Skip to main content

Parametri di scansione e artefatti in TC

  • Chapter
Elementi di tomografia computerizzata

Riassunto

Come in tutti i sistemi di imaging medicale che utilizzano radiazioni ionizzanti, lo scopo dell’operatore che esegue una scansione TC è massimizzare la qualità delle immagini riducendo il più possibile la dose assorbita dal paziente, ovvero raggiungere il miglior equilibrio tra qualità delle immagini necessaria per un dato quesito diagnostico e dose radiante. Per raggiungere tale obiettivo si può agire sul processo di scansione modulando opportunamente una serie di parametri, che si possono classificare a seconda delle fasi della scansione in cui essi intervengono (acquisizione, elaborazione e visualizzazione, come anticipato nel Capitolo 3); molti di questi parametri sono peraltro stati in parte introdotti nei precedenti capitoli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Hsieh J (2009) Computed tomography — principles, design, artifacts, and recent advances. SPIE (International Society for Optical Engineering), Bellingham, WA

    Google Scholar 

  2. Kalender WA (2006) Computed Tomography: Fundamentals, Systems technology, Image quality, Applications. Publicis MCD Verlag, Erlangen — Munich

    Google Scholar 

  3. Torres FS, Crean AM, Nguyen ET et al (2010) Abolition of respiratory-motion artifact in computed tomography coronary angiography with ultrafast examinations: a comparison between 64-row and 320-row multidetector scanners. Can Assoc Radiol J 61:5–12

    Article  PubMed  Google Scholar 

  4. Gudjonsdottir J, Svensson JR, Campling S et al (2009) Efficient use of automatic exposure control systems in computed tomography requires correct patient positioning. Acta Radiol 50:1035–1041

    Article  CAS  PubMed  Google Scholar 

  5. Matsubara K, Koshida K, Ichikawa K et al (2009) Misoperation of CT automatic tube current modulation systems with inappropriate patient centering: phantom studies. AJR Am J Roentgenol 192:862–865

    Article  PubMed  Google Scholar 

  6. Israel GM, Herlihy S, Rubinowitz AN et al (2008) Does a combination of dose modulation with fast gantry rotation time limit CT image quality? AJR Am J Roentgenol 191:140–144

    Article  PubMed  Google Scholar 

  7. Halliburton SS (2009) Recent technologic advances in multi-detector row cardiac CT. Cardiol Clin 27:655–664

    Article  PubMed  Google Scholar 

  8. Catalano C, Francone M, Ascarelli A et al (2007) Optimizing radiation dose and image quality. Eur Radiol Suppl 6:F26–32

    Article  Google Scholar 

  9. Perisinakis K, Papadakis AE, Damilakis J (2009) The effect of X-ray beam quality and geometry on radiation utilization efficiency in multidetector CT imaging. Med Phys 36:1258–1266

    Article  PubMed  Google Scholar 

  10. Christner JA, Zavaletta VA, Eusemann CD et al (2010) Dose reduction in helical CT: dynamically adjustable z-axis X-ray beam collimation. Am J Roentgenol 194:49–55

    Article  Google Scholar 

  11. Passariello R (2005) Radiologia — Elementi di tecnologia. Idelson Gnocchi, Napoli

    Google Scholar 

  12. Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691

    Article  PubMed  Google Scholar 

  13. Hsieh J (1998) Adaptive streak artifact reduction in computed tomography resulting from excessiveray photon noise. Med Phys 25:2134–2147

    Article  Google Scholar 

  14. Jennings RJ (1988) A method for comparing beam-hardening filter materials for diagnostic radiology. Med Phys 15:588–599

    Article  CAS  PubMed  Google Scholar 

  15. Endo M, Tsunoo T, Nakamori N, Yoshida K (2001) Effect of scattered radiation on image noise in cone beam CT. Med Phys 28:469–474

    Article  CAS  PubMed  Google Scholar 

  16. Glover GH (1982) Compton scatter effects in CT reconstructions. Med Phys 9:860–867

    Article  CAS  PubMed  Google Scholar 

  17. Crawford CR, Kak AC (1979) Aliasing artifacts in computed tomography. Appl Opt 18:3704–3711

    Article  CAS  PubMed  Google Scholar 

  18. Ritchie CJ, Godwin GD, Crawford CR et al (1992) Minimum scan speeds for suppression of motion artifacts in CT. Radiology 185:37–42

    CAS  PubMed  Google Scholar 

  19. Hsieh J (2000) Artifact correction for highly attenuating objects. U.S. Patent No. 6035012

    Google Scholar 

  20. Schoepf UJ (2006) Multidetector-Row CT of the Thorax. Springer-Verlag, Berlin — Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Lazzarini, R., Paolicchi, F., Faggioni, L. (2010). Parametri di scansione e artefatti in TC. In: Elementi di tomografia computerizzata. Springer, Milano. https://doi.org/10.1007/978-88-470-1697-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1697-2_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1696-5

  • Online ISBN: 978-88-470-1697-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics