Skip to main content

Polyamine Biosynthesis Engineering as a Tool to Improve Plant Resistance to Abiotic Stress

  • Chapter
  • First Online:
Genetic Manipulation in Plants for Mitigation of Climate Change

Abstract

Polyamines (PAs) are small polycationic molecules which are present in all living organisms. PAs have been involved in a wide array of metabolic plant processes, extending from development to stress protection. Most of this knowledge has been achieved through the observation of PA homeostasis and manipulation of plant PA levels mediated by different approaches. This chapter summarizes the approaches undertaken to demonstrate the relationship between PAs and the stress response and, in particular, how the genetic manipulation of polyamine levels has evolved in a useful tool for the enhancement of plant stress tolerance in many species, including crops. This chapter also includes the most recent advances in the potential mechanisms of action by which polyamines could contribute to stress protection. Apart from a protective role based of its structural properties, PAs can also play regulatory roles, either directly or indirectly by the interaction with other signalling pathways including ion channel regulation, nitric oxide, reactive oxygen species (ROS) signalling and abscisic acid (ABA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcazar R, Garcia-Martinez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J 43:425–436

    Article  CAS  PubMed  Google Scholar 

  • Alcazar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006a) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    Article  CAS  Google Scholar 

  • Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006b) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A (2010a) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrian M, Tiburcio AF, Altabella T (2010b) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    Article  PubMed  Google Scholar 

  • Alcazar R, Bitrian M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC, Del Valle S, Altabella T, Tiburcio AF, Marco F, Ferrando A, Espasandin FD, Gonzalez ME, Ruiz OA, Carrasco P (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100

    Article  CAS  PubMed  Google Scholar 

  • An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    Article  CAS  PubMed  Google Scholar 

  • Av D, Mitchell C, Williams C, Dutt K, Silvestrov N, Clement B, Abukhalaf I, Dv D (2005) Polyamines protect against radiation-induced oxidative stress. Gravit Space Biol 1005:109–110

    Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  CAS  PubMed  Google Scholar 

  • Bitrián M, Zarza X, Altabella T, Tiburcio AF, Alcázar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2:516–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Borrell A, Carbonell L, Farràs R, Puig-Parellada P, Tiburcio AF (1997) Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385–390

    Article  CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:9909–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay MK, Gupta S, Sengupta DN, Ghosh B (1997) Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress. Plant Mol Biol 34:477–483

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  CAS  PubMed  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Kohl KI, Hincha DK, Zuther E (2013) Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS One 8:e60325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371

    Article  CAS  Google Scholar 

  • Feuerstein BG, Marton LJ (1989) Specificity and binding in polyamine/nucleic acid interactions. In: Bachrach U, Heimer YM (eds) The physiology of polyamines, vol I. CRC Press, Boca Raton, pp 109–207

    Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Gupta K, Sengupta D (2012) Spermidine-mediated in vitro phosphorylation of transcriptional regulator OSBZ8 by SNF1-type serine/threonine protein kinase SAPK4 homolog in indica rice. Acta Physiol Plant 34:1321–1336

    Article  CAS  Google Scholar 

  • Hamasaki-Katagiri N, Katagiri Y, Tabor CW, Tabor H (1998) Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant. Gene 210:195–201

    Article  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002) Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527(1–3):176–180

    Article  CAS  PubMed  Google Scholar 

  • Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Elliott K, Collier M, Thompson B, Perry B, Michael AJ (2003) Translational regulation of the plant S-adenosylmethionine decarboxylase. Biochem Soc Trans 31:424–427

    Article  CAS  PubMed  Google Scholar 

  • Hazarika P, Rajam MV (2011) Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol Mol Biol Plants 17:115–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Nada K, Kasukabe Y, Tachibana S (2002) Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of Spinach (Spinacia oleracea L.). Plant Cell Physiol 43:196–206

    Article  CAS  PubMed  Google Scholar 

  • He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    Article  CAS  PubMed  Google Scholar 

  • Hiatt A, Malmberg RL (1988) Utilization of putrescine in tobacco cell lines resistant to inhibitors of polyamine synthesis. Plant Physiol 86:441–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins MT, Lampi Y, Wang T-W, Liu Z, Thompson JE (2008) Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiol 148:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2006) Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem 139:11–16

    Article  CAS  PubMed  Google Scholar 

  • Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004a) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152

    Article  CAS  PubMed  Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004b) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang S, Wi S, Choi Y, An G, Park K (2012) Increased polyamine biosynthesis enhances stress tolerance by preventing the accumulation of reactive oxygen species: T-DNA mutational analysis of Oryza sativa lysine decarboxylase-like protein 1. Mol Cells 34:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janowitz T, Kneifel H, Piotrowski M (2003) Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett 544(1–3):258–261

    Article  CAS  PubMed  Google Scholar 

  • Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49(9):1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83

    Article  CAS  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kitada M, Igarashi K, Hirose S, Kitagawa H (1979) Inhibition by polyamines of lipid peroxide formation in rat liver microsomes. Biochem Biophys Res Commun 87:388–394

    Article  CAS  PubMed  Google Scholar 

  • Knott JM, Römer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581(16):3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Taylor M, Altabella T, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    Article  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro-morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J-H, Nada K, Honda C, Kitashiba H, Wen X-P, Pang X-M, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Liu J-H, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Malmberg RL, Watson MB, Galloway GL, Yu W (1998) Molecular genetic analyses of plant polyamines. Crit Rev Plant Sci 17:199–224

    Article  CAS  Google Scholar 

  • Marco F, Alcazar R, Tiburcio AF, Carrasco P (2011) Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS 15:775–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blázquez MA (2008) Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119–2128

    Article  CAS  PubMed  Google Scholar 

  • Mitsuya Y, Takahashi Y, Berberich T, Miyazaki A, Matsumura H, Takahashi H, Terauchi R, Kusano T (2009) Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. J Plant Physiol 166:626–643

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panicot M, Minguet EG, Ferrando A, Alcazar R, Blazquez MA, Carbonell J, Altabella T, Koncz C, Tiburcio AF (2002) A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14(10):2539–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peremarti A, Bassie L, Christou P, Capell T (2009) Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramoniumS-adenosylmethionine decarboxylase. Plant Mol Biol 70:253–264

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski M, Janowitz T, Kneifel H (2003) Plant C-N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. J Biol Chem 278(3):1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Planas-Portell J, Gallart M, Tiburcio AF, Altabella T (2013) Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol 13:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    Article  CAS  Google Scholar 

  • Richards FJ, Coleman RG (1952) Occurrence of putrescine in potassium-deficient barley. Nature 170:460–460

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC, Jiang Y, Jardim A, Carter NS, Heby O, Ullman B (2001) Genetic analysis of spermidine synthase from Leishmania donovani. Mol Biochem Parasitol 115:217–226

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Kessler M, Alpuche-Solís A, Ruiz OA, Jiménez-Bremont JF (2006) Effect of salt stress on the regulation of maize (Zea mays L.) genes involved in polyamine biosynthesis. Plant Growth Regul 48:175–185

    Article  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Sagor GH, Takahashi H, Niitsu M, Takahashi Y, Berberich T, Kusano T (2012) Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. Plant Cell Rep 31:1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Sagor GHM, Berberich T, Takahashi Y, Niitsu M, Kusano T (2013) The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res 22:595–605

    Article  CAS  PubMed  Google Scholar 

  • Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459:118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuber F (1989) Influence of polyamines on membrane functions. Biochem J 260:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Songstad DD, Duncan DR, Widholm JM (1990) Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J Exp Bot 41:289–294

    Article  CAS  Google Scholar 

  • Tadolini B (1988) Polyamine inhibition of lipoperoxidation. The influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochem J 249:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003) Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Cong R, Sagor GH, Niitsu M, Berberich T, Kusano T (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep 29:955–965

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio AF, Altabella T, Ferrando A (2009) Plant with resistance to low temperature and method of production thereof. Spanish patent application WO2010/004070

    Google Scholar 

  • Uemura T, Higashi K, Takigawa M, Toida T, Kashiwagi K, Igarashi K (2009) Polyamine modulon in yeast – stimulation of COX4 synthesis by spermidine at the level of translation. Int J Biochem Cell Biol 41:2538–2545

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26(11):1917–1926

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Walden R, Cordeiro A, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ikeguchi Y, McCloskey DE, Nelson P, Pegg AE (2004) Spermine synthesis is required for normal viability, growth, and fertility in the mouse. J Biol Chem 279:51370–51375

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xu C, Wang C, Wang Y (2012) Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. BMC Plant Biol 12:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson MB, Malmberg RL (1996) Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant Physiol 111(4):1077–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson MW, Yu W, Galloway GL, Malmberg RL (1997) Isolation and characterization of a second arginine decarboxylase cDNA from Arabidopsis (Accession No AF009647). Plant Physiol 114(4):1569

    Google Scholar 

  • Watson MB, Emory KK, Piatak RM, Malmberg RL (1998) Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J 13:231–239

    Article  CAS  PubMed  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  CAS  PubMed  Google Scholar 

  • Wen X-P, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478

    Article  CAS  Google Scholar 

  • Wi S, Park K (2002) Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol Cells 13:209–220

    CAS  PubMed  Google Scholar 

  • Wi S, Kim W, Park K (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang B, Jiang C, Ming F (2011) RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana. Plant Mol Biol 75:167–178

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael AJ, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci 11:522–524

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AFT and RA acknowledge support from the Spanish Ministerio de Ciencia e Innovación (grant numbers: BIO2011-29683, CSD2007-00036) and SGR2009-1060 of the Generalitat de Catalunya. RA acknowledges support from the Ramón y Cajal Programme (RYC-2011-07847) of the Ministerio de Ciencia e Innovación (Spain) and the Marie Curie Career Integration Grant (DISEASENVIRON, PCIG10-GA-2011-303568) of the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio F. Tiburcio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Marco, F., Bitrián, M., Carrasco, P., Alcázar, R., Tiburcio, A.F. (2015). Polyamine Biosynthesis Engineering as a Tool to Improve Plant Resistance to Abiotic Stress. In: Jaiwal, P., Singh, R., Dhankher, O. (eds) Genetic Manipulation in Plants for Mitigation of Climate Change. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2662-8_5

Download citation

Publish with us

Policies and ethics