Skip to main content

Plant Survival Under Natural UV Radiation on Earth: UV Adaptive/UV-Adapted Traits

  • Chapter
  • First Online:
Natural UV Radiation in Enhancing Survival Value and Quality of Plants
  • 384 Accesses

Abstract

Plants, serving as primary producers, are central to perpetuation of life on earth. Being equipped with the unique feature of cellular plasticity, plants exhibit flexibility in temporal cell molecular rearrangements as a means of adjustment to variation in ambient UV radiation. In the “post ozone hole” era, when enhanced UV fluence challenges survival of life forms on earth it is imperative to develop in depth understanding on UV acclimation related variation in traits of ecological significance and thus of evolutionary potential in plants.

While high-intensity UV radiation at high intensity induces cell molecular damages, UV fluence retrieved after transmission through weather fluctuation-related diurnal/aerosol/cloud cover as intermittent low-dose UV radiation epigenetically upregulates the synthesis of enzymes for (i) enhancement of UV protective compounds viz. flavonoids (specifically synthesized in plants) that function as internal UV screen and also as antioxidants for countering UV-induced oxidative damage and for (ii) repair of macromolecules, viz., DNA. Such cell molecular events (with flavonoids as the key player) orchestrate typical phenotypic outcomes manifested as UV adaptive traits that confer “fitness advantage” under potentially damaging UV radiation. The flexibility of UV adaptive plants to adjust with variation in UV environment make them ecologically significant.

During prolonged persistence under high-intensity UV radiation and associated recurring weather fluctuation-related low-dose UV fluence, the UV adaptive epigenetic traits are likely to be imprinted in the genome thereby establishing (UV adapted / ‘fixed’ trait (cf constitutive traits). UV adapted plants with ‘fixed trait’, remain unchanged through short term variation in UV ambience; such traits exhibit evolutionary potential.

Stability of UV adapted traits, particularly with respect to flavonoids that being specifically synthesized in plants (as an UV acclimation strategy), provide useful compounds of medicinal (antioxidative) potential. This makes these genotypes suitable for exploitation (using conventional/modern biotechnological means). Applications of biotechnology for overexpressing secondary metabolites viz. flavonoids of human interest in some crop plants are delineated in this chapter.

A case study on transmission of UV adapted trait (viz. seed viability) through marker assisted breeding has been elaborated in this chapter to exemplify conventional practice of using cultivars with fixed UV adapted traits in cultivation programmes regardless of UV fluence at different cultivation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abdin MZ, Kamaluddin (2006) Improving quality of medicinal herbs through physiochemical and molecular approaches. In: Abdin MZ, Abrol YP (eds) Traditional systems of medicine. Narosa Publishing House Pvt. Ltd, New Delhi, pp 30–33

    Google Scholar 

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 53:1713–1723

    Article  Google Scholar 

  • Agrawal AA, Strauss SY, Stout MJ (1999) Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish. Evolution 53:1093–1104

    Article  Google Scholar 

  • Allen DJ, Nogue’s S, Morison JIL, Greenslade PD, McLeod AR, Baker NR (1999) A 30% increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field. Glob Chang Biol 5(2):235–244

    Article  Google Scholar 

  • Alpert P, Simms EL (2002) The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol Ecol 16:285–297

    Article  Google Scholar 

  • Alvero-Bascos EM, Ungson LB (2012) Ultraviolet-B (UV-B) radiation as an elicitor of flavonoid production in callus cultures of Jatropha (Jatropha curcas L.). Philipp Agric Sci 95(4):335–343

    Google Scholar 

  • Arnone ML, Davidson EH (1997) The hard-wiring of development: organization and function of genomic regulatory systems. Development 124:1851–1864

    CAS  PubMed  Google Scholar 

  • Ballare’ CL, Barnes PW, Flint SD, Price S (1995) Inhibition of hypocotyls elongation by ultraviolet-B radiation in de-etiolating tomato seedlings. II. Time-course, comparison with flavonoid responses and adaptive significance. Physiol Plant 83:593–601

    Article  Google Scholar 

  • Barnes PW, Flint SD, Caldwell MM (1990) Morphological responses of crop and weed species of different growth forms to ultra-violet-B radiation. Am J Bot 77:1354–1360

    Article  Google Scholar 

  • Barnes PW, Maggard S, Holman SR, Vergara B (1993) Intraspecific variation in sensitivity to UV-B radiation in rice. Crop Sci 33:1041–1046

    Article  Google Scholar 

  • Barthod S, Cerovic Z, Epron D (2007) Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? J Exp Bot 58:1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultra-violet B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs RH, Kossuth SV, Teramura AH (1981) Response of 19 cultivars of soybeans to ultraviolet-B irradiance Physiol. Plant 53:19–26

    Google Scholar 

  • Björn LO, Callaghan TV, Johnsen I (1997) The effects of UV-B radiation on European heathland species. Plant Ecol 128:252–264

    Article  Google Scholar 

  • Blumthaler M, Amback W (1990) Indication of increasing solar UV-B radiation flux in alpine regions. Science 248:206–208

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity. Genetics 13:115–155

    Google Scholar 

  • Brosche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10

    Article  CAS  Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ et al (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102:18225–18230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol 4:363–367

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM, Bjorn LO, Bomman JF, Flint SD, Kulandaivelu G, Teramura M, Tevini M (1994) Effect of increased solar ultraviolet radiation on terrestrial ecosystem. J Photochem Photobiol 46(5):40–52

    Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M, Bornman JF, Bjorn LO, Kulandaivellu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173

    Google Scholar 

  • Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V (2015) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16(11):26378–26394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casal JJ, Ballare CL, Tourn M, Sanchez RA (1994) Anatomy, growth and survival of a long-hypocotyl mutant of Culcuinis satihus deficient in phytochrome B. Ann Bot 73:569–575

    Article  CAS  Google Scholar 

  • Chen L, Niu K, Wu Y, Geng Y, Mi Z, Flynn DFB, He J-S (2013) UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands. Ecol Evol 3(14):4696–4710

    Article  PubMed  PubMed Central  Google Scholar 

  • Correia CM, Areal ELV, Torres-Pereira MS, Torres-Pereira JMG (1999) Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions. I. Growth and morphological aspects. Field Crop Res 59:81–89

    Google Scholar 

  • Dai Q, Peng S, Chavez AQ, Miranda MML, Vergara BS, Olszyk DM (1997) Supplemental Ultraviolet-B radiation does not reduce growth or grain yield in rice. Results from a 7-season field study. Agro J 89:793–799

    Article  Google Scholar 

  • Day TA, Vogelmann TC, DeLucia EH (1992) Are some plant life forms more effective than others in screening out ultraviolet-B radiation? Oecologia 92:513–519

    Article  CAS  PubMed  Google Scholar 

  • Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in Alfalfa. Plant Physiol 138:2245–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar MK, Koul A, Kaul S (2013) Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. New Biotechnol 30(2):114–123

    Article  CAS  Google Scholar 

  • Dixon P, Weinig C, Schmitt J (2001) Susceptibility to UV damage in impatiens capensis (Balsaminaceae): testing for opportunity costs to shade-avoidance and population differentiation. Am J Bot 88:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Dubest S, Gallego ME, White CI (2002) Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 3:1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley SA, Schmitt J (1996) Testing the adaptive plasticity hypothesis: density dependent selection on manipulated stem length in Impatiens capensis. Am Nat 147:445–465

    Article  Google Scholar 

  • Filella I, Peñuelas J (1999) Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol 145:157–165

    Article  Google Scholar 

  • Fraser PD, Ro¨mer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci U S A 99:1092–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohnmeyer H, Loyall L, Blatt MR, Grabov A (1999) Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures. Plant J 20:109–117

    Article  CAS  PubMed  Google Scholar 

  • Ganguli S, Das G, Ganguli S, Das G, Sen-Mandi (1992) Plant emergence and productivity of different vigour of wheat (Triticum aestivum) seeds. Indian J Agr Sci 62(3):224–227

    Google Scholar 

  • Ghosh S, Sen Mandi S. Methylation status of ACCase promoter affects seed vigour-viability trait in Oryza sativa L. varieties. Unpublished data

    Google Scholar 

  • Gonzalez R, Paul ND, Percy K, Ambrose M, McLaughlin CK, Barnes JD, Areses M, Wellburn AR (1996) Responses to ultraviolet-B radiation (280–315 nm) of pea (Pisum sativum) lines differing in leaf surface wax. Physiol Plant 98:852–860

    Article  CAS  Google Scholar 

  • Hectors K, Prinsen E, De Coen W, Jansen MA, Guisez Y (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175:255–270

    Article  CAS  PubMed  Google Scholar 

  • Hidema J, Kumagai T (2006) Sensitivity of rice to ultraviolet-B radiation. Ann Bot 97:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidema J, Kang H-S, Kumagai T (1996) Differences in the sensitivity to UV-B radiation of two cultivars of rice (Oryza sativa L.). Plant Cell Physiol 37:742–747

    Article  CAS  Google Scholar 

  • Hofmann RW, Jahufer MZZ (2011) Tradeoff between biomass and flavonoid accumulation in white clover reflects contrasting plant strategies. PLoS One 6(4):e18949. doi:10.1371/journal.pone.0018949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson F (1987) A review of some topics concerning mutagenesis by ultraviolet light. Photochem Photobiol 45:897–903

    Article  CAS  PubMed  Google Scholar 

  • Jansen MAK, Coffey AM, Prinsen E (2010) UV-B induced morphogenesis. Plant Signal Behav 7(9):1185–1187

    Article  Google Scholar 

  • Jenkins GI (2014) Structure and function of the UV-B photoreceptor UVR8. Curr Opin Struct Biol 29:52–57

    Article  CAS  PubMed  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalbina I, Strid A (2006) Supplementary ultraviolet-B radiation reveals differences in stress responses between Arabidopsis thaliana ecotypes. Plant Cell Environ 29:754–763

    Article  CAS  PubMed  Google Scholar 

  • Kingsolver JG (1995) Viability selection on seasonally polyphenic traits: wing melanin pattern in western white butterflies. Evolution 49:932–941

    Article  Google Scholar 

  • Kliebenstein DJ, Lim JE, Landry LG, Robert L (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation I. Plant Physiol 130(1):234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai T, Sato T (1992) Inhibitory effects of increase in near-UV radiation on the growth of Japanese rice cultivars (Oryza sativa L.) in a phytotron and recovery by exposure to visible radiation. Jpn J Breed 42:545–552

    Article  CAS  Google Scholar 

  • Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton

    Google Scholar 

  • Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Kyoung-Hee Nam K-H et al (2001) Enhanced levels of the aroma and flavor compound S-Linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim H, Oudenaarden AV (2007) A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat Genet 39(2):260–275

    Article  Google Scholar 

  • Lively CM (1986) Canalization verses developmental conversion in a spatially variable environment. Am Nat 128:561–572

    Article  Google Scholar 

  • Lively CM (1998) Developmental strategies in spatially variable environments: barnacle shell dimorphism and strategic models of selection. In: Tollrian J, Harvell CD (eds) The evolution of inducible defenses. Princeton University Press, Princeton, pp 245–258

    Google Scholar 

  • Lucas R, McMichael T, Smith W, Armstrong B (2006) Solar ultraviolet radiation. Global burden of disease from solar ultraviolet radiation. World Health Organization, Environmental Burden of Disease Series, 13

    Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci U S A 98:8915–8920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martienssen RA, Richards EJ (1995) DNA methylation in eukaryotes. Curr Opin Genet Dev 5:234–242

    Article  CAS  PubMed  Google Scholar 

  • Mazza CA, Boccalandro HE, Giordano CV, Battista D, Scopel AL, Ballare CL (2000) Functional significance and induction by solar radiation of ultraviolet- absorbing sunscreens in field-grown soybean crops. Plant Physiol 122:117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy S, De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics-an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Perkins MC, Roberts CJ, Briggs D, Davies MC, Friedmann A, Hart CA, Bell GA (2005) Surface morphology and chemistry of Prunus laurocerasus L. leaves: a study using X-ray photoelectron spectroscopy, time-of-flight secondary-ion mass spectrometry, atomic-force microscopy and scanning-electron microscopy. Planta 221:123–134

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 39–72

    Chapter  Google Scholar 

  • Purugganan MD (2000) The molecular population genetics of regulatory genes. Mol Ecol 9:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  • Rollo CD (1994) Phenotypes: their epigenetics, ecology and evolution. Chapman and Hall, New York

    Google Scholar 

  • Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    Article  CAS  PubMed  Google Scholar 

  • Sajirani EB, Hadian J, Abdossi V, Larijani K (2014) Evaluation content of flavonoids and anthocyanins in Iranian borage (Echium amoenum fisch & mey) subjected in eshkevari accessions affected by different habitats in North of Iran. J Biodivers Environ Sci (JBES) 4(2):364–368

    Google Scholar 

  • Sakurai T, Kondou Y, Akiyama K, Kurotani A, Higuchi M (2011) RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function. Plant Cell Physiol 52(2):265–273

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Kang H-S, Kumagai T (1994) Genetic study of resistance to inhibitory effects of UV radiation in rice (Oryza sativa L.). Physiol Plant 91:234–238

    Article  CAS  Google Scholar 

  • Sato T, Ueda T, Fukuta Y, Kumagai T, Yano M (1997) Mapping of quantitative trait loci associated with ultraviolet-B resistance in rice (Oryza sativa L.). Theor Appl Genet 107:1003–1008

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1993) Evolution of phenotypic plasticity via regulatory genes. Am Nat 142:3660370

    Article  Google Scholar 

  • Schmitt J, Wulff RD (1993) Light spectral quality, phytochrome and plant competition. Trends Ecol Evol 8:47–50

    Article  CAS  PubMed  Google Scholar 

  • Schmitt J, McCormac AC, Smith H (1995) A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am Nat 146:937–953

    Article  Google Scholar 

  • Sévenier R, van der Meer IM, Bino R, Koops AJ (2002) Increased production of nutriments by genetically engineered crops. J Am Coll Nutr 21(3 Suppl):199S–204S

    Article  PubMed  Google Scholar 

  • Shyam Choudhury S, Sen Mandi S (2012) Natural ultra violet radialtion on field grown rice (Oryza sativa L.) plants confer protection against oxidative stress in seed during storage under subtropical ambience. Environ Pollut 1(2):32–39

    Google Scholar 

  • Smith H (1990) Signal perception, differential expression within multigene families and the molecular basis of phenotypic plasticity. Plant Cell Environ 13:585–594

    Article  CAS  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants – an emerging synthesis. Nature 407:585–591

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JH, Teramura AH, Ziska LH (1992) Variation in UV-B sensitivity in plants from a 3000m elevational gradient in Hawaii. Am J Bot 79:737–743

    Article  Google Scholar 

  • Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93:309–312

    Article  CAS  PubMed  Google Scholar 

  • Talai S (2010) Development of bio-molecular markers for vigour in rice seeds, Ph.D thesis, submitted to University of Calcutta

    Google Scholar 

  • Talai S, Sen-Mandi S (2010) Seed vigour-related DNA marker in rice shows homology with Acetyl CoA Carboxylase gene. Acta Physiol Plant 32:153–167

    Article  CAS  Google Scholar 

  • Teramura AH, Sullivan JH (1991) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39:463–473

    Article  Google Scholar 

  • Teramura AH, Sullivan JH (1992) Potential impacts of increased solar UV-B on global plant productivity. In: Riklis E (ed) Photobiology. Plenum Press, New York, pp 625–634

    Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39:463–473

    Article  CAS  PubMed  Google Scholar 

  • Teramura AH, Ziska LH, Sztein AE (1991) Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol Plant 83:373–380

    Article  CAS  Google Scholar 

  • Teranishi M, Iwamatsu Y, Hidema J, Kumagai T (2004) Ultraviolet-B sensitivities in Japanese lowland rice cultivars: cyclobutane pyrimidine dimer photolyase activity and gene mutation. Plant Cell Physiol 45:1845–1856

    Article  Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50:479–487

    Article  CAS  Google Scholar 

  • Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. Trends Ecol Evol 6:246–249

    Article  CAS  PubMed  Google Scholar 

  • Torabinejad J, Caldwell MM (2000) Inheritance of UV-B tolerance in seven ecotypes of Arabidopsis thaliana L. Heynh. and their F1 hybrids. J Hered 91:228–233

    Article  CAS  PubMed  Google Scholar 

  • Tsaftaris AS, Polidoros A (2000) DNA methylation and plant breeding. In: Janick J (ed) Plant breeding reviews, vol 18. Wiley, New York, pp 18: 87–176. ISBN 0-471-35567-4

    Google Scholar 

  • Turck F, Coupland G (2014) Natural variation in epigenetic gene regulation and its effects on plant developmental traits. Evolution 68(3):620–631

    Article  CAS  PubMed  Google Scholar 

  • Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley J, Schafer E, Nagy F (2004) Genome-wide analysis of gene expression reveals HY5 function in the UV-B response of Arabidopsis. Proc Natl Acad Sci U S A 101:1397–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Kleunen M, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166:49–60

    Article  PubMed  Google Scholar 

  • Van Tienderen P (1991) Evolution of generalists and specialists in spatially heterogeneous environments. Evolution 45:1317–1331

    Article  Google Scholar 

  • Van Tienderen PH, Van der Toorn J (1992) Genetic differentiation between populations of Plantago lanceolata. I. Local adaptation in three contrasting habitats. J Ecol 79:27–42

    Article  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13(2):181–187

    Article  CAS  PubMed  Google Scholar 

  • Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:5055522

    Article  Google Scholar 

  • Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol 19:371–374

    Article  CAS  PubMed  Google Scholar 

  • Weinig C, Gravuer KA, Kane NC, Schmitt J (2004) Testing adaptive plasticity to UV: costs and benefits of stem elongation and light-induced phenolics. Evolution 58(12):2645–2656

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Xuan Z, He Y, Lutts S, Korpelainen H, Li C (2007) Principal component analysis of intraspecific responses of tartary buckwheat to UV-B radiation under field conditions. Environ Exp Bot 61:237–245

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the Provitamin A (β-carotene) biosynthetic pathway into (Carotenoid-Free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Sen Mandi, S. (2016). Plant Survival Under Natural UV Radiation on Earth: UV Adaptive/UV-Adapted Traits. In: Natural UV Radiation in Enhancing Survival Value and Quality of Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2767-0_7

Download citation

Publish with us

Policies and ethics