Skip to main content

Abstract

In reading this book, you have observed that the spatial data used in landscape ecology come from many sources and in many forms. For many organisms, these data take the form of presence or absence at a location, or numbers of individuals at that same location. For species such as trees, where huge size differences exist between individuals, indices such as basal area, metric tons per hectare, or canopy cover are more useful than counts. For any measured species that is handled (or sampled noninvasively; Taberlet et al. 1999; Kendall and McKelvey 2008; Schwartz and Monfort 2008), an additional data source is available: the genetic data stored in the organism's tissue. If genetic samples are taken, then these data become another type of spatial data associated with the location where the organism was sampled. As such, genetic data can be analyzed with many of the same approaches used to analyze data of other types that vary spatially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Hoboken, NJ

    Google Scholar 

  • Aubry KB, McKelvey KS, Copeland JP (2007) Distribution and broadscale habitat relations of the wolverine in the contiguous United States. J Wildl Manag 71:2147–2158

    Article  Google Scholar 

  • Avise JC (2004) The hope, hype, and reality of genetic engineering. Oxford University Press, Oxford

    Google Scholar 

  • Balkenhol N, Gugerli F, Cushman SA, Waits L, Coulon A, Arntzen J, Holderegger R, Wagner H (2007) Identifying future research needs in landscape genetics: where to from here? Landscape Ecol 24:455–463

    Article  Google Scholar 

  • Barbujani G, Oden NL, Sokal RR (1989) Detecting regions of abrupt change in maps of biological variables. System Zool 38:376–389

    Article  Google Scholar 

  • Barbujani G, Sokal RR (1990) Zones of sharp genetic change in Europe are also linguistic boundaries. Proc Nat Acad Sci 87:1816–1819

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR, Plunkett III G, Bloch CA, et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Beebee, Rowe (2007) An introduction to molecular ecology. 2nd edition. Wiley, New York.

    Google Scholar 

  • Bromham L, Woolfit M (2004) Explosive radiations and the reliability of molecular clocks: island endemic radiations as a test case. System Biol 53:758–766

    Article  Google Scholar 

  • Cegelski C, Waits L, Anderson N (2003) Assessing population substructure and gene flow in Montana wolverines (Gulo gulo) using assignment-based approaches. Mol Ecol 12:2907–2918

    Article  CAS  PubMed  Google Scholar 

  • Cegelski CC, Waits LP, Anderson NJ, Flagstad O, Strobeck C, Kyle CJ (2006) Genetic diversity and population structure of wolverine (Gulo gulo) populations at the southern edge of their current distribution in North America with implications for genetic viability. Conservat Genet 7:197–211

    Article  Google Scholar 

  • Coulon A, Cosson J-F, Angibault JM, et al (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Coulon A, Guillot G, Cosson J, Angibault J, Aulagnier S, et al (2006) Genetics structure is influenced by lansdcape features. Empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

    Article  CAS  PubMed  Google Scholar 

  • Copeland JP, Peek JM, Groves CR, et al (2007) Seasonal habitat associations of the wolverine in central Idaho. J Wildl Manag 71:2201–2212

    Article  Google Scholar 

  • Copeland JP, McKelvey KS, Aubry KB, et al (In review) The bioclimatic envelope of the wolverine: Do environmental constraints limit their geographic distribution?

    Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene-flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Schwartz MK (2009) Identifying corridors for the movement of black bear (Ursus americanus) between Yellowstone National Park and the Canadian Border. Conservat Biol 23:368–376

    Article  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • ESRI (2003) ArcGIS. Environmental systems research incorporated, Redlands, CA

    Google Scholar 

  • Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J App Ecol. doi: 10.1111/j.1365–2664.2008.01606.x

    Google Scholar 

  • Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evolut Appl 1:620–630

    Google Scholar 

  • Gebremedhin B, Ficetola GF, Naderi S, Rezaei H.-R, Maudet C, Rioux D, Luikart G, Flagstad Ø, Thuiller W, Taberlet P (2009) Frontiers in identifying conservation units: from neutral markers to adaptive genetic variation. Anim Conserv 12:107–109

    Article  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Hauser L, Seeb JE (2008) Advances in molecular technology and their impact on fisheries genetics. Fish Fisheries 9:473–486

    Article  Google Scholar 

  • Hornocker MG, Hash HS (1981) Ecology of the wolverine in northwestern Montana. Canad J Zool 59:286–1301

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Biosci 58:199–207

    Article  Google Scholar 

  • Kendall, KC, McKelvey KS (2008) Hair Collection. In R. Long, P. MacKay, J. Ray, and W. Zielinski, editors. Noninvasive survey methods for North American Carnivores. Island. Washington, DC

    Google Scholar 

  • Kyle CJ, Strobeck C (2002) Connectivity of peripheral and core populations of North American wolverines. J Mammal 83:1141–1150

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edition. Elsevier, Amsterdam

    Google Scholar 

  • Legendre P, Troussellier M (1988) Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol Oceanography 33:1055–1067

    Article  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994.

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, England PR (1999) Statistical analysis of microsatellite DNA data. Trends Ecol Evol 14:253–256.

    Article  PubMed  Google Scholar 

  • Magoun AJ, Copeland JP (1998) Characteristics of wolverine reproductive den sites. J Wildl Manag 62:1313–1320

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: the combination of landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    PubMed  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geograph Anal 3:245–261

    Google Scholar 

  • Novembre J, Stephens M (2008) Interpreting principal component analyses of spatial population genetic variation. Nat Genet 40:646–649

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Shields GF, Strobeck C (1998) Gene flow between insular, coastal and interior populations of brown bears in Alaska. Mol Ecol 7:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495

    Article  CAS  PubMed  Google Scholar 

  • Prichard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Google Scholar 

  • Proctor MF, McLellan BN, Strobeck C, Barclay RMR (2005) Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerability by small populations. Proc Roy Soc B: Biol Sci 272:2409–2416

    Article  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Schwartz MK, Copeland JP, Anderson NJ, et al (In Press) Wolverine gene flow across a narrow climatic niche. Ecology

    Google Scholar 

  • Schwartz MK, Cushman SA, McKelvey KS, Hayden J, Engkjer C (2006) Detecting genotyping errors and describing black bear movement in northern Idaho. Ursus 17:138–148

    Article  Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Schwartz MK, Monfort SL (2008) Genetic and endocrine tools for carnivore surveys. R. Long, P. MacKay, J. Ray, and W. Zielinski (eds.) Noninvasive survey methods for North American Carnivores. Island, Washington, DC

    Google Scholar 

  • Simoni L, Gueresi P, Pettener D, Barbujani G (1999) Patterns of gene flow inferred from genetic distances in the Mediterranean region. Human Biol 71:399–415

    CAS  PubMed  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multi-locus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Squires JR, Copeland JP, Ulizio TJ, Schwartz MK, Ruggiero LF (2007) Sources and patterns of wolverine mortality in western Montana. J Wildl Manag71:2213–2220

    Article  Google Scholar 

  • Stenico M, Nigro L, Barbujani G (1998) Mitochondrial lineages in Ladin-speaking communities of the eastern Alps. Proc Roy Soc London, Ser B, Biol Sci 265:555–561

    Article  CAS  Google Scholar 

  • Storfer A, Cross J, Rush V, Caruso J (1999) Adaptive coloration and gene flow as a constraint to local adaptation in the streamside salamander, Ambystoma barbouri. Evolution 53:889–898.

    Article  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Non-invasive sampling: look before you leap. Trends Ecol Evol 14:323–327.

    Article  PubMed  Google Scholar 

  • Van Oppen MJH, Rico C, Deutsch JC, Turner GF, Hewitt GM (1997) Isolation and characterization of miicrosatellite loci in the cichlid fish Pseudotropheus zebra. Mol Ecol 6:387–388

    Article  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

McKelvey, K.S., Cushman, S.A., Schwartz, M.K. (2010). Landscape Genetics. In: Cushman, S.A., Huettmann, F. (eds) Spatial Complexity, Informatics, and Wildlife Conservation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87771-4_17

Download citation

Publish with us

Policies and ethics