Skip to main content

Cryobionomics: Evaluating the Concept in Plant Cryopreservation

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Cryopreservation at ultra-low temperatures is used for the long-term conservation of nonorthodox seeds and the germplasm of vegetatively propagated species. Advances in biomolecular or ‘omics’ technologies are creating a new knowledge base that provides insights into how to solve some of the more difficult cryobiological and conservation challenges. Before routinely implementing cryostorage, it is important to verify that it does not have any genotypic and/or phenotypic destabilising effects and that plants produced from cryopreserved germplasm are true-to-type. The evolving concept of ‘cryobionomics’ considers two practical aspects: (1) the linkage between cryoinjury and stability in vitro and (2) the behaviour and functionality of plants recovered from cryopreserved germplasm once they are reintroduced into natural environments. Cryobionomics is a working hypothesis that explores the emerging research evidence that connects causal factors related to cryoinjury and loss of viability to the risks of genetic instability. This paper presents the principles of cryopreservation and reviews contemporary omics research literature within the conceptual framework of cryobionomics. The aim is to explore the connections between stability and cryogenic/non-cryogenic stress factors with a view to aiding protocol improvement, optimisation and validation for plant genetic resources conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altpeter F, Oraby H (2010) Sugarcane. In: Kempken F, Jung C (eds) Genetic modification of plants, biotechnology in agriculture and forestry 64. Springer, Berlin

    Google Scholar 

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99

    CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology consortium. Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ashmore SE (1997) Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources. IPGRI, Rome

    Google Scholar 

  • Ayad WG, Hodgkin T, Jaradat A et al (1997) Molecular genetic techniques for plant genetic resources. Report of an IPGRI workshop, 9–11 October 1995, IPGRI, Rome

    Google Scholar 

  • Basu C (2008) Gene amplification from cryopreserved Arabidopsis thaliana shoot tips. Curr Issues Mol Biol 10:55–60

    CAS  PubMed  Google Scholar 

  • Baust JG (2007) Concepts in biopreservation. In: Baust JG, Baust JM (eds) Advances in biopreservation. CRC Press, Boca Raton

    Google Scholar 

  • Benson EE (1999) Plant conservation biotechnology. Taylor and Francis Ltd, London

    Google Scholar 

  • Benson EE (2008a) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Crit Rev Plant Sci 27:141–219

    CAS  Google Scholar 

  • Benson EE (2008b) Cryopreservation theory. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Benson EE, Harding K (2012) Cryopreservation of shoots and meristems: an overview of contemporary methodologies. In: Loyola-Vargas VM, Ocho-Alejo N (eds) Plant cell culture protocols, 3rd edn. Humana Press, London

    Google Scholar 

  • Benson EE, Roubelakis-Angelakis KA (1994) Oxidative stress in recalcitrant grapevine tissue cultures. Free Radic Biol Med 16:355–364

    CAS  PubMed  Google Scholar 

  • Benson EE, Harding K, Dumet DJ (2002) Cryopreservation of plant cells, tissues and organs. In: Spier RE (ed) Encyclopaedia for plant cell technology. Wiley Press, London

    Google Scholar 

  • Benson EE, Johnston J, Muthusamy J, Harding K (2005) Physical and engineering perspectives of in vitro plant cryopreservation. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht

    Google Scholar 

  • Benson EE, Harding K, Johnston J (2007) Cryopreservation of shoot-tips and meristems. In: Day JG, Stacey G (eds) Cryopreservation and freeze drying protocols, 2nd edn, Vol 368 Methods in molecular biology. Human Press, Totowa

    Google Scholar 

  • Benson EE, Betsou F, Amaral R, Santos LMA, Harding K (2011a) Standard PREanalytical codes: a new paradigm for environmental biobanking sectors explored in algal culture collections. Biopreserv Biobank 9:399–410

    PubMed  Google Scholar 

  • Benson EE, Harding K, Debouck D, Dumet D, Escobar R, Mafla G, Panis B, Panta A, Tay D, Van Den Houwe I, Roux N (2011b) Part I: global public goods phase 2: project landscape and general status of clonal crop in vitro conservation status. Systemwide Genetic Resources Programme, Rome. ISBN 978-92-9043-905-9

    Google Scholar 

  • Benson EE, Harding K, Debouck D, Dumet D, Escobar R, Mafla G, Panis B, Panta A, Tay D, Van Den Houwe I, Roux N (2011c) Part II: status of in vitro conservation technologies for: Andean root and tuber crops, cassava, Musa, potato, sweet potato and yam. Systemwide Genetic Resources Programme, Rome. ISBN 978-92-9043-906-6

    Google Scholar 

  • Benson EE, Harding K, Debouck D, Dumet D, Escobar R, Mafla G, Panis B, Panta A, Tay D, Van Den Houwe I, Roux N (2011d) Part III: multi-crop guidelines for developing in vitro conservation best practices for clonal crops. Systemwide Genetic Resources Programme, Rome. ISBN 978-92-9243-833-5

    Google Scholar 

  • Benson EE, Betsou F, Fuller BJ, Harding K, Kofanova O (2013) Translating cryobiology principles into trans-disciplinary storage guidelines for biorepositories and biobanks: a concept paper. CryoLetters 34:277–312

    CAS  PubMed  Google Scholar 

  • Berjak P, Bartels P, Benson EE, Harding K, Mycock D, Pammenter NW, Sershen, Wesley-Smith J (2011a) Cryo-conservation of South African plant genetic diversity. In Vitro Cell Dev Biol Plant 47:65–81

    Google Scholar 

  • Berjak P, Sershen, Varghese B, Pammenter NW (2011b) Cathodic amelioration of the adverse effects of oxidative stress accompanying procedures necessary for cryopreservation of embryonic axes of recalcitrant-seeded species. Seed Sci Res 21:187–203

    Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers K, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different method for two-dimensional electrophoresis analysis. Proteomics 5:2497–2507

    CAS  PubMed  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B (2007) Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7:92–105

    CAS  PubMed  Google Scholar 

  • Carpentier SC, Coemans B, Podevin N, Laukens K, Witters E, Matsumura H, Terauchi R, Swennen R, Panis B (2008a) Functional genomics in a non-model crop: transcriptomics or proteomics? Physiol Plant 133:117–130

    CAS  PubMed  Google Scholar 

  • Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008b) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27:354–377

    CAS  PubMed  Google Scholar 

  • Carpentier SC, Vertommen A, Swennen R, Panis B (2009) Will proteomics contribute to a better understanding of cryopreservation survival? In: Panis B (ed) Proceedings of the 1st international symposium on cryopreservation in horticultural species, 5–8 April 2009, Leuven

    Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157

    CAS  Google Scholar 

  • Castillo NRF, Bassil NV, Wada S, Reed BM (2010) Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell Dev Biol Plant 46:246–256

    Google Scholar 

  • Chang Y, Reed BM (1999) Extended cold acclimation and recovery medium alteration improve regrowth of Rubus shoot tips following cryopreservation. CryoLetters 20:371–376

    Google Scholar 

  • Chen F, Dixon R (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    CAS  PubMed  Google Scholar 

  • Ciani F, Cocchia N, Esposito L, Avallone L (2012) Fertility cryopreservation. In: Wu B (ed) Advances in embryo transfer. InTech, Rijeka. doi:10.5772/38511

    Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    CAS  Google Scholar 

  • Criel B, Panta A, Carpentier S, Renaut J, Swennen R, Panis B, Hausman JF (2005) Cryopreservation and abiotic stress tolerance in potato: a proteomic approach. Commun Agric Appl Biol Sci 70:83–86, Ghent University

    CAS  PubMed  Google Scholar 

  • Criel B, Panis B, Oufir M, Swennen R, Renaut J, Hausman J-F (2008) Protein and carbohydrate analyses of abiotic stress underlying cryopreservation in potato. In: Laamanen J, Uosukainen M, Häggman H, Nukari A, Rantala S (eds) Cryopreservation of crop species in Europe, proceedings of CRYOPLANET COST Action 871, 20–23 February 2008, Oulu, MTT Agrifood Research Working Papers 153

    Google Scholar 

  • Cyr DR (2000) Cryopreservation: roles in clonal propagation and germplasm conservation of conifers. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and applications. JIRCAS/IPGRI, Tsukuba/Rome

    Google Scholar 

  • Day JG, Harding K, Nadarajan J, Benson EE (2008) Cryopreservation conservation of bioresources and ultra low temperatures. In: Walker JM, Rapley R (eds) Molecular biomethods handbook, 2nd edn. Humana Press, Totowa

    Google Scholar 

  • de Vicente MC (2004) The evolving role of genebanks in the fast-developing field of molecular genetics, Issues in genetic resources No. 11. IPGRI, Rome

    Google Scholar 

  • de Vicente MC, Andersson MS (2006) DNA banks – providing novel options for genebanks? Topical reviews in agricultural biodiversity. IPGRI, Rome

    Google Scholar 

  • de Vicente MC, Fulton T (2003) Using molecular marker technology in studies on plant genetic diversity. IPGRI, Rome

    Google Scholar 

  • Dereuddre J, Fabre J, Bassaglia C (1988) Resistance to freezing in liquid nitrogen of carnation (Dianthus caryophyllus L. var. Eolo) apical and axillary shoot tips excised from different aged in vitro plantlets. Plant Cell Rep 7:170–173

    CAS  PubMed  Google Scholar 

  • Dulloo ME, Hunter D, Borelli T (2010) Ex situ and in situ conservation of agricultural biodiversity: major advances and research needs. Not Bot Horti Agrobot Cluj-Napoca 38:123–135

    Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y (1993) Cryopreservation of oil palm (Elaeis guineensis Jacq.) somatic embryo involving a desiccation step. Plant Cell Rep 12:352–355

    CAS  PubMed  Google Scholar 

  • Dussert S, Engelmann F, Noirot M (2003) Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. CryoLetters 24:149–160

    PubMed  Google Scholar 

  • Eksomtramage T, Paulet F, Guiderdoni E, Glaszmann JC, Engelmann F (1992) Development of a cryopreservation process for embryogenic calluses of a commercial hybrid of sugarcane (Saccharum sp.) and application to different varieties. CryoLetters 13:239–352

    Google Scholar 

  • Elliott GD, Chakraborty N, Biswas D (2008) Anhydrous preservation of mammalian cells: cumulative osmotic stress analysis. Biopreserv Biobank 6:253–260

    CAS  PubMed  Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm – a review. Euphytica 57:227–243

    Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CABI, Oxon

    Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS/IPGRI, Tsukuba/Rome

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Google Scholar 

  • Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm – current research progress and applications. JIRCAS/IPGRI, Tsukuba/Rome

    Google Scholar 

  • Engelmann F, Gonzalez Arnao M-T, Wu Y, Escobar R (2008) Development of encapsulation dehydration. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoots tips. CryoLetters 11:413–426

    Google Scholar 

  • Faltus M, Bilavčík A, Zámečník J (2007a) Study of phytohormone composition of growth medium for hop plant recovery improvement after cryopreservation. In: Lambardi M, Benelli C (eds) Proceedings of CRYOPLANET, 1st meeting of working group 2, technology, application and validation of plant cryopreservation, 10–12 May, Florence

    Google Scholar 

  • Faltus M, Bilavčík A, Zámečník J, Svoboda P (2007b) Effect of phytohormone composition of nutrient medium on in vitro plant regeneration in hop clones with different sensitivities to indole-3-butyric acid. Adv Hortic Sci 21:219–224

    Google Scholar 

  • FAO (2012) CGRFA The draft genebank standards for the conservation of non-orthodox seeds and clonally-propagated plants. Rome. http://www.fao.org/agriculture/crops/core-themes/theme/seeds-pgr/conservation/gbs/en/. Accessed 11 July 2013

  • FAO (2013) CGRFA draft genebank standards for plant genetic resources for food and agriculture (draft genebank standards) which comprise standards for the conservation of orthodox seeds, non-orthodox seeds and vegetatively propagated plants. Rome. http://www.fao.org/agriculture/crops/core-themes/theme/seeds-pgr/en/. Accessed 11 July 2013

  • Finkle BJ, Ulrich JM (1979) Effect of cryoprotectants in combination on the survival of frozen sugarcane cells. Plant Physiol 63:598–604

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375–388

    CAS  PubMed  Google Scholar 

  • Fuller BJ, Lane N, Benson EE (2004) Life in the frozen state. CRC Press, London

    Google Scholar 

  • Gale S, Benson EE, Harding K (2013) A life cycle model to enable research of cryostorage recalcitrance in temperate woody species: the case of Sitka spruce (Picea sitchensis). CryoLetters 34:30–39

    CAS  PubMed  Google Scholar 

  • Genebank Standards (1994) Food and Agriculture Organization of the United Nations, Rome. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Gnanapragasam S, Vasil IK (1990) Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.). Plant Cell Rep 9:419–423

    CAS  PubMed  Google Scholar 

  • Gnanapragasam S, Vasil IK (1992) Cryopreservation of immature embryos, embryogenic callus and cell suspension cultures of gramineous species. Plant Sci 83:205–215

    Google Scholar 

  • González-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation–dehydration technique: review and case study on sugarcane. CryoLetters 27:155–168

    PubMed  Google Scholar 

  • González-Arnao MT, Engelmann F, Huet C, Urra C (1993) Cryopreservation of encapsulated apices of sugarcane: effect of freezing procedure and histology. CryoLetters 14:303–308

    Google Scholar 

  • González-Arnao MT, Durán-Sánchez B, Jiménez-Francisco B, Lázaro-Vallejo CE, Valdés-Rodríguez SE, Guerrero A (2011) Cryopreservation and proteomic analysis of vanilla (V. planifolia A.) apices treated with osmoprotectants. Acta Hortic 908:67–72

    Google Scholar 

  • González-Benito ME, Clavero-Ramírez I, López-Aranda JM (2004) The use of cryopreservation for germplasm conservation of vegetatively propagated crops. Span J Agric Res 2:341–351

    Google Scholar 

  • Grapin A, Keller ERJ, Lynch PT, Panis B, Bahillo AR, Engelmann F (2011) Cryopreservation of crop species in Europe. In: Proceedings of the final meeting, COST Action 871 – CRYOPLANET, 8–11 February 2011, Agrocampus Ouest INHP, Angers, COST Action Office, Brussels, ISBN 978-92-898-0051-8. Publications Office of the European Union, Luxembourg. http://www.biw.kuleuven.be/dtp/tro/cost871/Home.htm, http://w3.cost.esf.org/index.php?id=181&action_number=871. Accessed 11 July 2013

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    CAS  PubMed  Google Scholar 

  • Häggman H, Rusanen M, Jokipii S (2008) Cryopreservation of in vitro tissues of deciduous forest trees. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Halmagyi A, Fischer-Kluver G, Mix-Wagner G, Schumacher HM (2004) Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches. Plant Cell Rep 22:371–375

    CAS  PubMed  Google Scholar 

  • Hamilton KN, Ashmore SE, Pritchard HW (2009) Thermal analysis and cryopreservation of seeds of Australian wild Citrus species (Rutaceae): Citrus australasica, C. inodora and C. garrawayi. CryoLetters 30:268–279

    CAS  PubMed  Google Scholar 

  • Harding K (2002) Genetic integrity of cryopreserved plant cells. In: Society low temperature biology symposium, Chromosomes, genes and cryobiology, Medical Society, London

    Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Harding K (2010) Plant and algal cryopreservation: issues in genetic integrity, concepts in cryobionomics and current applications in cryobiology. In: Proceedings of the Asia pacific conference on plant tissues cultures and agrobiotechnology (APaCPa) 2007, Kuala Lumpur, Malaysia. Asia Pac J Mol Biol Biotechnol 18:151–154

    Google Scholar 

  • Harding K, Benson EE (1994) A study of growth, flowering and tuberisation in plants derived from cryopreserved potato shoot-tips. CryoLetters 15:59–66

    Google Scholar 

  • Harding K, Benson EE (2012) Biomarkers from molecules to ecosystems and biobanks to genebanks. In: Normah NM, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, London

    Google Scholar 

  • Harding K, Johnston J, Benson EE (2005) Plant and algal cell cryopreservation: issues in genetic integrity, concepts in cryobionomics and current European applications. In: Benett IJ, Bunn E, Clarke H, McComb JA (eds) Contributing to a sustainable future, Proceedings of the Australian branch of the IAPTC and B, Perth, Western Australia

    Google Scholar 

  • Harding K, Johnston JW, Benson EE (2008a) Concepts in cryobionomics: a case study of Ribes genotype responses to cryopreservation in relation to thermal analysis oxidative stress nucleic acid methylation and transcriptional activity. In: Laamanen J, Uosukainen M, Häggman H, Nukari A, Rantala S (eds) cryopreservation of crop species in Europe, proceedings of CRYOPLANET COST Action 871, 20–23 February 2008, Oulu, MTT Agrifood Research Working Papers 153

    Google Scholar 

  • Harding K, Müller J, Friedl T, Day JG (2008b) Cryopreservation, genetic stability and the concept of cryobionomics for algal culture collections. Algal culture collections, ACC2008, 8–11 June 2008, Scottish Association of Marine Science, Dunstaffnage Marine Laboratory, Oban. http://www.ccap.ac.uk/oralabstracts.htm. Accessed 11 July 2013

  • Harding K, Johnston JW, Benson EE (2009) Exploring the physiological basis of cryopreservation success and failure in clonally propagated in vitro crop plant germplasm. Agric Food Sci 18:3–16

    Google Scholar 

  • Harding K, Müller J, Day JG, Lorenz M, Friedl T (2010) Encapsulation-dehydration and colligative cryoprotective strategies and the use of amplified fragment length polymorphism (AFLP) markers to verify the identify genetic stability of cryopreserved Euglena gracilis. CryoLetters 31:460–472

    PubMed  Google Scholar 

  • Harding K, Benson EE, da Costa Nunes E, Pilatti FK, Lemos J, Viana AM (2013) Can biospecimen science expedite the ex situ conservation of plants in megadiverse countries? A focus on the flora of Brazil. Crit Rev Plant Sci 32:411–444. doi:10.1080/07352689.2013.800421

    Google Scholar 

  • Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486

    PubMed Central  CAS  PubMed  Google Scholar 

  • IPGRI/CIAT (1994) Establishment and operation of a pilot in vitro active genebank. Report of a CIAT-IBPGR collaborative project using cassava (Manihot esculenta Crantz) as a model. A joint publication of IPGRI and CIAT, Cali

    Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    CAS  PubMed  Google Scholar 

  • Jaligot E, Rival A, Beulé T, Dussert S, Verdeil JL (2002) Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep 19:684–690

    Google Scholar 

  • Janardhan BS (2007) Promising achievements and new challenges in agriculture biotechnology. Report for the 4th Asia pacific conference on plant tissue culture and agribiotechnology for better food, health and quality living, 17–21 June 2007, Kuala Lumpur, Curr Sci 93:1052–1054

    Google Scholar 

  • Jian LC, Sun DL, Sun LH (1987) Sugarcane callus cryopreservation. In: Li PH (ed) Plant cold hardiness. Alan R. Liss Inc., New York

    Google Scholar 

  • Johnston JW, Harding K, Bremner DH, Souch G, Green J, Lynch PT, Grout B, Benson EE (2005) HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Biochem 43:844–853

    CAS  PubMed  Google Scholar 

  • Johnston JW, Dussert S, Gale S, Nadarajan J, Harding K, Benson EE (2006) Optimisation of the azinobis-3-ethyl-benzothiazoline-6-sulfonic acid radical scavenging assay for physiological studies of total antioxidant activity in woody plant germplasm. Plant Physiol Biochem 44:193–201

    CAS  PubMed  Google Scholar 

  • Johnston JW, Harding K, Benson EE (2007a) Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci 172:524–534

    CAS  Google Scholar 

  • Johnston JW, Horne S, Harding K, Benson EE (2007b) Evaluation of the 1-methyl-2-phenylindole colorimetric assay for aldehydic lipid peroxidation products in plants: malondialdehyde and 4-hydroxynonenal. Plant Physiol Biochem 45:108–112

    CAS  PubMed  Google Scholar 

  • Johnston JW, Benson EE, Harding K (2009) Cryopreservation of in vitro Ribes shoots induces temporal changes in DNA methylation. Plant Physiol Biochem 47:123–131

    CAS  PubMed  Google Scholar 

  • Johnston JW, Pimbley I, Harding K, Benson EE (2010) Detection of 8-hydroxy-2′-deoxyguanosine a marker of DNA damage in germplasm and DNA exposed to cryogenic treatments. CryoLetters 31:1–13

    CAS  PubMed  Google Scholar 

  • Joyce SM, Cassells AC (2002) Variation in potato microplant morphology in vitro and DNA methylation. Plant Cell Tissue Organ Cult 70:125–137

    CAS  Google Scholar 

  • Joyce SM, Cassells AC, Jain SM (2003) Stress and aberrant phenotypes in in vitro culture. Plant Cell Tissue Organ Cult 74:103–121

    CAS  Google Scholar 

  • Kaczmarczyk A, Rutten T, Melzer M, Keller ERJ (2008a) Ultrastructural changes associated with cryopreservation of potato (Solanum tuberosum L.). CryoLetters 29:145–166

    CAS  PubMed  Google Scholar 

  • Kaczmarczyk A, Shvachko N, Lupysheva Y, Hajirezaei M-R, Keller ERJ (2008b) Influence of alternating temperature preculture on cryopreservation results for potato shoot tips. Plant Cell Rep 27:1551–1558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaczmarczyk A, Houben A, Keller ERJ, Mette MF (2010) Influence of cryopreservation on the cytosine methylation state of potato genomic DNA. CryoLetters 31:380–391

    CAS  PubMed  Google Scholar 

  • Kaczmarczyk A, Rokka V-M, Keller ERJ (2011a) Potato shoot tip cryopreservation. A review. Potato Res 54:45–79

    Google Scholar 

  • Kaczmarczyk A, Turner SR, Bunn E, Mancera RL, Dixon KW (2011b) Cryopreservation of threatened native Australian species – what have we learned and where to from here? In Vitro Cell Dev Biol Plant 47:17–25

    Google Scholar 

  • Kaczmarczyk A, Funnekotter B, Menon A, Phang PY, Al-Hanbali A, Bunn E, Mancera RL (2012) Current issues in plant cryopreservation. In: Katkov II (ed) Current frontiers in cryobiology. InTech, Rijeka. doi:10.5772/32860. ISBN 978-953-51-0191-8

    Google Scholar 

  • Kaity A, Ashmore SE, Drew RA et al (2008) Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep 27:1529–1539

    CAS  PubMed  Google Scholar 

  • Kami D (2012) Cryopreservation of plant genetic resources. In: Katkov II (ed) Current frontiers in cryobiology. InTech, Rijeka. doi:10.5772/34414. ISBN 978-953-51-0191-8

    Google Scholar 

  • Kami D, Kido S, Otokita K, Suzuki T, Sugiyama K, Suzuki M (2010) Cryopreservation of shoot apices of Cardamine yezoensis in vitro-cultures by vitrification Method. Cryobiol Cryotechnol 56:119–126

    Google Scholar 

  • Karp A, Kresovich S, Bhat KV et al (1997) Molecular tools in plant genetic resources conservation: a guide to the technologies, IPGRI technical bulletin No. 2. IPGRI, Rome

    Google Scholar 

  • Kartha KK, Leung NL, Mroginski LA (1982) In vitro growth and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz.). Zeitschrift Pflanzenphysiol Bd 107S:133–140

    Google Scholar 

  • Katkov II (2012a) Current frontiers in cryopreservation. InTech, Rijeka. doi:10.5772/32047, ISBN 978-953-51-0302-8

  • Katkov II (2012b) Current frontiers in cryobiology. InTech, Rijeka. doi:10.5772/1962, ISBN 978-953-51-0191-8

  • Kaviani B (2011) Conservation of plant genetic resources by cryopreservation. Aust J Crop Sci 5:778–800

    Google Scholar 

  • Keller ERJ (2005) Improvement of cryopreservation results in garlic using low temperature preculture and high-quality in vitro plantlets. CryoLetters 26:357–366

    Google Scholar 

  • Keller ERJ, Senula A, Leunufna S, Grübe M (2006) Slow growth storage and cryopreservation – tools to facilitate germplasm maintenance of vegetatively propagated crops in living plant collections. Int J Refrig 29:411–417

    Google Scholar 

  • Keller ERJ, Kaczmarczyk A, Senula A (2008a) Cryopreservation for plant genebanks – a matter between high expectations and cautious reservation. CryoLetters 29:53–62

    Google Scholar 

  • Keller ERJ, Senula A, Kaczmarczyk A (2008b) Cryopreservation of herbaceous dicots. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Keller ERJ, Zanke CD, Senula A, Breuing B, Hardeweg B, Winkelmann T (2013) Comparing costs for different conservation strategies of garlic (Allium sativum L.) germplasm in genebanks. Genet Resour Crop Evol 60:913–926

    Google Scholar 

  • Kevers CT, Franck RJ, Strasser J, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult 77:181–191

    Google Scholar 

  • Kim HH, Lee SC (2012) Personalisation of droplet-vitrification protocols for plant cells: a systematic approach to optimising chemical and osmotic effects. CryoLetters 33:271–799

    CAS  PubMed  Google Scholar 

  • Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S (2003) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CPL, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    CAS  Google Scholar 

  • Lambardi M, Ozudogru EA, Benelli C (2008) Cryopreservation of embryogenic cultures. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Lescot M, Piffanelli P, Ciampi AY et al (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9(58):1–20. doi:10.1186/1471-2164-9-58

    Google Scholar 

  • Lynch PT (2000) Applications of cryopreservation to the long-term storage of dedifferentiated plant cultures. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro, Vol 2 Applications and limitations. Science Publishers Inc., Enfield

    Google Scholar 

  • Lynch PT, Pritchard HW, Nadarajan J, Benson EE, Harding K, Wetten AC (2011a) Country report: United Kingdom, COST ACTION 871. In: Grapin A, Keller ERJ, Lynch PT, Panis B, Bahillo AR, Engelmann F (eds) Final report conference proceedings. Cryopreservation of crop species in Europe, COST Action 871 – CRYOPLANET, COST Action Office, Brussels, ISBN 978-92-898-0051-8. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Lynch PT, Siddika A, Johnston JW, Mehra A, Benelli C, Lambardi M, Benson EE (2011b) Effects of osmotic pretreatments on oxidative stress and antioxidant profiles of cryopreserved olive somatic embryos. Plant Sci 181:47–56

    CAS  PubMed  Google Scholar 

  • Lynch PT, Souch GR, Harding K (2012) Effects of post-harvest storage of Allium sativum bulbs on the cryopreservation of stem-discs by encapsulation/dehydration. J Hortic Sci Biotechnol 87:588–592

    Google Scholar 

  • Mansor M (2012) Diversity and conservation of tropical forestry species in southeast Asia. In: Noor NM, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, London

    Google Scholar 

  • Martín C, González-Benito ME (2005) Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration. Cryobiology 51:281–289

    PubMed  Google Scholar 

  • Martinez-Montero ME, Gonzalez-Arnao MT, Borroto-Nordelo C, Puentes-Diaz C, Engelmann F (1998) Cryopreservation of sugarcane embryogenic callus using a simplified freezing process. CryoLetters 19:171–176

    Google Scholar 

  • Martinez-Montero ME, Martinez J, Engelmann F (2008) Cryopreservation of sugarcane somatic embryos. CryoLetters 29:229–242

    CAS  PubMed  Google Scholar 

  • Martinez-Montero ME, Gonzalez Arnao MT, Engelmann F (2012) Cryopreservation of tropical plant germplasm with vegetative propagation – review of sugarcane (Saccharum spp.) and pineapple (Ananas comosus (L.) Merrill) cases. In: Katkov II (ed) Current frontiers in cryopreservation. InTech, Rijeka. doi:10.5772/32047. ISBN 978-953-51-0302-8

    Google Scholar 

  • Mazur P (2004) Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, London

    Google Scholar 

  • Meryman HT, Williams RJ (1985) Basic principles of freezing injury to plant cells: natural tolerance and approaches to cryopreservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    CAS  PubMed  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725. doi:10.1093/jxb/err155

    CAS  PubMed  Google Scholar 

  • Mix-Wagner G, Schumacher HM, Cross RJ (2003) Recovery of potato apices after several years of storage in liquid nitrogen. CryoLetters 24:33–41

    CAS  PubMed  Google Scholar 

  • Morris JG, Acton E (2013) Controlled ice nucleation in cryopreservation – a review. Cryobiology 66:85–92

    PubMed  Google Scholar 

  • Morrison N, Cochrane G, Faruque N, Tatusova T, Tateno Y, Hancock D, Field D (2006) Concept of sample in OMICS technology. OMICS J Integr Biol 10:127–137

    CAS  Google Scholar 

  • Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15:204–210

    CAS  PubMed  Google Scholar 

  • Nadarajan J, Staines HJ, Benson EE, Marzalina M, Krishnapillay B, Harding K (2007) Optimization of cryopreservation for Sterculia cordata zygotic embryos using vitrification techniques. J Trop For Sci 19:79–85

    Google Scholar 

  • NDong C, Danyluk J, Wilson KE, Pocock T, Huner NPA, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129:1368–1381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    CAS  PubMed  Google Scholar 

  • Normah MN, Makeen AM (2008) Cryopreservation of excised embryos and embryonic axes. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Normah MN, Chin HF, Reed BM (2012) Conservation of tropical plant species. Springer, London

    Google Scholar 

  • Ogawa Y, Suzuki H, Sakurai N, Aoki K, Saito K, Shibata D (2008) Cryopreservation and metabolic profiling analysis of Arabidopsis T87 suspension cultured cells. CryoLetters 29:427–436

    CAS  PubMed  Google Scholar 

  • Oh TJ, Cullis MA, Kunert K, Engelborghs I, Swennen R, Cullis CA (2007) Genomic changes associated with somaclonal variation in banana (Musa spp). Physiol Plant 129:766–774

    CAS  Google Scholar 

  • Panis B (2008) Cryopreservation of monocots. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Panis B (2009) Cryopreservation of Musa germplasm. In: Engelmann F, Benson E (eds) Technical guidelines no. 9, 2nd edn. Bioversity International, Montpellier

    Google Scholar 

  • Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome

    Google Scholar 

  • Panis B, Totté N, Van Nimmen K, Withers LA, Swennen R (1996) Cryopreservation of banana (Musa spp.) meristem cultures after preculture on sucrose. Plant Sci 121:95–106

    CAS  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    CAS  Google Scholar 

  • Paton A (2009) Biodiversity informatics and the plant conservation baseline. Trends Plant Sci 14:629–637

    CAS  PubMed  Google Scholar 

  • Paulet F, Engelmann F, Glaszmann J (1993) Cryopreservation of apices of in vitro plantlets of sugar cane (Saccharum sp. hybrids) using encapsulation/dehydration. Plant Cell Rep 12:525–529

    CAS  PubMed  Google Scholar 

  • Perazzo G, Panta A, Rodriguez F, Gomez R, Toledo J, Huamán Z, Ghislain M, Golmirzaie AM, Roca W (2000) Clonal true-to-type verification of potato accessions retrieved from in vitro conservation and cryopreservation. CIP programme report 1999–2000. CIP, Lima. http://cipotato.org/publications/program_reports/99_00/20clonverif.pdf/view. Accessed 11 July 2013

  • Peredo EL, Arroyo-Garcia R, Reed BM, Revilla MA (2008) Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.). Cryobiology 57:234–241

    CAS  PubMed  Google Scholar 

  • Petijová L, Skyba M, Cellárová E (2012) Genotype-dependent response of St. John’s wort (Hypericum perforatum L.) shoot tips to cryogenic treatment: effect of pre-culture conditions on post-thaw recovery. Plant Omics 5:291–297

    Google Scholar 

  • PGSC – The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12:1–6

    Google Scholar 

  • RBG – Royal Botanic Gardens, Kew (2010) Plants under pressure a global assessment. The first report of the IUCN sampled red list index for plants, plants people possibilities, Royal Botanic Gardens, Kew, UK. http://www.kew.org/science/plants-at-risk/plants-worldwide.htm. Accessed 11 July 2013

  • Reed BM (2008a) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Reed BM (2008b) Cryopreservation-practical considerations. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Reed BM (2008c) Cryopreservation of temperate berry crops. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Reed BM, Uchendu E (2008) Controlled rate cooling. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Reed BM, Dumet DJ, Denoma JM, Benson EE (2001) Validation of cryopreservation protocols for plant germplasm conservation: a pilot study using Ribes L. Biodivers Conserv 10:939–949

    Google Scholar 

  • Reed BM, Engelmann F, Dulloo ME, Engels JMM (2004a) Technical guidelines for the management of field and in vitro germplasm collections, IPGRI handbooks for genebanks, No. 7. IPGRI, Rome

    Google Scholar 

  • Reed BM, Kovalchuk I, Kushnarenko S, Meier-Dinkel A, Schoenweiss K, Pluta S, Straczynska K, Benson EE (2004b) Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters 25:341–352

    PubMed  Google Scholar 

  • Rein PW (2007) Prospects for the conversion of a sugar mill into a biorefinery. Proc Int Soc Sugar Cane Technol 26:44–60

    Google Scholar 

  • Renaut J, Hausman J-F, Wisniewski ME (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109

    CAS  Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Ann Rev Plant Biol 61:621–649

    CAS  Google Scholar 

  • Rodriguez-Enriquez J, Dickinson HG, Grant-Downton RT (2011) MicroRNA misregulation: an overlooked factor generating somaclonal variation? Trends Plant Sci 16:242–248

    CAS  PubMed  Google Scholar 

  • Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. JIRCAS/IPGRI, Tsukuba/Rome

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    CAS  PubMed  Google Scholar 

  • Sakai A, Matsumoto T, Hirai D, Charoensub R (2002) Survival of tropical apices cooled to −196°C by vitrification. In: Li PH, Palva ET (eds) Plant cold hardiness, gene regulation and genetic engineering. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation-vitrification protocols. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Samyn B, Sergeant K, Carpentier S, Debyser G, Panis B, Swennen R, Van Beeumen J (2007) Functional proteome analysis of the banana plant (Musa spp.) using de novo sequence analysis of derivatized peptides. J Proteome Res 6:70–80

    CAS  PubMed  Google Scholar 

  • Schäfer-Menuhr A, Müller E, Mix-Wagner G (1996) The use of cryopreservation as routine method for the preservation of old potato varieties. Landbauf. Volkenrode 46:65–75

    Google Scholar 

  • Schrijnemakers EWM, Van Iren F (1995) A two step or equilibrium freezing procedure for the cryopreservation of plant cell suspensions. In: Day JG, McLellan MR (eds) Cryopreservation and freeze-drying protocols, Methods in molecular biology, vol 38. Humana Press, Totowa

    Google Scholar 

  • Scowcroft WR (1984) Genetic variability in tissue culture: impact on germplasm conservation and utilisation. Report (AGPG:IBPGR/84/152). International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    CAS  PubMed  Google Scholar 

  • Service RF (2001) Proteomics. High-speed biology search for gold in proteins. Science 294:2074–2077

    CAS  PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotech 26:1135–1145

    CAS  Google Scholar 

  • Sherlock G, Block W, Benson EE (2005) Thermal analysis of the plant encapsulation/dehydration protocol using silica gel as the desiccant. CryoLetters 26:45–54

    PubMed  Google Scholar 

  • Skyba M, Urbanová M, Kapchina-Toteva V, Košuth J, Harding K, Čellárová E (2010) Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoots tips. CryoLetters 31:249–260

    CAS  PubMed  Google Scholar 

  • Spooner D, van Treuren R, de Vicente MC (2005) Molecular markers for genebank management. IPGRI technical bulletin, No. 10. IPGRI, Rome

    Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton

    Google Scholar 

  • Sung DY, Kaplan F, Lee K-J, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    CAS  Google Scholar 

  • Takagi H (2000) Recent developments in cryopreservation of shoot apices of tropical species. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm- current research progress and application. JIRCAS/IPGRI, Tsukuba/Rome

    Google Scholar 

  • Towill LE, Ellis DD (2008) Cryopreservation of dormant buds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Tsai CJ, Hubscher SL (2004) Cryopreservation of Populus functional genomics. New Phytol 164:73–81

    CAS  Google Scholar 

  • Vertommen A, Carpentier SC, Remmerie N, Witters E, Swennen R, Panis B (2007) Towards the identification of protein complexes in banana Musa spp. meristems. Commun Agric Appl Biol Sci 72:1–4. Ghent University

    Google Scholar 

  • Volk GM (2010) Application of functional genomics and proteomics to plant cryopreservation. Curr Genomics 11:24–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Volk GM, Caspersen AM (2007) Plasmolysis and recovery of different cell types in cryoprotected shoot tips of Mentha X piperita. Protoplasma 231:215–226

    PubMed  Google Scholar 

  • Volk GM, Henk AD, Chhandak B (2011) Gene expression in response to cryoprotectant and liquid nitrogen exposure in Arabidopsis shoot tips. Acta Hortic 908:55–66

    CAS  Google Scholar 

  • Walters C, Touchell DH, Power P, Wesley-Smith J, Antolin MF (2002) A cryopreservation protocol for embryos of the endangered species Zizania texana. CryoLetters 23:291–298

    PubMed  Google Scholar 

  • Walters C, Wheeler L, Stanwood PC (2004) Longevity of cryogenically stored seeds. Cryobiology 48:229–244

    PubMed  Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178

    PubMed  Google Scholar 

  • Wang J, Nayak S, Koch K, Ming R (2013) Carbon partitioning in sugarcane (Saccharum species). Front Plant Sci Plant Biotechnol 4:201. doi:10.3389/fpls.2013.00201

    Google Scholar 

  • Withers LA (1979) Freeze preservation of somatic, embryos and clonal plantlets of carrot (Daucus carota). Plant Physiol 63:460–467

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zámečník J, Faltus M, Bilavčík A, Kotková R (2012) Comparison of cryopreservation methods of vegetatively propagated crops based on thermal analysis. In: Katkov II (ed) Current frontiers in cryopreservation. InTech, Rijeka. doi:10.5772/34454. ISBN 978-953-51-0302-8

    Google Scholar 

  • Zanke C, Zamecnik J, Kotlińska T, Olas M, Keller ERJ (2011) Cryopreservation of garlic for the establishment of a European core collection. Acta Hortic 908:431–438

    CAS  Google Scholar 

  • Zhang SQ, Klessig DF (2001) MAPK cascades in plant defence signaling. Trends Plant Sci 6:520–527

    CAS  PubMed  Google Scholar 

  • Zhu GY, Guens JMC, Dussert S, Swennen R, Panis B (2006) Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effects on cryopreservation. Physiol Plant 128:80–94

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Erica Benson for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos E. Martinez-Montero Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Martinez-Montero, M.E., Harding, K. (2015). Cryobionomics: Evaluating the Concept in Plant Cryopreservation. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_23

Download citation

Publish with us

Policies and ethics