annual meeting of the American Society of Plant Physiologists, June 27–July 1, 1998, Madison, WI, p 59

    Google Scholar 

  • Takahashi M, Morikawa H (1996) High frequency stable transformation of Arabidopsis thaliana by particle bombardment. J Plant Res 109: 331–334

    Article  Google Scholar 

  • Takahashi M, Sasaki Y, Ida S and Morikawa H. Nitrite reductase gene enrichment improves assimilation of nitrogen dioxide in Arabidopsis. Plant Physiol 126: 731–741 (2001)

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Ida S, Irifune K, Oeda K, Morikawa H (1994) Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Seq 5: 57–61

    PubMed  CAS  Google Scholar 

  • Temple SJ, Sengupta-Gopalan C (1997) Manipulating amino acid biosynthesis. In: Foyer CH, Quick WP (eds) A molecular approach to primary metabolism in higher plants. Taylor & Francis, London, pp 155–177

    Google Scholar 

  • Temple SJ, Knight TJ, Unkefer PJ, Sengupta-Gopalan C (1993) Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: molecular and biochemical analysis. Mol Gen Genet 236: 315–325

    Article  PubMed  CAS  Google Scholar 

  • Temple SJ, Vance CP, Gantt JS (1998) Glutamate synthase and nitrogen assimilation. Trends Plant Sci 3: 51–56

    Article  Google Scholar 

  • Travis RL, Aslam M, Fritschi F, Rains DW (1998) Metabolic regulation of nitrate efflux and net uptake in Acala and Pima cotton. Abstracts, Annual meeting of the American Society of Plant Physiologists, June 27–July 1,1998, Madison, WI, pp 134

    Google Scholar 

  • Vaucheret H, Kronenberger J, Lepingle, Vilaine F, Boutin J-P, Caboche M (1992a) Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J 2: 559–569

    PubMed  CAS  Google Scholar 

  • Vaucheret H, Marion-Poll A, Meyer C, Faure J-M, Marin E, Caboche M (1992b) Interest in and limits to the utilization of reporter genes for the analysis of transcriptional regulation of nitrate reductase. Mol Gen Genet 235: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Caboche M (1992) Induction of nitrate reductase host gene expression has a negative effect on the expression of transgenes driven by the nitrate reductase promoter. Plant Sci 107: 95–104

    Article  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker MT, Vaucheret H, Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Warner RL, Kleinhofs A (1981) Nitrate reductase-deficient mutants in barley. Nature 269: 406–407

    Article  Google Scholar 

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115: 395–429

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) Air pollution and climate change: the biological impact. Longman, Essex

    Google Scholar 

  • Wilkinson JQ, Crawford NM (1991) Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell 3: 461–471

    Article  PubMed  CAS  Google Scholar 

  • Wray JL, Fido RJ (1990) Nitrate reductase and nitrite reductase. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, vol 3. Academic Press, London, pp 241–256

    Google Scholar 

  • Yoneyama T, Sasakawa H (1979) Transformation of atmospheric NO2 absorbed in spinach leaves. Plant Cell Physiol 20: 263–266

    CAS  Google Scholar 

  • Yunus M, Singh N, Iqbal M (1996) Global status of air pollution: an overview. In: Yunus M, Iqbal M (eds) Plant response to air pollution, Wiley, New York, pp 1–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer -Verlag Tokyo

About this chapter

Cite this chapter

Morikawa, H., Takahashi, M., Arimura, GI. (2002). Manipulation of Genes for Nitrogen Metabolism in Plants. In: Omasa, K., Saji, H., Youssefian, S., Kondo, N. (eds) Air Pollution and Plant Biotechnology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68388-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68388-9_20

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68390-2

  • Online ISBN: 978-4-431-68388-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics