Skip to main content

Water Soluble Polymer-Based Nanocomposites Containing Cellulose Nanocrystals

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Among the eco-friendly polymers, water soluble polymers are increasingly gaining importance to industry and academia, as they are easy to process, low cost, easily available, and more environmentally friendly than any other polymers. Water soluble polymers are widely used as stabilizers, thickeners, drug delivery materials, protective colloids, dispersants, flocculants, materials for oil recovery, etc. However, replacing nondegradable and nonrenewable plastic materials with these water soluble polymers for several applications remains as a big challenge. Several water soluble polymers, like those derived from naturally occurring proteins, polysaccharides, etc., and those obtained from synthetic methods are not having sufficient properties to replace the existing non-degradable plastic materials for most of the applications. Incorporation of nanomaterials into polymer matrices enhances the mechanical properties like tensile strength, modulus, stiffness, and impact strength significantly. Also other physical properties like barrier, optical, thermal resistance, nonflammability, etc., can also be improved by the introduction of nanomaterials. It is believed that the advances in polymer nanocomposite field will revolutionize the design, development, and performance of water soluble polymer-based materials, which ultimately have negligible adverse impact on the environment. Nanotechnology could be able to play an important role in solving this problem with the development of water soluble nanocomposite materials, which holds the key to future advances in the field of eco-friendly packaging systems. Several nanomaterials have been investigated for reinforcing water soluble polymers; however, rod-shaped cellulose nanocrystals (CNs) having high aspect ratios are found to be a promising nanomaterial for these types of applications. This chapter deals with the development and characterization of water soluble polymer-based nanocomposites containing cellulose nanocrystals and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R (2013a) Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Intl J Biol Macromol 54:166–173

    Article  CAS  Google Scholar 

  • Abdollahi M, Alboofetileh M, Rezaei M, Behrooz R (2013b) Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloid 32(2):416–424

    Article  CAS  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng Rep 28:1–63

    Article  Google Scholar 

  • Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okana T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  • Ashogbon AO, Akintayo ET (2014) Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch 66:41–57

    Article  CAS  Google Scholar 

  • Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res, Part B 100B:1451–1457

    Article  CAS  Google Scholar 

  • Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethyl cellulose hydrogels in relation to cross-linking, pH and charge density. Macromolecules 33:7457–7480

    Article  Google Scholar 

  • Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level off degree of polymerization. Ind Eng Chem 48:333–335

    Article  CAS  Google Scholar 

  • Battista OA, Smith PA (1962) Microcrystalline cellulose. J Ind Eng Chem 54:20–29

    Article  CAS  Google Scholar 

  • Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86(4):1549–1557

    Article  CAS  Google Scholar 

  • Choi Y, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6(3):633–639

    Article  CAS  Google Scholar 

  • Cohen SG, Haas HC, Farney L, Valle C Jr (1953) Preparation and properties of some ether and ester derivatives of hydroxyethylcellulose. Ind Eng Chem 45:200–203

    Article  CAS  Google Scholar 

  • Debeaufort F, Voilley A (1995) Methyl cellulose-based edible films and coatings I. Effect of plasticizer content on water and 1-octen-3-ol sorption and transport. Cellulose 2:205–213

    Article  CAS  Google Scholar 

  • Debeaufort F, Quezada-Gallo JA, Voilley A (1998) Edible films and coatings: tomorrow’s packagings: a review. Crit Rev Food Sci Nutr 38(4):299–313

    Article  CAS  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rod like cellulose microcrystals: Structure, properties and applications. Macromol Rapid Comm 25:771–787

    Article  Google Scholar 

  • Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1159–1170

    Google Scholar 

  • George J, Bawa AS, Siddaramaiah (2010) Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Adv Mater Res 123:383–386

    Article  Google Scholar 

  • George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Intl J Biol Macromol 48(1):50–57

    Article  CAS  Google Scholar 

  • George J, Ramana KV, Sabapathy SN, Bawa AS (2005a) Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J Microbiol Biotechnol 21(8–9):1323–1327

    Article  CAS  Google Scholar 

  • George J, Ramana KV, Sabapathy SN, Jagannath JH, Bawa AS (2005b) Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37(4):189–194

    Article  CAS  Google Scholar 

  • George J, Sajeevkumar VA, Ramana KV, Sabapathy SN, Siddaramaiah (2012a) Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles. J Mater Chem 22(42):22433–22439

    Article  CAS  Google Scholar 

  • George J, Siddaramaiah (2012b) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87(3):2031–2037

    Article  CAS  Google Scholar 

  • George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Sabapathy SN, Siddaramaiah (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292

    Google Scholar 

  • Gomez-Guillen MC, Gimenez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids 25:1813–1827

    Google Scholar 

  • Gorga RE, Cohen RE (2004) Toughness enhancements in poly (methyl methacrylate) by addition of oriented multiwall carbon nanotube. J Polym Sci B Polym Phys 42(14):2690–2702

    Article  CAS  Google Scholar 

  • Gorgieva S, Kokol V (2011) Synthesis and application of new temperature responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr Polym 85:664–673

    Article  CAS  Google Scholar 

  • Hakansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  CAS  Google Scholar 

  • Hassan CM, Peppas NA (2000a) Structure and applications of Poly (vinyl alcohol) hydrogels produced by conventional cross linking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    CAS  Google Scholar 

  • Hassan CM, Peppas NA (2000b) Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers. PVA hydrogels, anionic polymerisation nanocomposites. Springer, Heidelberg, pp 37–65

    Google Scholar 

  • Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763

    Article  CAS  Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing and application: an overview. J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576

    Article  CAS  Google Scholar 

  • Jalal Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12(3):617–624

    Article  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    Article  CAS  Google Scholar 

  • Kalfus J, Jancar J (2008) Reinforcing mechanisms in amorphous polymer nano-composites. Compos Sci Technol 68(15):3444–3447

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82(2):337–345

    Article  CAS  Google Scholar 

  • Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M (2010) Production and properties of nanocellulose-reinforced methylcellulose based biodegradable films. J Agri Food Chem 58(13):7878–7885

    Article  CAS  Google Scholar 

  • Kolodziejska I, Kaczorowski K, Piotrowsia B, Sadowska M (2004) Modification of properties of gelatin from skins of baltic cod (Gadus morhua) with transglutaminase. Food Chem 86:203–209

    Article  CAS  Google Scholar 

  • Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80

    Article  CAS  Google Scholar 

  • Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2009) Cellulose nanocrystal-filled poly (acrylic acid) nanocomposite fibrous membranes. Nanotechnology 20(41):415604

    Article  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    Article  CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Article  CAS  Google Scholar 

  • Maniar KK (2004) Polymeric nanocomposites: a review. Polym Plast Technol Eng 43:427–443

    Article  CAS  Google Scholar 

  • Matsumoto T, Kawai M, Masuda T (1992) Influence of concentration and mannuronate/guluronate ratio on steady flow properties of alginate aqueous systems. Biorheology 29:411–417

    CAS  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    Article  CAS  Google Scholar 

  • Mischnick P, Momcilovic D (2010) Chemical structure analysis of starch and cellulose derivatives. Adv Carbohydr Chem Biochem 64:117–210

    CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011a) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011b) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med-Czech 58(4):187–205

    CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  Google Scholar 

  • Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8):3851–3858

    Article  CAS  Google Scholar 

  • Park C, Park O, Lim J, Kim H (2001) The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer 42:7465–7475

    Article  CAS  Google Scholar 

  • Perez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch 62:389–420

    Article  CAS  Google Scholar 

  • Ranby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498

    Article  CAS  Google Scholar 

  • Sairam M, Babu VR, Vijaya B, Naidu K, Aminabhavi TM (2006) Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int J Pharm 320:131–136

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Hilliou L, Lagaron JM (2010a) Nanobiocomposites of carrageenan, zein, and mica of interest in food packaging and coating applications. J Agri Food Chem 58(11):6884–6894

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Hilliou L, Lagaron JM (2010b) Morphology and water barrier properties of nanobiocomposites of κ/ι-hybrid carrageenan and cellulose nanowhiskers. J Agri Food Chem 58(24):12847–12857

    Article  CAS  Google Scholar 

  • Sarker N, Walker LC (1995) Hydration-dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym 27:177–185

    Article  Google Scholar 

  • Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites: a small part of the story. JOM 59(3):53–60

    Article  CAS  Google Scholar 

  • Schagerlf H, Richardson S, Momcilovic D, Brinkmalm G, Wittgren B, Tjerneld F (2006) Characterization of chemical substitution of hydroxypropyl cellulose using enzymatic degradation. Biomacromolecules 7:80–85

    Article  Google Scholar 

  • Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. J Mater Chem 20(1):180–186

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009a) Chemical resistance, mechanical and physical properties of biofibers-based polymer composites. Polym Plast Technol Eng 48:736–744

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Grewia optiva Fiber Reinforced Novel, low cost polymer composites. J Chem 6:71–76

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009c) Synthesis, characterisation and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009d) Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009e) Physical, chemical and mechanical properties of hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58:217–228

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009f) Fabrication and characterization of h. sabdariffa fiber-reinforced green polymer composites. Polym-Plast Technol Eng 48:482–487

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2010a) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):127–146

    Google Scholar 

  • Singha AS, Thakur VK (2010b) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2010c) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709

    Article  CAS  Google Scholar 

  • Spagnol C, Rodrigues FH, Neto AG, Pereira AG, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48(3):454–463

    Article  CAS  Google Scholar 

  • Strucova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39(2):151–165

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Kaur I et al (2010a) Silane functionalization of saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Mehta IK (2010b) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):137–146

    Article  CAS  Google Scholar 

  • Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014c) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014a) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Kessler MR (2014c) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356

    Article  CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014d) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    Article  CAS  Google Scholar 

  • Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014e) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249

    Article  CAS  Google Scholar 

  • Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3):491–516

    Article  CAS  Google Scholar 

  • Tripathy T, Singh RP (2000) High performance flocculating agent based on partially hydrolysed sodium alginate-g-polyacrylamide. Eur Polym J 36(7):1471–1476

    Article  CAS  Google Scholar 

  • Wautelet M (2001) Scaling laws in the macro-, micro- and nanoworlds. Euro J Phys 22(6):601–611

    Article  Google Scholar 

  • Yang JS, Xie YJ, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39

    Article  CAS  Google Scholar 

  • Yang TH (2008) Recent applications of polyacrylamide as biomaterials. Recent Pat Mater Sci 1:29–40

    Article  CAS  Google Scholar 

  • Yuan Q, Misra RDK (2006) Polymer nanocomposites: current understanding and issues. Mater Sci Technol 22(7):742–755

    Article  CAS  Google Scholar 

  • Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interf Sci 353(1):116–123

    Article  CAS  Google Scholar 

  • Zhou Q, Malm E, Nilsson H, Larsson PT, Iversen T, Berglund LA, Bulone V (2009) Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 5(21):4124–4130

    Article  CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnsy George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

George, J., Sabapathi, S.N., Siddaramaiah (2015). Water Soluble Polymer-Based Nanocomposites Containing Cellulose Nanocrystals. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_9

Download citation

Publish with us

Policies and ethics