Skip to main content

Plasmids: Their Biology and Functions

  • Chapter
  • First Online:
Genetics of Bacteria

Abstract

The genomic constitution of several bacteria may consist of two components, viz., chromosome that carries genes for all essential functions and their regulation, and an extra-chromosomal but autonomous unit, plasmid that was initially thought to carry functions required for its own replication, maintenance, and distribution. However, plasmids should not be considered selfish or promiscuous molecules as many of them have been described to carry genes providing functions of selective advantage. For example, they may code for resistance to several antimicrobial agents, such as antibiotics, heavy metals, or toxins, or for production of antibiotics, pigments, toxins, H2S, and others, or may provide unusual catabolic capabilities, or endow fertility, etc. They may also induce plant tumors, and other symbiotic and pathogenic responses in plants and animals, to name a few. There may also exist another category, however, where a plasmid may carry some essential genes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Readings

  • Actis LA, Tolmasky ME, Crosa JH (1998) Bacterial plasmids: replication of extra-chromosomal genetic elements encoding resistance to anti-microbial compounds. Front Biosci 3:43–62

    Google Scholar 

  • Bouma JE, Lenski RE (1988) Evolution of a bacterial/plasmid association. Nature 335:351–352

    Article  PubMed  CAS  Google Scholar 

  • Chattoraj DK (2000) Control of plasmid DNA replication by iterons: no longer paradoxical. Mol Microbiol 37(3):467–476

    Article  PubMed  CAS  Google Scholar 

  • de la Cueva-Mendez G, Pimental B (2007) Genes and cell survival: lessons from prokaryotic plasmid R1. EMBO Rep 8(5):459–464

    Google Scholar 

  • del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62(2):436–464

    Google Scholar 

  • De-Nap JCB, Hergenrother PJ (2005) Bacterial death come full circle: targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem 3:959–966

    Article  CAS  Google Scholar 

  • Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F (2002) Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162:1525–1532

    PubMed  CAS  Google Scholar 

  • Eckhardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1(4):584–588

    Article  PubMed  CAS  Google Scholar 

  • Gerdes K, Howard M, Szardenings F (2010) Pushing and pulling in prokaryotic DNA segregation. Cell 141:927–941

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch J, Tilly K (1993) Linear plasmids and chromosomes in bacteria. Mol Microbiol 10(5):917–922

    Article  PubMed  CAS  Google Scholar 

  • Hughes VN, Datta N (1983) Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302:725–726

    Article  PubMed  CAS  Google Scholar 

  • Larsen RA, Cusumano C, Fujioka A, Lim-Fong G, Patterson P, Pogliano J (2007) Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev 21:1340–1352

    Article  PubMed  CAS  Google Scholar 

  • Novick RP, Clowes RC, Cohen SN, Curtiss R III, Datta N, Falkow S (1976) Uniform nomenclature for bacterial plasmids. Bact Rev 40(1):168–189

    PubMed  CAS  Google Scholar 

  • Novick RP, Hoppensteadt FC (1978) On plasmid incompatibility. Plasmid 1(4):421–434

    Article  PubMed  CAS  Google Scholar 

  • Ringgard S, Ebersbach G, Borch J, Gerdes K (2007) Regulatory cross-talk in the double par locus of plasmid, pB171. J Biol Chem 262(5):3134–3145

    Google Scholar 

  • Sengupta M, Austin S (2011) Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect Immun 79(7):2502–2509

    Article  PubMed  CAS  Google Scholar 

  • Svara F, Rankin DJ (2011) The evolution of plasmid-carried antibiotic resistance. BMC Evol Biol 11:130–139

    Article  PubMed  Google Scholar 

  • Velappan N, Sbattero D, Chasteen L, Pavlik P, Bradburry ARM (2007) Plasmid incompatibility: more compatible than previously thought. Protein Eng Des Sel 20(7):309–313

    Article  PubMed  CAS  Google Scholar 

  • Zatyka M, Thomas CM (2006) Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol Rev 21(4):291–319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Srivastava .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Srivastava, S. (2013). Plasmids: Their Biology and Functions. In: Genetics of Bacteria. Springer, India. https://doi.org/10.1007/978-81-322-1090-0_6

Download citation

Publish with us

Policies and ethics