Skip to main content

Physics with Neutrino Beams

  • Conference paper
IFAE 2006
  • 346 Accesses

Abstract

Artificial neutrino beams had been first introduced in high energy physics at Brookhaven in the 60’s with the classical experiment that led to the discovery of the two neutrino families [1]. The first neutrino beam setup as we know today was realized at CERN in the 70’s, and led to another milestone in h.e.p.: the discovery of the weak neutral currents [2]. Since then neutrino beams had been widely used to measure the electroweak parameters, structure functions, neutrino cross sections etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Danby et al., Phys. Rev. Lett. 9, 36 (1962).

    Article  ADS  Google Scholar 

  2. F. J. Hasert et al. [Gargamelle Neutrino Collaboration], Phys. Lett. B 46, 138 (1973).

    Article  ADS  Google Scholar 

  3. G. L. Fogli, E. Lisi, A. Marrone and A. Palazzo, Prog. Part. Nucl. Phys. 57, 742 (2006).

    Article  ADS  Google Scholar 

  4. T. Schwetz, Acta Phys. Polon. B 36 (2005) 3203

    ADS  Google Scholar 

  5. E. Eskut et al. [CHORUS Collaboration], Phys. Lett. B 424 (1998) 202 and Phys. Lett. B 434 (1998) 205.

    Article  ADS  Google Scholar 

  6. P. Astier et al. [NOMAD Collaboration], Nucl. Phys. B 611 (2001) 3

    Article  ADS  Google Scholar 

  7. P. Astier et al. [NOMAD Collaboration], Phys. Lett. B 570 (2003) 19

    Article  ADS  Google Scholar 

  8. A. Aguilar et al. [LSND Collaboration], Phys. Rev. D 64 (2001) 112007

    Article  ADS  Google Scholar 

  9. B. Armbruster et al. [KARMEN Collaboration], Phys. Rev. D 65 (2002) 112001

    Article  ADS  Google Scholar 

  10. K. Eitel, New J. Phys. 2 (2000) 1

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Church et al. [BooNe Collaboration], nucl-ex/9706011.

    Google Scholar 

  12. M. H. Ahn et al. [K2K Collaboration], hep-ex/0606032.

    Google Scholar 

  13. E. Ables et al. [MINOS Collaboration], Fermilab-proposal-0875

    Google Scholar 

  14. [OPERA Collaboration], CERN-SPSC-P-318, LNGS-P25-00; CERN-SPSC-2000-028.

    Google Scholar 

  15. [MINOS Collaboration], hep-ex/0607088.

    Google Scholar 

  16. M. Komatsu, P. Migliozzi and F. Terranova, J. Phys. G 29 (2003) 443 P. Migliozzi and F. Terranova, Phys. Lett. B 563 (2003) 73

    Article  ADS  Google Scholar 

  17. Y. Itow et al., hep-ex/0106019.

    Google Scholar 

  18. The E889 Collaboration, BNL Report No. 52459. A. Para and M. Szleper, hep-ex/0110032.

    Google Scholar 

  19. D. S. Ayres et al. [NOvA Collaboration], hep-ex/0503053.

    Google Scholar 

  20. P. Huber et al., Nucl. Phys. Proc. Suppl. 145 (2005) 190

    Article  ADS  Google Scholar 

  21. B. Autin et al., CERN-2000-012.

    Google Scholar 

  22. J. J. Gomez-Cadenas et al., Proceedings of “Venice 2001, Neutrino telescopes”, vol. 2*, 463–481, hep-ph/0105297. A. Blondel et al., Nucl. Instrum. Meth. A 503 (2001) 173. M. Mezzetto, J. Phys. G 29 (2003) 1771. J. E. Campagne and A. Cazes, Eur. Phys. J. C 45, 643 (2006)

    Google Scholar 

  23. J. E. Campagne, M. Maltoni, M. Mezzetto and T. Schwetz, hep-ph/0603172.

    Google Scholar 

  24. P. Zucchelli, Phys. Lett. B 532 (2002) 166.

    Article  ADS  Google Scholar 

  25. B. Autin et al., physics/0306106. M. Benedikt, S. Hancock and M. Lindroos, Proceedings of EPAC 2004, http://accelconf.web.cern.ch/AccelConf/e04.

    Google Scholar 

  26. A. de Bellefon et al. hep-ex/0607026.

    Google Scholar 

  27. M. Mezzetto, J. Phys. G 29 (2003) 1771. J. Bouchez, M. Lindroos, M. Mezzetto, AIP Conf. Proc. 721 (2004) 37. M. Mezzetto, Nucl. Phys. Proc. Suppl. 155 (2006) 214.

    Article  ADS  Google Scholar 

  28. J. Burguet-Castell et al., Nucl. Phys. B 695 (2004) 217. J. Burguet-Castell et al., Nucl. Phys. B 725, 306 (2005)

    Article  ADS  MATH  Google Scholar 

  29. C. Rubbia, A. Ferrari, Y. Kadi and V. Vlachoudis, hep-ph/0602032.

    Google Scholar 

  30. A. Donini and E. Fernandez-Martinez, hep-ph/0603261. C. Rubbia, hepph/0609235.

    Google Scholar 

  31. J. Bernabeu et al., hep-ph/0505054; J. Sato, hep-ph/0503144.

    Google Scholar 

  32. S. Geer, Phys. Rev. D 57 (1998) 6989 [Erratum-ibid. D 59 (1999) 039903]

    Article  ADS  Google Scholar 

  33. M. Apollonio et al., hep-ph/0210192. A. Baldini et al. [BENE Steering Group], CERN-2006-005.

    Google Scholar 

  34. J. Burguet-Castell et al., Nucl. Phys. B 608 (2001) 301; P. Huber, M. Lindner, M. Rolinec and W. Winter, hep-ph/0606119.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this paper

Cite this paper

Mezzetto, M. (2007). Physics with Neutrino Beams. In: Montagna, G., Nicrosini, O., Vercesi, V. (eds) IFAE 2006. Springer, Milano. https://doi.org/10.1007/978-88-470-0530-3_5

Download citation

Publish with us

Policies and ethics