Skip to main content

Genetic Enhancement of Tomato Crop for Abiotic Stress Tolerance

  • Chapter
  • First Online:
Climate-Resilient Horticulture: Adaptation and Mitigation Strategies

Abstract

India being the second largest producer of tomato will still fall short of the country’s requirement. The main concern is the decreasing productivity due to negative effects of environmental stresses. Production of tomato is subjected to many abiotic stresses, mainly heat and drought. In order to sustain tomato production with present day challenges, we need to have a thorough knowledge of the plant’s reaction toward the stress and develop sufficient genetically enhanced varieties or hybrids which are tolerant and capable of mitigating the stress. Here we have made an attempt to address the challenge thrown to the breeders by the changing climatic scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla AA, Verkerk K (1968) Growth, flowering and fruit-set of the tomato at high temperature. Neth J Agric Sci 16:71–76

    Google Scholar 

  • Abdelmageed AH, Gruda N, Geyer B (2003) Effect of high temperature and heat shock on tomato (Lycopersicon esculentum M.) genotypes under controlled conditions. Conference on international agricultural research or development. Deutscher ropentag, Göttingen, Oct 8–10

    Google Scholar 

  • Abdul-Baki A (1991) Tolerance of tomato cultivars and selected germplasm to heat stress. J Am Soc Hortic Sci 116:1113–1116

    Google Scholar 

  • Adams P (1990) Effects of watering on the yield, quality and composition of tomatoes grown in bags of peat. J Hortic Sci 65(6):667–674

    CAS  Google Scholar 

  • Adams SR, Valdés VM (2002) The effect of periods of high temperature and manipulating fruit load on the pattern of tomato yields. J Hortic Sci Biotechnol 77:461–466

    Google Scholar 

  • Adams SR, Cockshull KE, Cave CRJ (2001a) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869–877

    Article  Google Scholar 

  • Adams SR, Valdes VM, Cave CRJ, Fenlon JS (2001b) The impact of changing light levels and fruit load on the pattern of tomato yields. J Hortic Sci Biotechnol 76:368–373

    Google Scholar 

  • Ainsworth EA, Rogers A, Leakey ADB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19

    Article  PubMed  CAS  Google Scholar 

  • Araki T, Kitano M, Equchi H (2000) Dynamics of fruit growth and photoassimilation translocation in tomato plant under controlled environment. Acta Hortic 534:85–92

    Google Scholar 

  • Bar-Tsur A, Rudich J, Bravdo B (1985) High temperature effects on CO2 gas exchange in heat-tolerant and sensitive tomatoes. J Am Soc Hortic Sci 110:582–586

    Google Scholar 

  • Berry SZ, Uddin MR (1988) Effect of high temperature on fruit-set in tomato cultivars and selected germplasm. HortScience 23:606–608

    Google Scholar 

  • Bhagavanthagoudra KH (2000) Studies on water and nutrient management in cabbage (Brassica oleracea var. capitata L.) cv. Pride of India. Ph. D. thesis, University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Blum A (1996) Constitutive traits affecting plant performance under stress. In: Edmeades GO, Banziger M, Mickelson HR, Pena-Valdivia CB (eds) Developing drought and low N tolerant maize, pp 131–35. Proceedings of the symposium. Cimmyt, Mexico

    Google Scholar 

  • Bonhert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms –getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Brock MT, Galen C (2005) Drought tolerance in the alpine dandelion, Taraxacum ceratophorum (Asteraceae), its exotic congener T. officinale, and interspecific hybrids under natural and experimental conditions. Am J Bot 92:1311–1321

    Article  PubMed  Google Scholar 

  • Caird MA, Richards JH, Donovan LA (2007a) Night-time stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143:4–10

    Article  PubMed  CAS  Google Scholar 

  • Caird MA, Richards JH, Hsiao TC (2007b) Significant transpirational water loss occurs throughout the night in field-grown tomato. Funct Plant Biol 34:172–177

    Article  Google Scholar 

  • Ceccarelli S, Grando S (1996) Drought as a challenge for the plant breeder. Plant Growth Regul 20:149–155

    Article  CAS  Google Scholar 

  • Charles WB, Harris RE (1972) Tomato fruit-set at high and low temperatures. Can J Plant Sci 52:497–506

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Colla G, Casa R, Lo Cascio B, Saccardo F, Leoni C, Temperini O (1999) Response for processing tomato to water regimes and fertilization in central Italy. Acta Hortic 487:531–535

    Google Scholar 

  • Dalal KB, Salunkhe DK, Olson LE, Do JY, Yu MH (1968) Volatile components of developing tomato fruit grown under field and greenhouse conditions. Plant Cell Physiol 9:389–400

    CAS  Google Scholar 

  • Dane F, Hunter AG, Chambliss OL (1991) Fruit set, pollen fertility, and combining ability of selected tomato genotypes under high temperature field conditions. J Am Soc Hortic Sci 116:906–910

    Google Scholar 

  • de Koning A (1988) The effect of different day/night temperature regimes on growth, development and yield of glasshouse tomatoes. J Hortic Sci 63:465–471

    Google Scholar 

  • de Koning A (1989) The effect of temperature on fruit growth and fruit load of tomato. Acta Hortic 248:29–337

    Google Scholar 

  • de Koning A (1990) Long-term temperature integration of tomato. Growth and development under alternating temperature regimes. Sci Hortic 45:117–127

    Article  Google Scholar 

  • Dinar M, Rudich J (1985) Effect of heat stress on assimilate partitioning in tomato. Ann Bot 56:239–248

    Google Scholar 

  • Doorenbos J, Kassam AH (1979) Yield response to water. FAO irrigation and drainage paper, vol 33. FAO, Rome, p 157

    Google Scholar 

  • Dudley SA (1996) Differing selection on plant physio­logical traits in response to environmental water ­availability: a test of adaptive hypotheses. Evolution 50:92–102

    Article  Google Scholar 

  • El Ahmadi AB, Stevens MA (1979) Reproductive responses of heat-tolerant tomatoes to high temperatures. J Am Soc Hortic Sci 104:686–691

    Google Scholar 

  • FAO STAT (2010) http://faostat.fao.org/site/567/default.aspx#ancor

    Google Scholar 

  • Firon N, Shaked R, Peet MM, Phari DM, Zamskı E, Rosenfeld K, Althan L, Pressman NE (2006) Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci Hortic 109:212–217

    Article  CAS  Google Scholar 

  • Foolad MR (2005) Recent development in stress tolerance breeding in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press Inc., New York, pp 613–684

    Google Scholar 

  • Gautier H, Rocci A, Buret M, Grasselly D, Causse M (2005) Fruit load or fruit position alters response to temperature and subsequently cherry tomato quality. J Sci Food Agric 85:1009–1016

    Article  CAS  Google Scholar 

  • Geisenberg C, Stewart K (1986) Field crop management. In: Atherton JG, Rudich J (eds) The tomato crop. Chapman & Hall, London, pp 511–557

    Chapter  Google Scholar 

  • Grimstad SO (1995) Low-temperature pulse affects growth and development of young cucumber and tomato plants. J Hortic Sci 70:75–80

    Google Scholar 

  • Guichard S, Bertin N, Leonard C, Gary C (2001) Tomato fruit quality in relation to water and carbon fluxes. Agronomie 21:385–392

    Article  Google Scholar 

  • Hanna YH, Hernandez TP (1982) Response of six tomato genotypes under the summer and spring weather conditions in Louisiana. HortScience 17:758–759

    Google Scholar 

  • Haque MA, Hossain AKMA, Ahmed KU (1999) A comparative study on the performance of different varieties of tomato. II. Varietal response of different seasons and temperature in respect of yield and yield components. Bangladesh Hortic 26:39–45

    Google Scholar 

  • Helyes L, Varga C, Dime’ny J, Pe’k Z (1999) The simultaneous effect of variety, irrigation and weather on tomato yield. Acta Hortic 487:499–505

    Google Scholar 

  • Ho LC, Hewitt JD (1986) Fruit development. In: Atherton JG, Rudich J (eds) The tomato crop. A scientific basis for improvement. Chapman and Hall, New York, pp 201–239

    Article  PubMed  CAS  Google Scholar 

  • Ho LC (1996) The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. J Exp Bot 47:1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Hodges L, Steinegger D (1991) Blossom end rot in tomato, Nebraska cooperative extension NF91-43. University of Nebraska, Lincoln

    Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Hurd RG, Cooper AJ (1970) The effect of early low temperature treatment on the yield of single-inflorescence tomatoes. J Hortic Sci 45:19–27

    Google Scholar 

  • Hurd RG, Graves CJ (1984) The influence of different temperature patterns having the same integral on the earliness and yield of tomatoes. Acta Hortic 148:547–554

    Google Scholar 

  • Hurd RG, Graves CJ (1985) Some effects of air and root temperatures on the yield and quality of glasshouse tomatoes. J Hortic Sci 60:359–371

    Google Scholar 

  • Imada CT, Wagner WL, Herbst DR (1989) Checklist of native and naturalized flowering plants of Hawai’i Bishop. Mus Occas Pap 29:31–87

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Iwahori S (1965) High temperature injuries in tomato. Development of normal flower buds and morphological abnormalities of flower buds treated with high temperature. J Jpn Soc Hortic Sci 34:33–41

    Article  Google Scholar 

  • Iwahori S (1966) High temperature injuries in tomato. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature. J Jpn Soc Hortic Sci 35:55–62

    Google Scholar 

  • Iwahori S, Takahashi K (1964) High temperature injuries in tomato. Effects of high temperature on flower buds and flowers of different stages of development. J Jpn Soc Hortic Sci 33:67–74

    Article  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Johnson SP, Hall WC (1953) Vegetative and fruiting responses of tomatoes to high temperature and light intensity. Bot Gaz 114:449–460

    Article  CAS  Google Scholar 

  • Juenger TE, McKay JK, Hausmann N, Keurentjes JJB, Sen S, Stowe KA, Dawson TE et al (2005) Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: δ 13 C, stomatal conductance and transpiration efficiency. Plant Cell Environ 28:697–708

    Article  CAS  Google Scholar 

  • Kebede H, Martin B, Nienhuis J, King G (1994) Leaf anatomy of two Lycopersicon species with contrasting gas exchange properties. Crop Sci 34:108–113

    Article  Google Scholar 

  • Khayat E, Ravad D, Zieslin N (1985) The effects of various night- temperature regimes on the vegetative growth and fruit production of tomato plants. Sci Hortic 27:9–13

    Article  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, New York

    Google Scholar 

  • Kuo CG, Chen BW, Chou MH, Tsai CL, Tsay TS (1979) Tomato fruit-set at high temperatures, pp 94–109. In: Cowell R (ed) Proceedings of first international symposium on tropical tomato. Asian Vegetable Research Development Centre, Shanhua

    Google Scholar 

  • Lapushner D, Frankel R, Fuchus Y (1986) Tomato cultivar response to water and salt stress. Acta Hortic 190:247–252

    Google Scholar 

  • Levin DA (2005) Niche shifts: the primary driver of novelty within angiosperm genera. Syst Bot 30:9–15

    Article  Google Scholar 

  • Levy A, Rabinowitch HD, Kedar N (1978) Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica 27:211–218

    Article  Google Scholar 

  • Losada HP, Rincaon R (1994) Influence of the crop water status on fruit setting and final fruit number in the processing tomato crop. Acta Hortic 376:333–336

    Google Scholar 

  • Ludlow MM (1989) Strategies in response to water stress. In: Kreeb HK, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses: water shortage. Academic Press, The Netherlands, pp 269–281

    Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Lurie S, Handros A, Fallik E, Shapira R (1996) Reversible inhibition of tomato fruit gene expression at high temperature. Plant Physiol 110:1207–1214

    PubMed  CAS  Google Scholar 

  • Maldonado C, Squeo FA, Ibacache E (2003) Phenotypic response of Lycopersicon chilense to water deficit. Revista Chilena Historia Nat 76:129–137

    Google Scholar 

  • Martin B, Tauer CG, Lin RK (1999) Carbon isotope discrimination as a tool to improve water-use efficiency in tomato. Crop Sci 39:1775–1783

    Article  Google Scholar 

  • May DM (1993) Moisture stress to maximize processing tomato yield and quality. Acta Hortic 335:547–552

    Google Scholar 

  • McKay JK, Bishop JG, Lin JZ, Richards JH, Sala A, Mitchell-Olds T (2001) Local adaptation across a climatic gradient despite small effective population size in the rare sapphire rock cress. Proc R Soc London B Biol Sci 268:1715–1721

    Article  CAS  Google Scholar 

  • McKay JK, Richards JH, Mitchell-Olds T (2003) Genetics of drought adaptation in Arabidopsis thaliana: I Pleiotropy contributes to genetic correlations among ecological traits. Mol Ecol 12:1137–1151

    Article  PubMed  CAS  Google Scholar 

  • Michelakis NG, Chartzoulakis KS (1988) Water consumptive use of greenhouse tomatoes as related to various levels of soil water potential under drip irrigation. Acta Horticulturae 288:127–136

    Google Scholar 

  • Mulholland BJ, Edmondson RN, Fussell M, Basham J, Ho LC (2003) Effects of high temperature on tomato summer fruit quality. J Hortic Sci Biotechnol 78:365–374

    Google Scholar 

  • Nakazato T, Bogonovich M, Moyle LC (2008) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution 62–4:774–792

    Article  CAS  Google Scholar 

  • O’Connell MA, Medina AL, Sanchez-Pena P, Trevino MB (2007) Molecular genetics of drought resistance response in tomato and related species. In: Razdan MK, Mattoo AK (eds) Genetic Improvement of Solanaceouscrops, vol 2, Tomato. Science, Enfield, pp 261–283

    Google Scholar 

  • Peet MM, Sato S, Gardner RG (1988) Comparing heat stress on male-fertile and male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot 21(2):225–231

    Google Scholar 

  • Peet MM, Willits DH, Gardner RG (1997) Responses of ovule development and post pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot 48:101–111

    Article  CAS  Google Scholar 

  • Pressman E, Peet MM, Phar DM (2002) The Effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anthers. Ann Bot 90:631–636

    Article  PubMed  CAS  Google Scholar 

  • Rahman SML, Natwata E, Sakuratani T (1999) Effect of water stress on growth, yield and eco-physiological responses of four (Lycopersicon esculentum. Mill) tomato cultivars. J Jpn Soc Hortic Sci 68(3):499–504

    Article  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  • Reid JB, Winfield D, Sorensen I, Kale AJ (1996) Water deficit, root demography, and the causes of internal blackening in field grown tomatoes (Lycopersicon esculentum. Mill). Ann Appl Biol 129(1):137–149

    Article  Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166

    Article  CAS  Google Scholar 

  • Rick CM (1973) Potential genetic resources in tomato species: clues from observation in native habitats. In: Srb AM (ed) Genes, enzymes and populations. Plenum, New York, pp 255–269

    Chapter  Google Scholar 

  • Rudich J, Luchinsky U (1986) Water economy. In: Atherton JG, Rudich J (eds) The tomato crop. A scientific basis for improvement. Chapman and Hall Ltd, Cambridge

    Google Scholar 

  • Rudich J, Zamski E, Regev Y (1977) Genotype variation for sensitivity to high temperature in the tomato: pollination and fruit set. Et Gaz 138:448–452

    Article  Google Scholar 

  • Rylski I (1979a) Effect of temperatures and growth regulators on fruit malformation in tomato. Scientia Hortic 10:27–35

    Article  CAS  Google Scholar 

  • Rylski I (1979b) Fruit set and development of seeded and seedless tomato fruits under diverse regimes of temperature and pollination. J Am Soc Hortic Sci 104:835–838

    Google Scholar 

  • Samuel K, Paliwal K (1994) Effect of water stress on water relations, photosynthesis, and element content of tomato. Plant Physiol Biochem (New Delhi) 21(1):33–37

    Google Scholar 

  • Sánchez Peña P (1999) Leaf water potentials in tomato (L. esculentum Mill.) L. chilense Dun. and their interspecific F1. M.Sc., thesis, New Mexico State University, Las Cruces

    Google Scholar 

  • Sanders DC, Howell TA, Hile MMS, Hodges L, Meek D, Phene CJ (1989) Yield and quality of processing tomatoes in response to irrigation rate and schedule. J Am Sco Hortic Sci 114(6):904–908

    Google Scholar 

  • Santarius KA, Engelbert Weis (1988) Heat stress and membranes. In: Harwood JL, Walton TJ (eds) Plant membranes – structure, assembly and function. The Biochemical Society, London, pp 97–112

    Google Scholar 

  • Sato S, Peet MM, Thomas JF (2000) Physiological factors limit fruit set of tomato (lycopersicon esculentum mill.) under chronic mild heat stress. Plant Cell Environ 23:719–726

    Article  Google Scholar 

  • Sato S, Peet MM, Gardner RG (2001) Formation of parthenocarpic fruit, undeveloped flowers and aborted flowers in tomato under moderately elevated temperatures. Scientia Hortic 90:243–254

    Article  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post- anthesis periods and physiological ­processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  PubMed  CAS  Google Scholar 

  • Sauser B (1998) Modeling the effects of air temperature perturbations for control of tomato plant development. M.S. thesis. Rutgers University, NJ, p 106

    Google Scholar 

  • Sawhney VK, Polowick PL (1985) Fruit development in tomato: the role of temperature. Can J Bet 63:1031–1034

    Article  Google Scholar 

  • Schluter D (2001) Ecology and the origin of the species. Trends Ecol Evol 16:372–380

    Article  PubMed  Google Scholar 

  • Schonfeld MA, Johnson RC, Carver BD, Mornhinweg DW (1988) Water relations in heat as drought resistance indicators. Crop Sci 28:526–531

    Article  Google Scholar 

  • Scott JW, Volin RB, Bryan HH, Olson SM (1986) Use of hybrids to develop heat tolerant tomato cultivars. Proc Fla State Hortic Soc 99:311–315

    Google Scholar 

  • Sharma KK, Lavanya M (2002) Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. In: Ivanaga M (ed) Genetic engineering of crop plants for abiotic stress, working report no. 23, JIRCAS, Tsukuba, pp 61–73

    Google Scholar 

  • Shen ZY, Li PH (1982) Heat adaptability of the tomato. HortScience 17:924–925

    Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shilpi Mahajan, Narendra Tuteja (2005) Minireview : cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Google Scholar 

  • Shinohara Y, Akiba K, Maruo T, Ito T (1995) Effect of water stress on the fruit yield, quality and physiological condition of tomato plants using the gravel culture. Acta Horticulturae 396:211–218

    Google Scholar 

  • Silva WLC, Marouelli WA (1996) Evaluation of irrigation scheduling techniques for processing tomatoes in Brazil. In: Proceedings of the international conference on evapotranspiration and irrigation scheduling. ASAE, St. Joseph, pp 522–526

    Google Scholar 

  • Stevens MA, Rudich J (1978) Genetic potential for overcoming physiological limitations on adaptability, yield, and quality of the tomato. HortScience 13:673–679

    CAS  Google Scholar 

  • Stevens MA, Kader AA, Albright-Holton M, Algazi M (1977) Genotype variation for flavour and composition in fresh market tomatoes. J Am Soc Hortic Sci 102(5):680–689

    Google Scholar 

  • Sugiyama T, Iwahori S, Takahashi K (1966) Effect of high temperature on fruit setting of tomato under cover. Acta Hortic 4:63–69

    Google Scholar 

  • Tanaka A, Fujita K, Kikuchi K (1974) Nutrio-physiological studies on the tomato plant: photosynthetic rates of individual leaves in relation to the dry matter production in plants. Soil Sci Plant Nutr 20:173–183

    Article  CAS  Google Scholar 

  • Thomas JMG, Prasad PVV (2003) Plants and the environment /global warming effects. University of Florida, Gainesville

    Google Scholar 

  • Torrecillas A, Guillaume C, Alarc ó n JJ, Ruizs á nchez MC (1995) Water relations of 2 tomato species under water-stress and recovery. Plant Sci 105:169–176

    Article  CAS  Google Scholar 

  • Veit-Kohler U, Krumbein A, Kosegarten H (1999) Effect of different water supply on plant growth and fruit quality of Lycopersicon esculentum. J Plant Nutr Soil Sci 162(6):583–588

    Article  CAS  Google Scholar 

  • Villareal RL, Lai SH (1979). Development of heat tolerant tomato varieties in the tropics. In: Proceedings of the first international symposium on tropical tomato, Shanhua, pp 188–200, 23–27 Oct 1978

    Google Scholar 

  • Walker AJ, Ho LC, Baker DA (1978) Carbon translocation in the tomato: pathway to carbon metabolism and the rate of translocation. Ann Bot 42:901–909

    CAS  Google Scholar 

  • Wang X-Q, Ullah H, Jones A, Assmann S (2001) G protein regulation of ion channels and abscisic acid ­signaling in Arabidopsis guard cells. Science 292:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • Weaver ML, Timm H (1989) Screening tomato for high-temperature tolerance through pollen viability tests. HortScience 24:493–495

    Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. In: Long SP, Woodward FI (eds) Plants and temperature. Symposia of the society for experimental biology, no.42. The Company of Biologists Limited, Cambridgem, pp 329–346

    Google Scholar 

  • Went FW, Hull HM (1949) The effect of temperature upon translocation of carbohydrates in the tomato plant. Plant Physiol 24:505–526

    Article  PubMed  CAS  Google Scholar 

  • Wessel-Beaver L, Scott JW (1992) Genetic variability of fruit set, fruit weight, and yield in a tomato population grown in two high-temperature environments. J Am Soc Hortic Sci 117:867–870

    Google Scholar 

  • Yakir D, Sadovski A, Rabinowitch HD, Rudich J (1984) Effect of high temperature on quality of processing tomatoes of various genotypes ripened off the vine. Sci Hortic 23:323–330

    Article  Google Scholar 

  • Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behavior by abscisic acid which apparently originates in roots. J Exp Bot 38:1174–1181

    Article  CAS  Google Scholar 

  • Zushi K, Matsuzoe N (1998) Effect of soil water deficit on vitamin C, sugar, organic acid amino acid and carotene contents of large fruited tomatoes. J Jpn Soc Hortic Sci 67(6):927–933

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avverahally Thamanna Sadashiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Sadashiva, A.T., Christopher, M.G., Krithika, T.K. (2013). Genetic Enhancement of Tomato Crop for Abiotic Stress Tolerance. In: Singh, H., Rao, N., Shivashankar, K. (eds) Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. Springer, India. https://doi.org/10.1007/978-81-322-0974-4_11

Download citation

Publish with us

Policies and ethics