Skip to main content

Breast Cancer Biomarkers for Risk Assessment, Screening, Detection, Diagnosis, and Prognosis

  • Chapter
  • First Online:
Omics Approaches in Breast Cancer

Abstract

Breast cancer mortality can be prevented if the disease is detected early. During the past decade, progress has been made in identifying invasive and noninvasive biomarkers. Genetic biomarkers are based on mutations and single nucleotide polymorphisms (SNPs) associated with breast cancer and have potential use in screening high-risk populations to identify individuals who are likely to develop this disease. Among epigenetic biomarkers, hypermethylation of selected genes and specific microRNA (miR) profiling can be used for cancer detection, diagnosis, and prognosis. This chapter also discusses other biomarkers, such as proteomics, imaging, and glycomics, as well as the advantages of noninvasive biomarkers as compared to invasive biomarkers. Also covered are new approaches to currently available technologies and assays to make them suitable for clinical use. The ultimate goal for detection is to identify (a) biomarkers that can be assayed in samples that are collected noninvasively, (b) assays that are not expensive, and (c) biomarkers that show high sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang SS, Gui GP. Biomarkers in the diagnosis of primary and recurrent breast cancer. Biomark Med. 2012;6(5):567–85.

    PubMed  CAS  Google Scholar 

  2. Ouyang G, Chen Y, Setkova L, Pawliszyn J. Calibration of solid-phase micro-extraction for quantitative analysis by gas chromatography. J Chromatogr A. 2005;1097(1–2):9–16.

    PubMed  CAS  Google Scholar 

  3. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360(8):790–800.

    PubMed  CAS  Google Scholar 

  4. Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, et al. A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A. 2010;107(15):6994–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Desmedt C, Sotiriou C, Piccart-Gebhart MJ. Development and validation of gene expression profile signatures in early-stage breast cancer. Cancer Invest. 2009;27(1):1–10.

    PubMed  Google Scholar 

  6. Lee SC, Xu X, Chng WJ, Watson M, Lim YW, Wong CI, et al. Post-treatment tumor gene expression signatures are more predictive of treatment outcomes than baseline signatures in breast cancer. Pharmacogenet Genomics. 2009;19(11):833–42.

    PubMed  CAS  Google Scholar 

  7. Normanno N, De Luca A, Carotenuto P, Lamura L, Oliva I, D’Alessio A. Prognostic applications of gene expression signatures in breast cancer. Oncology. 2009;77 Suppl 1:2–8.

    PubMed  CAS  Google Scholar 

  8. Tebbit CL, Zhai J, Untch BR, Ellis MJ, Dressman HK, Bentley RC, et al. Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer: a study to determine feasibility and reproducibility in the context of clinical care. Breast Cancer Res Treat. 2009;118(3):635–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Boeri L, Canzonieri C, Cagioni C, Ornati F, Danesino C. Breast cancer and genetics. J Ultrasound. 2011;14(4):171–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Kirk R. Genetics: the crystal ball clears for breast cancer therapy? Nat Rev Clin Oncol. 2011;8(7):383.

    PubMed  Google Scholar 

  11. Lindeman GJ, Visvader JE. Hereditary breast cancer genetics–from clinical curiosities to mainstream paradigms. J Mammary Gland Biol Neoplasia. 2011;16(1):1–2.

    PubMed  CAS  Google Scholar 

  12. Hall P. Current knowledge and tomorrows challenges of breast, ovarian and prostate cancer genetics. J Intern Med. 2012;271(4):318–20.

    PubMed  CAS  Google Scholar 

  13. Gayther SA, Song H, Ramus SJ, Kjaer SK, Whittemore AS, Quaye L, et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer Res. 2007;67(7):3027–35.

    PubMed  CAS  Google Scholar 

  14. Antoniou AC, Spurdle AB, Sinilnikova OM, Healey S, Pooley KA, Schmutzler RK, et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet. 2008;82(4):937–48.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Pharoah PD, Caldas C. Genetics: how to validate a breast cancer prognostic signature. Nat Rev Clin Oncol. 2010;7(11):615–6.

    PubMed  Google Scholar 

  16. Jacobson DR, Fishman CL, Mills NE. Molecular genetic tumor markers in the early diagnosis and screening of non-small-cell lung cancer. Ann Oncol. 1995;6 Suppl 3:S3–8.

    PubMed  Google Scholar 

  17. Wiest JS, Franklin WA, Drabkin H, Gemmill R, Sidransky D, Anderson MW. Genetic markers for early detection of lung cancer and outcome measures for response to chemoprevention. J Cell Biochem Suppl. 1997;28–29:64–73.

    PubMed  Google Scholar 

  18. Oyama T, Osaki T, Baba T, Nagata Y, Mizukami M, So T, et al. Molecular genetic tumor markers in non-small cell lung cancer. Anticancer Res. 2005;25(2B):1193–6.

    PubMed  CAS  Google Scholar 

  19. Chorostowska-Wynimko J, Szpechcinski A. The impact of genetic markers on the diagnosis of lung cancer: a current perspective. J Thorac Oncol. 2007;2(11):1044–51.

    PubMed  Google Scholar 

  20. Li R, Todd NW, Qiu Q, Fan T, Zhao RY, Rodgers WH, et al. Genetic deletions in sputum as diagnostic markers for early detection of stage I non-small cell lung cancer. Clin Cancer Res. 2007;13(2 Pt 1):482–7.

    PubMed  CAS  Google Scholar 

  21. Gill RK, Vazquez MF, Kramer A, Hames M, Zhang L, Heselmeyer-Haddad K, et al. The use of genetic markers to identify lung cancer in fine needle aspiration samples. Clin Cancer Res. 2008;14:7481–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Adams VR, Harvey RD. Histological and genetic markers for non-small-cell lung cancer: customizing treatment based on individual tumor biology. Am J Health Syst Pharm. 2010;67(1 Suppl 1):S3–9, quiz S15–16.

    PubMed  CAS  Google Scholar 

  23. Ponomareva AA, Rykova E, Cherdyntseva NV, Choĭnzonov EL, Laktionov PP, Vlasov VV. Molecular-genetic markers in lung cancer diagnostics. Mol Biol (Mosk). 2011;45(2):203–17.

    CAS  Google Scholar 

  24. Arason A, Gunnarsson H, Johannesdottir G, Jonasson K, Bendahl PO, Gillanders EM, et al. Genome-wide search for breast cancer linkage in large Icelandic non-BRCA1/2 families. Breast Cancer Res. 2010;12(4):R50.

    PubMed  PubMed Central  Google Scholar 

  25. Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics. 2010;11:137.

    PubMed  PubMed Central  Google Scholar 

  26. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42(6):504–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Li J, Humphreys K, Heikkinen T, Aittomäki K, Blomqvist C, Pharoah PD, et al. A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Res Treat. 2011;126(3):717–27.

    PubMed  CAS  Google Scholar 

  28. Politopoulos I, Gibson J, Tapper W, Ennis S, Eccles D, Collins A. Genome-wide association of breast cancer: composite likelihood with imputed genotypes. Eur J Hum Genet. 2011;19(2):194–9.

    PubMed  PubMed Central  Google Scholar 

  29. Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol. 2002;3(12):755–63.

    PubMed  CAS  Google Scholar 

  30. Verma M. Viral genes and methylation. Ann N Y Acad Sci. 2003;983:170–80.

    PubMed  CAS  Google Scholar 

  31. Verma M, Dunn BK, Ross S, Jain P, Wang W, Hayes R, et al. Early detection and risk assessment: proceedings and recommendations from the Workshop on Epigenetics in Cancer Prevention. Ann N Y Acad Sci. 2003;983:298–319.

    PubMed  Google Scholar 

  32. Verma M, Maruvada P, Srivastava S. Epigenetics and cancer. Crit Rev Clin Lab Sci. 2004;41(5–6):585–607.

    PubMed  CAS  Google Scholar 

  33. Agarwal R, Jin Z, Yang J, Mori Y, Song JH, Kumar S, et al. Epigenomic program of Barrett’s-associated neoplastic progression reveals possible involvement of insulin signaling pathways. Endocr Relat Cancer. 2012;19(1):L5–9.

    PubMed  PubMed Central  Google Scholar 

  34. Khare S, Verma M. Epigenetics of colon cancer. Methods Mol Biol. 2012;863:177–85.

    PubMed  CAS  Google Scholar 

  35. Mishra A, Verma M. Epigenetics of solid cancer stem cells. Methods Mol Biol. 2012;863:15–31.

    PubMed  CAS  Google Scholar 

  36. Verma M. Cancer control and prevention by nutrition and epigenetic approaches. Antioxid Redox Signal. 2012;17(2):355–64.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Verma M. Epigenetic biomarkers in cancer epidemiology. Methods Mol Biol. 2012;863:467–80.

    PubMed  CAS  Google Scholar 

  38. Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology. 2006;147(6 Suppl):S43–9.

    PubMed  CAS  Google Scholar 

  39. Anway MD, Skinner MK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online. 2008;16(1):23–5.

    PubMed  Google Scholar 

  40. Berdasco M, Esteller M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell. 2012;11(2):181–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Gómez-Díaz E, Jordà M, Peinado MA, Rivero A. Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLoS Pathog. 2012;8(11):e1003007.

    PubMed  PubMed Central  Google Scholar 

  42. Singh S, Li SS. Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int J Mol Sci. 2012;13(8):10143–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LG, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med. 2011;3(75):75ra25.

    PubMed  PubMed Central  Google Scholar 

  44. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Melichar B, Kroupis C. Cancer epigenomics: moving slowly, but at a steady pace from laboratory bench to clinical practice. Clin Chem Lab Med. 2012;50(10):1699–701.

    PubMed  CAS  Google Scholar 

  46. Yi JM, Dhir M, Van Neste L, Downing SR, Jeschke J, Glöckner SC, et al. Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin Cancer Res. 2011;17(6):1535–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Xing L, Todd NW, Yu L, Fang H, Jiang F. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol. 2010;23(8):1157–64.

    PubMed  CAS  Google Scholar 

  48. Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer. 2010;127(12):2870–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, et al. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull. 2003;29(1):169–78.

    PubMed  Google Scholar 

  50. Harder A, Titze S, Herbst L, Harder T, Guse K, Tinschert S, et al. Monozygotic twins with neurofibromatosis type 1 (NF1) display differences in methylation of NF1 gene promoter elements, 5′ untranslated region, exon and intron 1. Twin Res Hum Genet. 2010;13(6):582–94.

    PubMed  Google Scholar 

  51. Buchbinder D, Nadeau K, Nugent D. Monozygotic twin pair showing discordant phenotype for X-linked thrombocytopenia and Wiskott-Aldrich syndrome: a role for epigenetics? J Clin Immunol. 2011;31(5):773–7.

    PubMed  CAS  Google Scholar 

  52. Ollikainen M, Craig JM. Epigenetic discordance at imprinting control regions in twins. Epigenomics. 2011;3(3):295–306.

    PubMed  CAS  Google Scholar 

  53. Galetzka D, Hansmann T, El Hajj N, Weis E, Irmscher B, Ludwig M, et al. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics. 2012;7(1):47–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Narod SA. Genes, the environment, and breast cancer. Lancet. 2010;375(9732):2123–4.

    PubMed  Google Scholar 

  55. Travis RC, Reeves GK, Green J, Bull D, Tipper SJ, Baker K, et al. Gene-environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study. Lancet. 2010;375(9732):2143–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Song M, Lee KM, Kang D. Breast cancer prevention based on gene-environment interaction. Mol Carcinog. 2011;50(4):280–90.

    PubMed  CAS  Google Scholar 

  57. Ashley-Martin J, VanLeeuwen J, Cribb A, Andreou P, Guernsey JR. Breast cancer risk, fungicide exposure and CYP1A1*2A gene-environment interactions in a province-wide case control study in Prince Edward Island, Canada. Int J Environ Res Public Health. 2012;9(5):1846–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Qiu J, Yang R, Rao Y, Du Y, Kalembo FW. Risk factors for breast cancer and expression of insulin-like growth factor-2 (IGF-2) in women with breast cancer in Wuhan City, China. PLoS One. 2012;7(5):e36497.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Zeeb H, Hammer GP, Blettner M. Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure. J Radiol Prot. 2012;32(1):N15–9.

    PubMed  Google Scholar 

  60. Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y, et al. HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res. 2004;10(20):6962–8.

    PubMed  CAS  Google Scholar 

  61. Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S, et al. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene. 2005;24(28):4531–9.

    PubMed  CAS  Google Scholar 

  62. Krusche CA, Wülfing P, Kersting C, Vloet A, Böcker W, Kiesel L, et al. Histone deacetylase-1 and −3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat. 2005;90(1):15–23.

    PubMed  CAS  Google Scholar 

  63. Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, et al. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat. 2005;94(1):11–6.

    PubMed  CAS  Google Scholar 

  64. Shann YJ, Cheng C, Chiao CH, Chen DT, Li PH, Hsu MT. Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines. Genome Res. 2008;18(5):791–801.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Fackler MJ, Umbricht CB, Williams D, Argani P, Cruz LA, Merino VF, et al. Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of recurrence. Cancer Res. 2011;71(19):6195–207.

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, et al. Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res. 2011;71(8):2988–99.

    PubMed  CAS  Google Scholar 

  67. Faryna M, Konermann C, Aulmann S, Bermejo JL, Brugger M, Diederichs S, et al. Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB J. 2012;26(12):4937–50.

    PubMed  CAS  Google Scholar 

  68. Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, et al. Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J Pineal Res. 2013;54(1):80–8.

    PubMed  CAS  Google Scholar 

  69. Morita S, Takahashi RU, Yamashita R, Toyoda A, Horii T, Kimura M, et al. Genome-wide analysis of DNA methylation and expression of microRNAs in breast cancer cells. Int J Mol Sci. 2012;13(7):8259–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Soares J, Pinto AE, Cunha CV, André S, Barão I, Sousa JM, et al. Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression. Cancer. 1999;85(1):112–8.

    PubMed  CAS  Google Scholar 

  71. Jackson K, Yu MC, Arakawa K, Fiala E, Youn B, Fiegl H, et al. DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther. 2004;3(12):1225–31.

    PubMed  CAS  Google Scholar 

  72. Narayan A, Ji W, Zhang XY, Marrogi A, Graff JR, Baylin SB, et al. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer. 1998;77(6):833–8.

    PubMed  CAS  Google Scholar 

  73. Tjensvoll K, Svendsen KN, Reuben JM, Oltedal S, Gilje B, Smaaland R, et al. miRNA expression profiling for identification of potential breast cancer biomarkers. Biomarkers. 2012;17(5):463–70.

    PubMed  CAS  Google Scholar 

  74. Vrba L, Munoz-Rodriguez JL, Stampfer MR, Futscher BW. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One. 2013;8(1):e54398.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer. 2010;103(4):532–41.

    PubMed  PubMed Central  Google Scholar 

  77. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33(6):679–89.

    Google Scholar 

  78. Panis C, Pizzatti L, Herrera AC, Cecchini R, Abdelhay E. Putative circulating markers of the early and advanced stages of breast cancer identified by high-resolution label-free proteomics. Cancer Lett. 2013;330(1):57–66.

    PubMed  CAS  Google Scholar 

  79. Cirillo F, Nassa G, Tarallo R, Stellato C, De Filippo MR, Ambrosino C, et al. Molecular mechanisms of selective estrogen receptor modulator activity in human breast cancer cells: identification of novel nuclear cofactors of antiestrogen-ERα complexes by interaction proteomics. J Proteome Res. 2013;12(1):421–31.

    PubMed  CAS  Google Scholar 

  80. Liu NQ, Braakman RB, Stingl C, Luider TM, Martens JW, Foekens JA, et al. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue. J Mammary Gland Biol Neoplasia. 2012;17(2):155–64.

    PubMed  PubMed Central  Google Scholar 

  81. Fonseca-Sánchez MA, Rodríguez Cuevas S, Mendoza-Hernández G, Bautista-Piña V, Arechaga Ocampo E, Hidalgo Miranda A, et al. Breast cancer proteomics reveals a positive correlation between glyoxalase 1 expression and high tumor grade. Int J Oncol. 2012;41(2):670–80.

    PubMed  Google Scholar 

  82. Gonzalez-Angulo AM, Hennessy BT, Meric-Bernstam F, Sahin A, Liu W, Ju Z, et al. Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer. Clin Proteomics. 2011;8(1):11.

    PubMed  PubMed Central  Google Scholar 

  83. Fabian CJ, Kimler BF, Brady DA, Mayo MS, Chang CH, Ferraro JA, et al. A phase II breast cancer chemoprevention trial of oral alpha-difluoromethylornithine: breast tissue, imaging, and serum and urine biomarkers. Clin Cancer Res. 2002;8(10):3105–17.

    PubMed  CAS  Google Scholar 

  84. Xu H, Chen C, Liu CM, Peng J, Li Y, Zhang ZL, et al. The distribution analysis of the biomarkers on breast cancer tissues by Hadamard transform spectral microscopic imaging. Guang Pu Xue Yu Guang Pu Fen Xi. 2009;29(12):3216–9. Chinese.

    PubMed  CAS  Google Scholar 

  85. Khalkhali I, Mena I, Diggles L. Review of imaging techniques for the diagnosis of breast cancer: a new role of prone scintimammography using technetium-99m sestamibi. Eur J Nucl Med. 1994;21(4):357–62.

    PubMed  CAS  Google Scholar 

  86. Jiang H, Ramesh S, Bartlett M. Combined optical and fluorescence imaging for breast cancer detection and diagnosis. Crit Rev Biomed Eng. 2000;28(3–4):371–5.

    PubMed  CAS  Google Scholar 

  87. Jiang H, Tao W, Zhang M, Pan S, Kanwar JR, Sun X. Low-dose metronomic paclitaxel chemotherapy suppresses breast tumors and metastases in mice. Cancer Invest. 2010;28(1):74–84.

    PubMed  CAS  Google Scholar 

  88. Sentís M. Imaging diagnosis of young women with breast cancer. Breast Cancer Res Treat. 2010;123 Suppl 1:11–3.

    PubMed  Google Scholar 

  89. Heijblom M, Klaase JM, van den Engh FM, van Leeuwen TG, Steenbergen W, Manohar S. Imaging tumor vascularization for detection and diagnosis of breast cancer. Technol Cancer Res Treat. 2011;10(6):607–23.

    PubMed  CAS  Google Scholar 

  90. Luckmann R. Magnetic resonance imaging was more sensitive than mammography for detecting breast cancer in high-risk women. ACP J Club. 2005;142(1):23.

    PubMed  Google Scholar 

  91. Allahverdipour H, Asghari-Jafarabadi M, Emami A. Breast cancer risk perception, benefits of and barriers to mammography adherence among a group of Iranian women. Women Health. 2011;51(3):204–19.

    PubMed  Google Scholar 

  92. Brédart A, Kop JL, Fall M, Pelissier S, Simondi C, Dolbeault S, et al. Anxiety and specific distress in women at intermediate and high risk of breast cancer before and after surveillance by magnetic resonance imaging and mammography versus standard mammography. Psychooncology. 2012;21(11):1185–94.

    Google Scholar 

  93. Salas D, Ibáñez J, Román R, Cuevas D, Sala M, Ascunce N, et al. Effect of start age of breast cancer screening mammography on the risk of false-positive results. Prev Med. 2011;53(1–2):76–81.

    PubMed  Google Scholar 

  94. Brinton JT, Barke LD, Freivogel ME, Jackson S, O’Donnell CI, Glueck DH. Breast cancer risk assessment in 64,659 women at a single high-volume mammography clinic. Acad Radiol. 2012;19(1):95–9.

    PubMed  PubMed Central  Google Scholar 

  95. Otto SJ, Fracheboud J, Verbeek AL, Boer R, Reijerink-Verheij JC, Otten JD, et al. Mammography screening and risk of breast cancer death: a population-based case-control study. Cancer Epidemiol Biomarkers Prev. 2012;21(1):66–73.

    PubMed  Google Scholar 

  96. Kenny LM, Al-Nahhas A, Aboagye EO. Novel PET biomarkers for breast cancer imaging. Nucl Med Commun. 2011;32(5):333–5.

    PubMed  Google Scholar 

  97. Silva CL, Passos M, Câmara JS. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—a powerful strategy for breast cancer diagnosis. Talanta. 2012;89:360–8.

    PubMed  CAS  Google Scholar 

  98. Wang DY, Done SJ, McCready DR, Boerner S, Kulkarni S, Leong WL. A new gene expression signature, the ClinicoMolecular Triad Classification, may improve prediction and prognostication of breast cancer at the time of diagnosis. Breast Cancer Res. 2011;13(5):R92.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.

    PubMed  CAS  Google Scholar 

  100. Germano S, O’Driscoll L. Breast cancer: understanding sensitivity and resistance to chemotherapy and targeted therapies to aid in personalised medicine. Curr Cancer Drug Targets. 2009;9(3):398–418.

    PubMed  CAS  Google Scholar 

  101. LaPensee EW, Ben-Jonathan N. Novel roles of prolactin and estrogens in breast cancer: resistance to chemotherapy. Endocr Relat Cancer. 2010;17(2):R91–107.

    PubMed  CAS  Google Scholar 

  102. Rivera E, Gomez H. Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Res. 2010;12 Suppl 2:S2.

    PubMed  PubMed Central  Google Scholar 

  103. Knappskog S, Chrisanthar R, Løkkevik E, Anker G, Østenstad B, Lundgren S, et al. Low expression levels of ATM may substitute for CHEK2/TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer. Breast Cancer Res. 2012;14(2):R47.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Wajapeyee N, Somasundaram K. Pharmacogenomics in breast cancer: current trends and future directions. Curr Opin Mol Ther. 2004;6(3):296–301.

    PubMed  CAS  Google Scholar 

  105. Newman WG, Flockhart D. Breast cancer pharmacogenomics: where we are going. Pharmacogenomics. 2012;13(6):629–31.

    PubMed  CAS  Google Scholar 

  106. Yiannakopoulou E. Pharmacogenomics of breast cancer targeted therapy: focus on recent patents. Recent Pat DNA Gene Seq. 2012;6(1):33–46.

    PubMed  CAS  Google Scholar 

  107. Virnig BA, Torchia MT, Jarosek SL, Durham S, Tuttle TM. Use of endocrine therapy following diagnosis of ductal carcinoma in situ or early invasive breast cancer: Data Points #14. 2012. In: Data Points Publication Series [Internet]. Rockville: Agency for Healthcare Research and Quality (US); 2011. Available from: http://www.ncbi.nlm.nih.gov/books/NBK109739/.

  108. Davis MA, Hanash S. High-throughput genomic technology in research and clinical management of breast cancer. Plasma-based proteomics in early detection and therapy. Breast Cancer Res. 2006;8(6):217.

    PubMed  PubMed Central  Google Scholar 

  109. Galvão ER, Martins LM, Ibiapina JO, Andrade HM, Monte SJ. Breast cancer proteomics: a review for clinicians. J Cancer Res Clin Oncol. 2011;137(6):915–25.

    PubMed  Google Scholar 

  110. Garrisi VM, Abbate I, Quaranta M, Mangia A, Tommasi S, Paradiso A. SELDI-TOF serum proteomics and breast cancer: which perspective? Expert Rev Proteomics. 2008;5(6):779–85.

    PubMed  CAS  Google Scholar 

  111. Braakman RB, Luider TM, Martens JW, Foekens JA, Umar A. Laser capture microdissection applications in breast cancer proteomics. Methods Mol Biol. 2011;755:143–54.

    PubMed  CAS  Google Scholar 

  112. Opstal-van Winden AW, Rodenburg W, Pennings JL, van Oostrom CT, Beijnen JH, Peeters PH, et al. A bead-based multiplexed immunoassay to evaluate breast cancer biomarkers for early detection in pre-diagnostic serum. Int J Mol Sci. 2012;13(10):13587–604.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Verma M, Seminara D, Arena FJ, John C, Iwamoto K, Hartmuller V. Genetic and epigenetic biomarkers in cancer : improving diagnosis, risk assessment, and disease stratification. Mol Diagn Ther. 2006;10(1):1–15.

    PubMed  CAS  Google Scholar 

  114. Srivastava S, Verma M, Henson DE. Biomarkers for early detection of colon cancer. Clin Cancer Res. 2001;7(5):1118–26.

    PubMed  CAS  Google Scholar 

  115. Srinivas PR, Verma M, Zhao Y, Srivastava S. Proteomics for cancer biomarker discovery. Clin Chem. 2002;48(8):1160–9.

    PubMed  CAS  Google Scholar 

  116. Verma M, Srivastava S. New cancer biomarkers deriving from NCI early detection research. Recent Results Cancer Res. 2003;163:72–84; discussion 264–6.

    PubMed  CAS  Google Scholar 

  117. Srivastava S. Cancer biomarker discovery and development in gastrointestinal cancers: early detection research network-a collaborative approach. Gastrointest Cancer Res. 2007;1(4 Suppl 2):S60–3.

    PubMed  PubMed Central  Google Scholar 

  118. Kelloff GJ, Sigman CC. Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov. 2012;11(3):201–14.

    PubMed  CAS  Google Scholar 

  119. Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA, et al. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1293–302.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol. 2001;19(4):980–91.

    PubMed  CAS  Google Scholar 

  121. Blamey RW, Ellis IO, Pinder SE, Lee AH, Macmillan RD, Morgan DA, et al. Survival of invasive breast cancer according to the Nottingham Prognostic Index in cases diagnosed in 1990–1999. Eur J Cancer. 2007;43(10):1548–55.

    PubMed  CAS  Google Scholar 

  122. Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12(1):R1.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am thankful to Joanne Brodsky of SCG, Inc., for reading the manuscript and providing her suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debmalya Barh MSc, MTech, MPhil, PhD, PGDM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Verma, M., Barh, D. (2014). Breast Cancer Biomarkers for Risk Assessment, Screening, Detection, Diagnosis, and Prognosis. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_20

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics