Skip to main content

Interplay Among Bacterial Resistance, Biofilm Formation and Oxidative Stress for Nosocomial Infections

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

Nosocomial infections are leading threat as 5–10 % of hospitalised patients ensue to approximately 90,000 deaths per year. Implanted medical devices and procedures accrue to higher rates of infection and add to considerable socio-economic burden. The problem gets compounded by the increased risk of biofilm formation on indwelling medical devices. Bacteria within biofilm are much more resistant to antibiotic treatment as compared to planktonic cultures. Surface adhesion molecules keep the bacteria tethered to the surface and molecular changes within bacteria and its complex structure contribute towards development of resistance. Reactive oxygen species (ROS) are the last product of various metabolic pathways of bacterial cells which help the bacteria in the development of biofilm and antibiotic resistance. Certain bactericidal drugs have shown bacterial killing by internal production of ROS. Bacteria mediate SOS repair response to ROS which can introduce mutations in their genome leading to development of resistance. Thus, ROS plays an important role in the generation of resistance in bacterial biofilm towards antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130. doi:10.1186/1471-2334-6-130

    Article  PubMed Central  PubMed  Google Scholar 

  2. Inweregbu JD, Pittard A (2005) Nosocomial infections. Continuing education in Anaesthesia. Crit Care & Pain 5:14–17

    Google Scholar 

  3. Hsueh P-R, Chen W-H, Luh K-T (2006) Relationships between antimicrobial use and antimicrobial resistance in Gram-negative bacteria causing nosocomial infections from 1991–2003 at a university hospital in Taiwan. Int J Antimicrob Agents 26:463–472

    Article  Google Scholar 

  4. Robert C, Welliver MD, McLaughlin S (1984) Unique epidemiology of nosocomial infection in a children’s hospital. Am J Dis Child 138(2):131–135

    Google Scholar 

  5. Robert A, Weinstein RG et al (2005) Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 41(6):848–854

    Article  Google Scholar 

  6. Harold C (1992) The crisis in antibiotic resistance. Science 257:1064–1073

    Article  Google Scholar 

  7. Philip S, Stewart J, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  Google Scholar 

  8. Merle E, Olson, Ceri H, Douglas WM (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66(2):86–92

    Google Scholar 

  9. Beloin C, Ghigo JM (2005) Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13(1):16–19

    Article  CAS  PubMed  Google Scholar 

  10. Pratt LA, Roberto K (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2:598–603

    Article  CAS  PubMed  Google Scholar 

  11. Sharma G, Rao S, Bansal A et al (2014) Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 42:1–7

    Article  CAS  PubMed  Google Scholar 

  12. Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkolderia cepacia. Microbiol Rev 60:539–574

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Musken M, Di Fiore S, Dotsch A et al (2006) Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology 156:431–441

    Article  Google Scholar 

  14. McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cao H, Krishnan G, Goumnerov B et al (2000) A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. J Sci Proc Natl Acad Sci U S A 98:14613–14618

    Article  Google Scholar 

  16. Diggle SP, Cornelis P, Williams P et al (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. J Sci Med Microbiol 296:83–91

    Article  CAS  Google Scholar 

  17. Pearson JP, Gray KM, Passador L et al (1994) Structure of autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91:197–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gambello MJ, Kaye S, Iglewski BH (1993) LasR of Pseudomonas aeruginosa is a transcriptional activator of alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61:1180–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilm. J Sci Mol Microbiol 51:675–690

    Article  CAS  Google Scholar 

  20. Prigent-Combaret C, Vidal O, Dorel C et al (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181(19):5993–6002

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Li YH, Tang N, Aspiras MB, Lau PC et al (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. González-Hein G, Huaracán B, García P et al (2014) Prevalence of virulence genes in strains of Campylobacter jejuni isolated from human, bovine and broiler. Microbiology 44:1223–1229

    Google Scholar 

  23. Cole SJ, Records AR, Orr MW, Linden SB, Lee VT (2014) Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide independent biofilms. Infect Immun 82(5):2048–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhou S, Chao X, Fei M, Dai Y, Liu B (2013) Analysis of S. epidermidis icaA and icaD genes by polymerase chain reaction and slime production: a case control study. BMC Infect Dis 13:242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Diani M, Esiyok OG, Ariafar MG et al (2014) The interactions between esp, fsr, gelE genes and biofilm formation and pfge analysis of clinical Enterococcus faecium strains. Afr J Microbiol Res 8:129–137

    Article  CAS  Google Scholar 

  26. Wassinger A, Zhang L, Tracy E et al (2013) Role of a GntR-family response regulator LbrA in Listeria monocytogenes biofilm formation. PLoS One 8:e70448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. McCann T, Brendan FG, Sean PG (2008) Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. Maureen 60:1551–1571

    CAS  Google Scholar 

  28. Lucas RH, David AD, Michael JM et al (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175

    Article  Google Scholar 

  29. Strohl WR (1997) Biotechnology of antibiotics. Marcel Dekker Inc, New York

    Book  Google Scholar 

  30. Benton B, Breukink E, Visscher et al (2007) Telavancin inhibits peptidoglycan biosynthesis through preferential targeting of transglycosylation: evidence for a multivalent interaction between telavancin and lipid II. Int J Antimicrob Agents 29:S51–S52

    Article  Google Scholar 

  31. Leach KL, Swaney SM, Colca JR et al (2007) The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 26:393–402

    Article  CAS  PubMed  Google Scholar 

  32. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:3–10

    Article  Google Scholar 

  33. Straus SK, Hancock RWE (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 1758:1215–1223

    Article  CAS  PubMed  Google Scholar 

  34. Kotra LP, Mobashery S (1999) Mechanistic and clinical aspects of b-lactam antibiotics and b-lactamases. Arch Immunol Ther Exp (Warsaw) 47:211–216

    CAS  Google Scholar 

  35. Poole K (2004) Resistance to b-lactam antibiotics. Cell Mol Life Sci 61:2200–2223

    Article  CAS  PubMed  Google Scholar 

  36. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for b-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bonnet R (2004) Growing group of extended-spectrum beta-lactamases, The CTX-M enzymes. Antimicrob Agents Chemother 48:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Yazawa K, Mikami Y, Maeda A et al (1994) Phosphorylative inactivation of rifampicin by Nocardia otitidiscaviarum. J Antimicrob Chemother 33:1127–1135

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura A, Miyakozawa I, Nakazawa K et al (2000) Detection and characterization of a macrolide 2′-phosphotransferase from Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 44:3241–3242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Matsuoka M, Sasaki T (2004) Inactivation of macrolides by producers and pathogens. Curr Drug Targets Infect Disord 4:217–240

    Article  CAS  PubMed  Google Scholar 

  41. Yang W, Moore IF, Koteva KP et al (2004) TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 279:52346–52352

    Article  CAS  PubMed  Google Scholar 

  42. Nagai K, Davies TA, Jacobs MR et al (2002) Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob Agents Chemother 46:1273–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kosowska K, Jacobs MR, Bajaksouzian S et al (2004) Alterations of penicillin-binding proteins 1A, 2X, and 2B in Streptococcus pneumoniae isolates for which amoxicillin MICs are higher than penicillin MICs. Antimicrob Agents Chemother 48:4020–4022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Dowson CG, Coffey TJ, Spratt BG (1994) Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to b-lactam antibiotic. Trends Microbiol 2:361–366

    Article  CAS  PubMed  Google Scholar 

  45. Weisblum B (1998) Macrolide resistance. Drug Resist Updat 1:29–41

    Article  CAS  PubMed  Google Scholar 

  46. Spigaglia P, Mastrantonio P (2002) Analysis of macrolide-lincosamide- streptogramin B (MLSB) resistance determinant in strains of Clostridium difficile. Microb Drug Resist 8:45–53

    Article  CAS  PubMed  Google Scholar 

  47. Ackermann G, Degner A, Cohen SH et al (2003) Prevalence and association of macrolide-lincosamide- streptogramin B (MLSB) resistance with resistance to moxifloxacin in Clostridium difficile. J Antimicrob Chemother 51:599–603

    Article  CAS  PubMed  Google Scholar 

  48. Khodursky AB, Zechiedrich EL, Cozzarelli NR (1995) Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci U S A 92:11801–11805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ince D, Zhang X, Silver LC et al (2002) Dual targeting of DNA gyrase and topoisomerase IV: target interactions of garenoxacin (BMS-284756, T-3811ME), a new desfluoroquinolone. Antimicrob Agents Chemother 46:3370–3380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Nikaido H, Zgurskaya HI (1999) Antibiotic efflux mechanisms. Curr Opin Infect Dis 12:529–536

    Article  CAS  PubMed  Google Scholar 

  51. Webber MA, Piddock LJ (2003) The importance of efflux pump in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11

    Article  CAS  PubMed  Google Scholar 

  52. Van Veen HW, Konings WN (1997) Drug efflux proteins in multidrug resistant bacteria. Biol Chem 378:769–777

    PubMed  Google Scholar 

  53. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in P. aeruginosa and related organisms. J Mol Microbiol Biotechnol 3:225–264

    Google Scholar 

  54. Gotoh N, Tsujimoto H, Poole K et al (1995) The outer membrane protein OprM of Pseudomonas aeruginosa is encoded by oprK of the mexA-mexB-oprK multidrug resistance operon. Antimicrob Agents Chemother 39:2567–2569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Köhler T, Epp SF, Curty LK et al (1999) Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305

    PubMed Central  PubMed  Google Scholar 

  56. Langton KP, Henderson PJF, Herber RB (2005) Antibiotic resistance: multidrug efflux proteins, a common transport mechanism? Nat Prod Rep 22:439–451

    Article  CAS  PubMed  Google Scholar 

  57. Putman M, Van HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Suo Y, Huang Y, Liu Y et al (2012) The expression of superoxide dismutase (SOD) and a putative ABC transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4bG. PLoS One. doi:10.1371/journal.pone.0048467

    Google Scholar 

  59. Liu X, Sun X, Wu Y et al (2013) Oxidation-sensing regulator AbfR regulates oxidative stress responses, bacterial aggregation, and biofilm formation in Staphylococcus epidermidis. J Biol Chem 288(6):3739–3752

    Google Scholar 

  60. Lefu L, Thomas S, Barbara IK et al (2010) Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Mol Microbiol 75:76–91

    Article  Google Scholar 

  61. Boles BB, Pradeep K (2008) Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci U S A 105:12503–12508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zeng Z, Qian L, Cao L et al (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 79:119e26

    Google Scholar 

  63. Jakobsen TH, Van Gennip M, Phipps RK, Alhede M et al (2012) Ajoene, a sulfur-rich molecule from garlic inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56:2314e25

    Article  Google Scholar 

  64. Sun D, Accavitti MA, Bryers JD (2005) Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin Diagn Lab Immunol 12:93–100

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Digiandomenico A, Warrener P, Hamilton M et al (2012) Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J Sci Exp Med 209:1273e87

    Google Scholar 

  66. Eckhart L, Fischer H, Barken KB et al (2007) DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. J Sci Br J Dermatol 156:1342e5

    Google Scholar 

  67. Alemayehu D, Casey PG, McAuliffe O et al (2012) Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. mBio 3:e00029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Biel MA, Sievert C, Usacheva M et al (2011) Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. J Sci Lasers Surg Med 4:586e90

    Google Scholar 

  69. Dean SN, Bishop BN, Van Hoek ML (2011) Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. J Sci Front Microbiol 2:122e8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reema Gabrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Gabrani, R., Sharma, G., Dang, S., Gupta, S. (2015). Interplay Among Bacterial Resistance, Biofilm Formation and Oxidative Stress for Nosocomial Infections. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_23

Download citation

Publish with us

Policies and ethics