Skip to main content

Breast Cancer Proteomics

  • Chapter
  • First Online:
Omics Approaches in Breast Cancer

Abstract

Breast cancer is still at the top of statistics for incidence and for scientific publications. This testifies the urgency for a better understanding of the biology and the molecular basis of the tumor onset and progression, in order to improve diagnostic and therapeutic strategies. From a biological point of view, the mammary gland, which undergoes cyclical morphogenesis, represents a valid model to study gene expression, epigenetic, differentiation, and cancer. A valid support to these types of research is the proteomic methodology, which over the last decades has been increasingly applied for large-scale detection of protein pathways and pathological biomarkers.

This chapter proposes the application of two complementary approaches, ex vivo and in vitro, for the identification of proteins and protein clusters, likely to be correlated with spontaneous or induced phenotypic perturbations representative of neoplastic cells and tissues.

Generally, the first goal is the establishment of a reference model for data mining through a platform of consolidated data. The proteomics methodology offers at present a large variety of protocols for gel-based and gel-free applications to the large-scale protein detection, each of them supported by the appropriate reference models.

In cases of 2D gel-based proteomics, a reference proteomic map is constructed with computerized applications of the gel-matching procedure among N-numbers of replicate maps.

In cases of cancer surgical tissues, a trustable reference is the healthy tissue surrounding the tumor. With this procedure, in our laboratory, we have identified sets of proteins preferentially expressed, or overexpressed, in the tumor tissues, after normalization with the actin content in each map, as cellularity index.

Results from surgical explants ex vivo of ductal infiltrating carcinomas, cryo-preserved in our tissue bank, highlighted the appearance of “ubiquitous” and “sporadic” proteins. The identity of these proteins, assessed by mass spectrometry and immunologically validated, is discussed in this chapter on the light of literature data, with the aim of finding spontaneous tumor markers able to predict the cancer behavior.

The second type of approach, based on in vitro models, is utilized by a large number of researchers worldwide to study cell behavior under basal and experimental conditions.

In this chapter some examples of proteomic modulation under experimental conditions, mimicking selected aspects of the in vivo cancer progression, are presented. These aspects regarded the influences exerted by tumor-related collagens used as substrates for neoplastic cell cultures, the effects of fibroblast cocultured with the cancer cells and those exerted by transgenic decorin, a small leucine-rich proteoglycan with putative antioncogenic properties. Finally the proteomics of secreted vesicle and the responses to the biopharmacological drug trastuzumab were described. The proteins involved in each situation are commented on the basis of current literature.

Conclusively, the contribution of proteomics in recognizing hundreds of proteins involved and responsive to the internal/external tumor environment appears a winning strategy if conducted in a highly controlled way with precise reference points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  2. Hynes NE, Watson CJ. Mammary gland growth factors: roles in normal development and in cancer. Cold Spring Harb Perspect Biol. 2010. doi:10.1101/cshperspect.a003186.

    PubMed  PubMed Central  Google Scholar 

  3. Nguyen-Ngoc KV, Cheung KJ, Brenot A, Shamir ER, Gray RS, Hines WC, et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci U S A. 2012;109:E2595–604.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Pucci-Minafra I. Extracellular matrix in breast cancer: permissive and restrictive influences emanating from the stroma. In: Karamanos N, editor. Extracellular matrix: pathobiology and signaling. 1st ed. Berlin: De Gruyter; 2012.

    Google Scholar 

  5. Minafra L, Norata R, Bravatà V, Viola M, Lupo C, Gelfi C, et al. Unmasking epithelial-mesenchymal transition in a breast cancer primary culture: a study report. BMC Res Notes. 2012. doi:10.1186/1756-0500-5-343.

    PubMed  PubMed Central  Google Scholar 

  6. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology. 1996;14:61–5.

    Article  PubMed  CAS  Google Scholar 

  7. Choudhary J, Grant SG. Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci. 2004;7:440–5.

    Article  PubMed  CAS  Google Scholar 

  8. Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003;33:311–23.

    Article  PubMed  CAS  Google Scholar 

  9. Wolters DA, Washburn MP, Yates 3rd JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001;73:5683–90.

    Article  PubMed  CAS  Google Scholar 

  10. Liang S, Xu Z, Xu X, Zhao X, Huang C, Wei Y. Quantitative proteomics for cancer biomarker discovery. Comb Chem High Throughput Screen. 2012;15:221–31.

    Article  PubMed  CAS  Google Scholar 

  11. Caprioli RM. Perspectives on imaging mass spectrometry in biology and medicine. Proteomics. 2008;8:3679–80.

    Article  PubMed  CAS  Google Scholar 

  12. Fournier I, Wisztorski M, Salzet M. Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics. Expert Rev Proteomics. 2008;5:413–24.

    Article  PubMed  CAS  Google Scholar 

  13. Pucci-Minafra I, Cancemi P, Marabeti MR, Albanese NN, Di Cara G, Taormina P, et al. Proteomic profiling of 13 paired ductal infiltrating breast carcinomas and non-tumoral adjacent counterparts. Proteomics Clin Appl. 2007;1:118–29.

    Article  PubMed  CAS  Google Scholar 

  14. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  15. Pucci-Minafra I, Cancemi P, Albanese NN, Di Cara G, Marabeti MR, Marrazzo A, et al. New protein clustering of breast cancer tissue proteomics using actin content as a cellularity indicator. J Proteome Res. 2008;7:1412–8.

    Article  PubMed  CAS  Google Scholar 

  16. Pucci-Minafra I, Fontana S, Cancemi P, Alaimo G, Minafra S. Proteomic patterns of cultured breast cancer cells and epithelial mammary cells. Ann N Y Acad Sci. 2002;963:122–39.

    Article  PubMed  CAS  Google Scholar 

  17. Li G, Zhao F, Cui Y. Proteomics using mammospheres as a model system to identify proteins deregulated in breast cancer stem cells. Curr Mol Med. 2013;13:459–63.

    PubMed  CAS  Google Scholar 

  18. Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84:1014–20.

    Article  PubMed  CAS  Google Scholar 

  19. Sirover MA. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta. 1810;2011:741–51.

    Google Scholar 

  20. Krasnov GS, Dmitriev AA, Snezhkina AV, Kudryavtseva AV. Deregulation of glycolysis in cancer: glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opin Ther Targets. 2013;17(6):681–93. Epub 2013 Feb 28.

    Article  PubMed  CAS  Google Scholar 

  21. Díaz-Ramos A, Roig-Borrellas A, García-Melero A, López-Alemany R. α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol. 2012. doi:10.1155/2012/156795.

    PubMed  PubMed Central  Google Scholar 

  22. Wang J, Wang J, Dai J, Jung Y, Wei CL, Wang Y, et al. A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res. 2007;67:149–59.

    Article  PubMed  CAS  Google Scholar 

  23. Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, et al. Linking beta-catenin to androgen-signaling pathway. J Biol Chem. 2002;277:11336–44.

    Article  PubMed  CAS  Google Scholar 

  24. Yin MY, Gao XZ, Wang ZQ, Preisler HD. Studies of the proliferation and differentiation of immature myeloid cells in vitro: 4: Preculture proto-oncogene expression and the behaviour of myeloid leukemia cells in vitro. Cell Biochem Funct. 1991;9:39–47.

    Article  PubMed  CAS  Google Scholar 

  25. Orosz F, Oláh J, Ovádi J. Triosephosphate isomerase deficiency: facts and doubts. IUBMB Life. 2006;58:703–15.

    Article  PubMed  CAS  Google Scholar 

  26. Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A. 2006;103:15091–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.

    Article  PubMed  CAS  Google Scholar 

  28. Hasegawa K, Wakino S, Tanaka T, Kimoto M, Tatematsu S, Kanda T, et al. Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1488–94.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang YG, Du J, Tian XX, Zhong YF, Fang WG. Expression of E-cadherin, beta-catenin, cathepsin D, gelatinases and their inhibitors in invasive ductal breast carcinomas. Chin Med J. 2007;120:1597–605.

    PubMed  CAS  Google Scholar 

  30. Piura E, Piura B. Autoantibodies to tailor-made panels of tumor-associated antigens in breast carcinoma. J Oncol. 2011. doi:10.1155/2011/982425.

    PubMed  PubMed Central  Google Scholar 

  31. Chang XZ, Li DQ, Hou YF, Wu J, Lu JS, Di GH, et al. Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res. 2007;9:R76.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu MH, Hong TM, Cheng HW, Pan SH, Liang YR, Hong HC, et al. Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res. 2009;7:311–8.

    Article  PubMed  CAS  Google Scholar 

  33. Chua BT, Volbracht C, Tan KO, Li R, Yu VC, Li P. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol. 2003;5:1083–9.

    Article  PubMed  CAS  Google Scholar 

  34. Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 2010;20:187–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Kawakami K, Enokida H, Chiyomaru T, Tatarano S, Yoshino H, Kagara I, et al. The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur J Cancer. 2012;48:827–36.

    Article  PubMed  CAS  Google Scholar 

  36. Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. Eur J Surg Oncol. 2008;34:357–64.

    Article  PubMed  CAS  Google Scholar 

  37. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19:739–44.

    Article  PubMed  CAS  Google Scholar 

  38. Cancemi P, Di Cara G, Albanese NN, Constantini F, Marabeti MR, Musso R, et al. Large-scale proteomic identification of S100 proteins in breast cancer tissues. BMC Cancer. 2010. doi:10.1186/1471-2407-10-476.

    PubMed  PubMed Central  Google Scholar 

  39. Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:1356–68.

    Article  Google Scholar 

  40. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;6:540–51.

    Article  Google Scholar 

  41. Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, Myers JN, et al. The S100A7-c-Jun activation domain binding protein 1 pathway enhances prosurvival pathways in breast cancer. Cancer Res. 2005;65:5696–702.

    Article  PubMed  CAS  Google Scholar 

  42. Fernandez-Fernandez MR, Rutherford TJ, Fersht AR. Members of the S100 family bind p53 in two distinct ways. Protein Sci. 2008;17:1663–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. van Dieck J, Fernandez-Fernandez MR, Veprintsev DB, Fersht AR. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers. J Biol Chem. 2009;284:13804–11.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009;1793:993–1007.

    Article  PubMed  CAS  Google Scholar 

  45. Hsu K, Champaiboon C, Guenther BD, Sorenson BS, Khammanlvong A, Ross KF, et al. Anti-infective protective properties of s100 calgranulins. Antiinflamm Antiallergy Agents Med Chem. 2009;8:290–305.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Gläser R, Harder J, Lange H, Bartels J, Christophers E, Schröder JM. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol. 2005;6:57–64.

    Article  PubMed  Google Scholar 

  47. Cancemi P, Di Cara G, Albanese NN, Costantini F, Marabeti MR, Musso R, et al. Differential occurrence of S100A7 in breast cancer tissues: a proteomic-based investigation. Proteomics Clin Appl. 2012;6:364–73.

    Article  PubMed  CAS  Google Scholar 

  48. Madsen P, Rasmussen HH, Leffers H, Honoré B, Dejgaard K, Olsen E, et al. Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J Invest Dermatol. 1991;97:701–12.

    Article  PubMed  CAS  Google Scholar 

  49. Moubayed N, Weichenthal M, Harder J, Wandel E, Sticherling M, Gläser R. Psoriasin (S100A7) is significantly up-regulated in human epithelial skin tumours. J Cancer Res Clin Oncol. 2007;133:253–61.

    Article  PubMed  CAS  Google Scholar 

  50. Kesting MR, Sudhoff H, Hasler RJ, Nieberler M, Pautke C, Wolff KD, et al. Psoriasin (S100A7) up-regulation in oral squamous cell carcinoma and its relation to clinicopathologic features. Oral Oncol. 2009;45:731–6.

    Article  PubMed  CAS  Google Scholar 

  51. Ji J, Zhao L, Wang X, Zhou C, Ding F, Su L, et al. Differential expression of S100 gene family in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2004;130:480–6.

    Article  PubMed  CAS  Google Scholar 

  52. Ostergaard M, Wolf H, Orntoft TF, Celis JE. Psoriasin (S100A7): a putative urinary marker for the follow-up of patients with bladder squamous cell carcinomas. Electrophoresis. 1999;20:349–54.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang H, Zhao Q, Chen Y, Wang Y, Gao S, Mao Y, et al. Selective expression of S100A7 in lung squamous cell carcinomas and large cell carcinomas but not in adenocarcinomas and small cell carcinomas. Thorax. 2008;63:352–9.

    Article  PubMed  CAS  Google Scholar 

  54. El-Rifai W, Moskaluk CA, Abdrabbo MK, Harper J, Yoshida C, Riggins GJ, et al. Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res. 2002;62:6823–6.

    PubMed  CAS  Google Scholar 

  55. Nasser MW, Qamri Z, Deol YS, Avi J, Powell CA, Trikha P, et al. S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways. Cancer Res. 2012;72:604–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Petersson S, Bylander A, Yhr M, Enerbäck C. S100A7 (Psoriasin), highly expressed in ductal carcinoma in situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells. BMC Cancer. 2007. doi:10.1186/1471-2407-7-205.

    PubMed  PubMed Central  Google Scholar 

  57. Carlsson H, Petersson S, Enerbäck C. Cluster analysis of S100 gene expression and genes correlating to psoriasin (S100A7) expression at different stages of breast cancer development. Int J Oncol. 2005;27:1473–81.

    PubMed  CAS  Google Scholar 

  58. Emberley ED, Alowami S, Snell L, Murphy LC, Watson PH. S100A7 (psoriasin) expression is associated with aggressive features and alteration of Jab1 in ductal carcinoma in situ of the breast. Breast Cancer Res. 2004;6:R308–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Emberley ED, Gietz RD, Campbell JD, HayGlass KT, Murphy LC, Watson PH. RanBPM interacts with psoriasin in vitro and their expression correlates with specific clinical features in vivo in breast cancer. BMC Cancer. 2002. doi:10.1186/1471-2407-2-28.

    PubMed  PubMed Central  Google Scholar 

  60. Ruse M, Broome AM, Eckert RL. S100A7 (psoriasin) interacts with epidermal fatty acid binding protein and localizes in focal adhesion-like structures in cultured keratinocytes. J Invest Dermatol. 2003;121:132–41.

    Article  PubMed  CAS  Google Scholar 

  61. Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, Murphy LC, et al. Psoriasin interacts with Jab1 and influences breast cancer progression. Cancer Res. 2003;63:1954–61.

    PubMed  CAS  Google Scholar 

  62. Jinquan T, Vorum H, Larsen CG, Madsen P, Rasmussen HH, Gesser B, et al. Psoriasin: a novel chemotactic protein. J Invest Dermatol. 1996;107:5–10.

    Article  PubMed  CAS  Google Scholar 

  63. West NR, Watson PH. S100A7 (psoriasin) is induced by the proinflammatory cytokines oncostatin-M and interleukin-6 in human breast cancer. Oncogene. 2010;29:2083–92.

    Article  PubMed  CAS  Google Scholar 

  64. Bartek J, Bartkova J, Kyprianou N, Lalani EN, Staskova Z, Shearer M, et al. Efficient immortalization of luminal epithelial cells from human mammary gland by introduction of simian virus 40 large tumor antigen with a recombinant retrovirus. Proc Natl Acad Sci U S A. 1991;889:3520–4.

    Article  Google Scholar 

  65. Minafra S, Morello V, Glorioso F, La Fiura AM, Tomasino RM, Feo S, et al. A new cell line (8701-BC) from primary ductal infiltrating carcinoma of human breast. Br J Cancer. 1989;60:185–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Luparello C, Rizzo CP, Schillaci R, Pucci-Minafra I. Fractionation of type V collagen from carcinomatous and dysplasic breast in the presence of alkaline potassium chloride. Anal Biochem. 1988;169:26–32.

    Article  PubMed  CAS  Google Scholar 

  67. Iwahashi M, Muragaki Y. Increased type I and V collagen expression in uterine leiomyomas during the menstrual cycle. Fertil Steril. 2011;95:2137–9.

    Article  PubMed  CAS  Google Scholar 

  68. Pucci-Minafra I, Albanese NN, Di Cara G, Minafra L, Marabeti MR, Cancemi P. Breast cancer cells exhibit selective modulation induced by different collagen substrates. Connect Tissue Res. 2008;49:252–6.

    Article  PubMed  CAS  Google Scholar 

  69. Cancemi P, Albanese NN, Di Cara G, Marabeti MR, Costantini F, Minafra S, et al. Multiple changes induced by fibroblasts on breast cancer cells. Connect Tissue Res. 2010;51:88–104.

    Article  PubMed  CAS  Google Scholar 

  70. Hayes MJ, Shao D, Bailly M, Moss SE. Regulation of actin dynamics by annexin 2. EMBO J. 2006;25:1816–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Heylen N, Baurain R, Remacle C, Trouet A. Effect of MRC-5 fibroblast conditioned medium on breast cancer cell motility and invasion in vitro. Clin Exp Metastasis. 1998;16:193–203.

    Article  PubMed  CAS  Google Scholar 

  72. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–52.

    Article  PubMed  CAS  Google Scholar 

  73. Ameye L, Young MF. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology. 2002;12:107R–16. doi:10.1093/glycob/cwf065.

    Article  PubMed  CAS  Google Scholar 

  74. Reed CC, Iozzo RV. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj J. 2002;19:249–55.

    Article  PubMed  CAS  Google Scholar 

  75. Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I. Decorin is a biological ligand for the epidermal growth factor receptor. J Biol Chem. 1999;274:4489–92.

    Article  PubMed  CAS  Google Scholar 

  76. Pucci-Minafra I, Cancemi P, Di Cara G, Minafra L, Feo S, Forlino A, et al. Decorin transfection induces proteomic and phenotypic modulation in breast cancer cells 8701-BC. Connect Tissue Res. 2008;49:30–41.

    Article  PubMed  CAS  Google Scholar 

  77. Cardini M, Mazzocco M, Massaro A, Maffei M, Vergano A, Donadini A, et al. Crystal structure of the glutaredoxin-like protein SH3BGRL3 at 1.6 Angstrom resolution. Biochem Biophys Res Commun. 2004;318:470–6.

    Article  Google Scholar 

  78. Palazzolo G, Albanese NN, DI Cara G, Gygax D, Vittorelli ML, Pucci-Minafra I. Proteomic analysis of exosome-like vesicles derived from breast cancer cells. Anticancer Res. 2012;32:847–60.

    PubMed  CAS  Google Scholar 

  79. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    PubMed  Google Scholar 

  80. Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16:415–21.

    Article  PubMed  Google Scholar 

  81. Liang S, Xu Y, Shen G, Liu Q, Zhao X, Xu Z, et al. Quantitative protein expression profiling of 14-3-3 isoforms in human renal carcinoma shows 14-3-3 epsilon is involved in limitedly increasing renal cell proliferation. Electrophoresis. 2009;30:4152–62.

    Article  PubMed  CAS  Google Scholar 

  82. Keller S, Sanderson MP, Stoeck A, Altevogt A. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107:102–8.

    Article  PubMed  CAS  Google Scholar 

  83. Subramani D, Alahari SK. Integrin-mediated function of Rab GTPases in cancer progression. Mol Cancer. 2010;9:312. doi:10.1186/1476-4598-9-312.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Bender LM, Nahta R. HER-2 cross talk and therapeutic resistance in breast cancer. Front Biosci. 2008;13:3906–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER-2-overexpressing breast cancer. Ann Oncol. 2007;18:977–84.

    Article  PubMed  CAS  Google Scholar 

  86. Cho HS, Mason K, Ramyar KX, Stanely AM, Gabelli SB, Denney Jr DW, et al. Structure of the extracellular region of HER-2 alone and in complex with the Herceptin Fab. Nature. 2003;421:756–60.

    Article  PubMed  CAS  Google Scholar 

  87. Garrett JT, Rawale S, Allen SD, Phillips G, Forni G, Morris JC, et al. Novel engineered trastuzumab conformational epitopes demonstrate in vitro and in vivo antitumor properties against HER-2/neu. J Immunol. 2007;178:7120–31.

    Article  PubMed  CAS  Google Scholar 

  88. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6:117–27.

    Article  PubMed  CAS  Google Scholar 

  89. Nahta R, Esteva F. Herceptin: mechanisms of action and resistance. Cancer Lett. 2006;232:123–38.

    Article  PubMed  CAS  Google Scholar 

  90. Boone JJ, Bhosle J, Tilby MJ, Hartley JA, Hochhauser D. Involvement of the HER-2 pathway in repair of DNA damage produced by chemotherapeutic agents. Mol Cancer Ther. 2009;8:3015–23.

    Article  PubMed  CAS  Google Scholar 

  91. Cooley S, Burns LJ, Repka T, Milloer JS. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER-2/neu. Exp Hematol. 1999;27:1533–41.

    Article  PubMed  CAS  Google Scholar 

  92. Di Cara G, Marengo G, Albanese NN, Marabeti MR, Musso R, Cancemi P, et al. Proteomic profiling of Trastuzumab (Herceptin®)-sensitive and -resistant SKBR-3 breast cancer cells. Anticancer Res. 2013;33:489–503.

    Google Scholar 

  93. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10:182–6.

    Article  PubMed  CAS  Google Scholar 

  94. Cvetanovica M, Kulara RK, Opala P. LANP mediates neuritic pathology in Spinocerebellar ataxia type 1. Neurobiol Dis. 2012;48:526–32.

    Article  Google Scholar 

  95. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and AKT is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 2002;62:4132–41.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank all the collaborators of my laboratory, past and present, in particular Dr. N.N. Albanese and Dr. P. Cancemi who have actively contributed to the research reported in this paper. I would like to express my sincere gratitude to Dr. Gianluca Di Cara and Dr. Rosa Musso for the intelligent and generous support offered for the preparation of this chapter.

The Pathology Unity of the La Maddalena Clinic, directed by Dr. Elena Roz and coordinated by Dr. Carmelo Lupo, is gratefully acknowledged for the histopathological diagnoses, and Dr. Ignazio Riili for the surgical specimen selection and collection.

The generous support of Prof. Guido Filosto, President of La Maddalena Clinic, to the Cancer Research Laboratory, is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Pucci-Minafra PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Pucci-Minafra, I. (2014). Breast Cancer Proteomics. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_9

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics