Skip to main content

Bone Marrow Stromal Cell Transplantation for Central Nervous System Disorders: Perspectives for Translational Research and Clinical Application

  • Conference paper
Molecular Imaging for Integrated Medical Therapy and Drug Development
  • 619 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bliss T, Guzman R, Daadi M et al (2007) Cell transplantation therapy for stroke. Stroke 38: 817–826

    Article  PubMed  Google Scholar 

  2. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40: 609–619.

    Article  CAS  PubMed  Google Scholar 

  3. Hokari M, Kuroda S, Shichinohe H et al (2008) Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res 86: 1024–1035.

    Article  CAS  PubMed  Google Scholar 

  4. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 100(Suppl 1): 11917–11923.

    Article  CAS  PubMed  Google Scholar 

  5. Chiba Y, Kuroda S, Maruichi K et al (2009) Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model. Neurosurgery 64: 991–999; discussion 999–1000.

    Article  PubMed  Google Scholar 

  6. Itosaka H, Kuroda S, Shichinohe H et al (2008) Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: A novel material for CNS tissue engineering. Neuropathology 29: 248–257.

    Article  PubMed  Google Scholar 

  7. Lee JB, Kuroda S, Shichinohe H et al (2003) Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology 23: 169–180.

    Article  PubMed  Google Scholar 

  8. Lee JB, Kuroda S, Shichinohe H et al (2004) A pre-clinical assessment model of rat autogeneic bone marrow stromal cell transplantation into the central nervous system. Brain Res Brain Res Protoc 14: 37–44.

    Article  PubMed  Google Scholar 

  9. Shichinohe H, Kuroda S, Lee JB et al (2004) In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc 13: 166–175.

    Article  PubMed  Google Scholar 

  10. Shichinohe H, Kuroda S, Tsuji S et al (2008) Bone marrow stromal cells promote neurite extension in organotypic spinal cord slice: significance for cell transplantation therapy. Neurorehabil Neural Repair 22: 447–457.

    Article  PubMed  Google Scholar 

  11. Shichinohe H, Kuroda S, Yano S et al (2007) Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 1183: 138–147.

    Article  CAS  PubMed  Google Scholar 

  12. Shichinohe H, Kuroda S, Yano S et al (2006) Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells: an autoradiographic and histologic analysis. J Nucl Med 47: 486–191.

    CAS  PubMed  Google Scholar 

  13. Yamaguchi S, Kuroda S, Kobayashi H et al (2006) The effects of neuronal induction on gene expression profile in bone marrow stromal cells (BMSC)-a preliminary study using microarray analysis. Brain Res 1087: 15–27.

    Article  CAS  PubMed  Google Scholar 

  14. Yano S, Kuroda S, Lee JB et al (2005) In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. J Neurotrauma 22: 907–918.

    Article  PubMed  Google Scholar 

  15. Yano S, Kuroda S, Shichinohe H et al (2005) Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct? A double labeling study. Brain Res 1065: 60–67.

    Article  CAS  PubMed  Google Scholar 

  16. Yano S, Kuroda S, Shichinohe H et al (2006) Bone marrow stromal cell transplantation preserves gammaaminobutyric acid receptor function in the injured spinal cord. J Neurotrauma 23: 1682–1692.

    Article  PubMed  Google Scholar 

  17. Maruichi K, Kuroda S, Chiba Y et al (2009) Graded model of diffuse axonal injury for studying head injury-induced cognitive dysfunction in rats. Neuropathology 29: 132–139.

    Article  PubMed  Google Scholar 

  18. Maruichi K, Kuroda S, Chiba Y et al (2009) Transplanted bone marrow stromal cells improves cognitive dysfunction due to diffuse axonal injury in rats. Neuropathology 2009 Jan 2 [E pub ahead of print].

    Google Scholar 

  19. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164: 247–256.

    Article  CAS  PubMed  Google Scholar 

  20. Woodbury D, Schwarz EJ, Prockop DJ et al (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61: 364–370.

    Article  CAS  PubMed  Google Scholar 

  21. Azizi SA, Stokes D, Augelli BJ et al (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc Natl Acad Sci USA 95: 3908–3913

    Article  CAS  PubMed  Google Scholar 

  22. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96: 10711–10716.

    Article  CAS  PubMed  Google Scholar 

  23. Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77: 174–191.

    Article  CAS  PubMed  Google Scholar 

  24. Neuhuber B, Timothy Himes B, Shumsky JS et al (2005) Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 1035: 73–85.

    Article  CAS  PubMed  Google Scholar 

  25. Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416: 542–545.

    Article  CAS  PubMed  Google Scholar 

  26. Zhong C, Qin Z, Zhong CJ et al (2003) Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neurosci Lett 342: 93–96.

    Article  CAS  PubMed  Google Scholar 

  27. Kortesidis A, Zannettino A, Isenmann S et al (2005) Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105: 3793–3801.

    Article  CAS  PubMed  Google Scholar 

  28. Neuhuber B, Gallo G, Howard L et al (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77: 192–204.

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Li Y, Chen J et al (2002) Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol 30: 831–836.

    Article  CAS  PubMed  Google Scholar 

  30. Askari AT, Unzek S, Popovic ZB et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362: 697–703

    Article  CAS  PubMed  Google Scholar 

  31. Son BR, Marquez-Curtis LA, Kucia M et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24: 1254–1264.

    Article  CAS  PubMed  Google Scholar 

  32. Hofstetter CP, Schwarz EJ, Hess D et al (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 99: 2199–2204.

    Article  CAS  PubMed  Google Scholar 

  33. Mori K, Iwata J, Miyazaki M et al (2005) Functional recovery of neuronal activity in rat whisker-barrel cortex sensory pathway from freezing injury after transplantation of adult bone marrow stromal cells. J Cereb Blood Flow Metab 25: 887–898.

    Article  PubMed  Google Scholar 

  34. Bang OY, Lee JS, Lee PH et al (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57: 874–882

    Article  PubMed  Google Scholar 

  35. Lee PH, Kim JW, Bang OY et al (2008) Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 83: 723–730.

    Article  CAS  PubMed  Google Scholar 

  36. Saito F, Nakatani T, Iwase M et al (2008) Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma 64: 53–59.

    Article  PubMed  Google Scholar 

  37. Sykova E, Homola A, Mazanec R et al (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15: 675–687.

    Article  PubMed  Google Scholar 

  38. Yoon SH, Shim YS, Park YH et al (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 25: 2066–2073.

    Article  PubMed  Google Scholar 

  39. Zhang ZX, Guan LX, Zhang K et al (2008) A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy 10: 134–139.

    Article  CAS  PubMed  Google Scholar 

  40. Bakay RA (2005) Neural transplantation. J Neurosurg 103: 6–8; discussion 8.

    Article  PubMed  Google Scholar 

  41. Quinn N, Barker RA, Wenning GK (2008) Are trials of intravascular infusions of autologous mesenchymal stem cells in patients with multiple system atrophy currently justified, and are they effective? Clin Pharmacol Ther 83: 663–665.

    Article  CAS  PubMed  Google Scholar 

  42. Stroke Therapy Academic Industry Roundtable (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30: 2752–2758.

    Google Scholar 

  43. Savitz SI, Fisher M (2007) Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol 61: 396–402.

    Article  CAS  PubMed  Google Scholar 

  44. Kuroda S, Tsuchidate R, Smith M-L et al (1999) Neuroprotective effects of a novel nitrone, NXY-059. after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 19: 778–787.

    Article  CAS  PubMed  Google Scholar 

  45. Marshall JWB, Duffin KJ, Green AR et al (2001) NXY-059, a free radical-trapping agent, substantially lessons the functional disability resulting from cerebral ischemia in a primate species. Stroke 32: 190–198.

    CAS  PubMed  Google Scholar 

  46. Lees KR, Zivin JA, Ashwood T et al (2006) NXY-059 for acute ischemic stroke. N Engl J Med 354: 588–600.

    Article  CAS  PubMed  Google Scholar 

  47. Shuaib A, Lees KR, Lyden P et al (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357: 562–571.

    Article  CAS  PubMed  Google Scholar 

  48. Feuerstein GZ, Zaleska MM, Krams M et al (2008) Missing steps in the STAIR case: a translational medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J Cereb Blood Flow Metab 28: 217–219.

    Article  CAS  PubMed  Google Scholar 

  49. Borlongan CV, Chopp M, Steinberg GK et al (2008) Potential of stem/progenitor cells in treating stroke: the missing steps in translating cell therapy from laboratory to clinic. Regen Med 3: 249–250

    Article  PubMed  Google Scholar 

  50. Bakshi A, Barshinger AL, Swanger SA et al (2006) Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: a novel method for minimally invasive cell transplantation. J Neurotrauma 23: 55–65

    Article  PubMed  Google Scholar 

  51. Vaquero J, Zurita M, Oya S et al (2006) Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration? Neurosci Lett 398: 129–134.

    Article  CAS  PubMed  Google Scholar 

  52. Zurita M, Vaquero J (2004) Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport 15: 1105–1108.

    Article  PubMed  Google Scholar 

  53. Zurita M, Vaquero J (2006) Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome 1 year after transplantation. Neurosci Lett 402: 51–56.

    Article  CAS  PubMed  Google Scholar 

  54. Hokari M, Kuroda S, Chiba Y et al (2009) Synergistic effects of granulocyte-colony stimulating factor on bone marrow stromal cell transplantation for mice cerebral infarct. Cytokine 46: 260–266.

    Article  CAS  PubMed  Google Scholar 

  55. Lu D, Mahmood A, Wang L et al (2001) Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12: 559–563.

    Article  CAS  PubMed  Google Scholar 

  56. Shen LH, Li Y, Chen J et al (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137: 393–399.

    Article  CAS  PubMed  Google Scholar 

  57. Lu D, Mahmood A, Qu C et al (2007) Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 61: 596–602; discussion 602–593.

    Article  PubMed  Google Scholar 

  58. Yasuda H, Kuroda S, Shichinohe H et al (2009) Effect of biodegradable fibrin scaffold on survival, migration, and differentiation of transplanted bone marrow stromal cells after cortical injury in rats. J Neurosurg 2009 Mar 6 [Epub ahead of print].

    Google Scholar 

  59. Hoehn M, Kustermann E, Blunk J et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99: 16267–16272.

    Article  CAS  PubMed  Google Scholar 

  60. Jendelova P, Herynek V, DeCroos J et al (2003) Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50: 767–776.

    Article  CAS  PubMed  Google Scholar 

  61. Modo M, Mellodew K, Cash D et al (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21: 311–317.

    Article  PubMed  Google Scholar 

  62. Correa PL, Mesquita CT, Felix RM et al (2007) Assessment of intra-arterial injected autologous bone marrow mononuclear cell distribution by radioactive labeling in acute ischemic stroke. Clin Nucl Med 32: 839–841.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Kuroda, S., Kuge, Y., Tamaki, N., Iwasaki, Y. (2010). Bone Marrow Stromal Cell Transplantation for Central Nervous System Disorders: Perspectives for Translational Research and Clinical Application. In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics