Skip to main content
  • 1852 Accesses

Abstract

An average of 9 μg g−1 of copper is present in the soil. Cu deficiency is rarely observed in plants since its requirement is low. A wide range of gene families and proteins have been identified, which are involved in Cu transport and Cu homeostasis, such as COPT1, AtHMA6/PAA1, AtHMA8/PAA2, AtHMA7/RAN1, AtHMA5 and possibly YSL1 and YSL3. To protect Cu from improper interactions with other cellular constituents, Cu is chelated with nicotianamine (CuNA) and transported within the xylem sap from root to shoot. CuCCH (copper chaperone) complex is involved in inserting Cu into the active sites of Cu-dependent enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andres-Colas N, Bodecker JR, Puig S, Penarrubia L, Pilon M (2005) AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett 579:2307–2312

    Article  CAS  PubMed  Google Scholar 

  • Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236

    Article  CAS  PubMed  Google Scholar 

  • Baker DE, Senef JP (1995) In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 179–205

    Chapter  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birkenbihl RP, Jach G, Saedler H, Huijser P (2005) Functional dissection of the plant specific SBP domain: overlap of the DNA binding and nuclear localization domains. J Mol Biol 352:585–596

    Article  CAS  PubMed  Google Scholar 

  • Borkert CM, Cox FR, Tucker MR (1998) Zinc and copper toxicity in peanut, soybean, rice, and corn in soil mixtures. Commun Soil Sci Plant Anal 29:2991–3005

    Article  CAS  Google Scholar 

  • Brun LA, Maillet J, Hinsinger P, Pepin M (2001) Evaluation of copper availability to plants in copper contaminated vine yard soils. Environ Pollut 111:293–302

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    Article  CAS  PubMed  Google Scholar 

  • Casano LM, Gomez LD, Lascano HR, Gonzales CA, Trippi VS (1997) Inactivation and degradation of CuZn–SOD by active oxygen species in wheat chloroplasts exposed to photo-oxidative stress. Plant Cell Physiol 38:433–440

    Article  CAS  PubMed  Google Scholar 

  • Chaignon V, Di Malta D, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a copper contaminated vine yard soil. New Phytol 154:121–130

    Article  CAS  Google Scholar 

  • Chaignon V, Sanchez-Neira I, Hermann P, Jaillard B, Hinsnger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from vine growing area. Environ Pollut 123:229–238

    Article  CAS  PubMed  Google Scholar 

  • Cornu JY, Staunton S, Hinsinger P (2007) Copper concentration in plants and in the rhizosphere as influenced by the iron status of tomato (Lycopersicon esculentum L). Plant Soil 292:63–77

    Article  CAS  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, van Sanden S, van Belleghem F et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  PubMed  Google Scholar 

  • Droppa M, Masojidek J, Rozsa Z, Wolak A, Horvath LI, Farkas T, Horvath G (1987) Characteristics of Cu deficiency‐induced inhibition of photosynthetic electron transport in spinach chloroplasts. Biochim Biophys Acta 891:75–84

    Article  CAS  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Molina A, Xing S, Huijser P (2014) A conserved KIN17 curved DNA-binding domain protein assembles with Squamosa promoter-binding protein like7 to adapt Arabidopsis growth and development to limiting copper availability. Plant Physiol 164(2):828–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) MicroRNAs in metal stress: specific roles or secondary responses? Int J Mol Sci 13(2):15826–15847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transitional metals and diseases. Biochem J 219:1–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heneriques FS (1989) Effect of copper deficiency on photo synthetic apparatus of sugar beet (Beta vulgaris L.). J Plant Physiol 135:453–458

    Article  Google Scholar 

  • Himelblau E, Mira H, Lin SJ, Culotta VC, Penarrubia L, Amasino RM (1998) Identification of functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117:1227–1234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transport, is required for ethylene signaling in Arabidopsis. Cell 97:383–393

    Article  CAS  PubMed  Google Scholar 

  • Huffman DL, O’Halloran TV (2001) Function, structure and mechanisms of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701

    Article  CAS  PubMed  Google Scholar 

  • Kalyanaraman SB, Sivagurunathan P (1993) Effect of cadmium, copper, and zinc on the growth of blackgram. J Plant Nutr 16:2029–2042

    Article  CAS  Google Scholar 

  • Klomp AE, Juijn JA, van der Gun LT, van der Berg IE, Berger R, Klomp LW (2003) The N-terminus of human copper transporter (hCTR1) is localized extra-cellularly and interacts with itself. Biochem J 370:881–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kupper H, Setlik I, Setlikova E, Ferimazova N, Spiller M, Kupper FC (2003) Copper induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Biol 30:1187–1196

    Article  Google Scholar 

  • Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maksymiec M (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Google Scholar 

  • Marshner H (1995) Mineral nutrition of higher plants. Academic, London, pp 313–323

    Book  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed Central  PubMed  Google Scholar 

  • Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in copper contaminated former vine yard. Plant Soil 298:99–111

    Article  CAS  Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitra GN, Misra UK, Sahu SK (2002) Macro and micronutrient status of soils of Orissa. IFFCO, Kolkata

    Google Scholar 

  • Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis Ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190

    Article  CAS  PubMed  Google Scholar 

  • O’Halloran TV, Culotta VC (2000) Metal chaperones: an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  PubMed  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Curr Opin Plant Biol 9:1–8

    Article  Google Scholar 

  • Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Metal ion chaperone function of soluble Cu(I) receptor Atx1. Science 278:853–856

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Thiel DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: response to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290

    Article  CAS  PubMed  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane-vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Barrako P, Eriksson M, Merchant S (2000) Coordinate copper and oxygen responsive Cyt6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem 275:6080–6089

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Eriksson M, Moseley JL, Merchant S (2002) Oxygen responsive gene expression Chlamydomonas reinhardtii through a copper sensing signal transduction pathway. Plant Physiol 128:463–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sancenon V, Puig S, Mira H, Thiele DJ, Penarubia L (2003) Identification of copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587

    Article  CAS  PubMed  Google Scholar 

  • Seigneurin-Benny D, Gravota A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyrd J, Richaud P, Rolland NJBC (2006) HMA1 a new Cu-ATPase of chloroplast envelop is essential for growth under adverse light conditions. J Biol Chem 28:2882–2892

    Google Scholar 

  • Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shingles R, Wimmers LE, McCarty RE (2004) Copper transport across pea thylakoid membranes. Plant Physiol 135(1):145–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa N (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trindade LM, Horvath BM, Bergervoet MJE, Visser RJF (2003) Isolation of a gene coding copper chaperone for copper/Zinc superoxide dismutase and characterisation of its promoter in potato. Plant Physiol 133:618–629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wainwrighst J, Woolhouseh W (1977) Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth: Cell elongation and membrane damage. J Exp Bot 28:1029–1036

    Article  Google Scholar 

  • Wheeler DM, Power IL (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172:167–173

    Article  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  PubMed  Google Scholar 

  • Wintz H, Vulpe C (2002) Plant copper chaperones. Biochem Soc Trans 30:732–735

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–146

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430

    Article  CAS  Google Scholar 

  • Zhu H, Shipp E, Sanchez RJ, Liba A, Stine JE, Hart PJ, Gralla EB, Nersissian AM, Valentine JS (2000) Cobalt (II) binding to human and tomato copper chaperone for superoxide dismutase: implication for the metal ion transfer mechanism. Biochemistry 39:5413–5421

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mitra, G.N. (2015). Copper (Cu) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_13

Download citation

Publish with us

Policies and ethics