Skip to main content

Up-Regulation of B-Lymphocyte Stimulator (BLyS) in Patients with Mixed Cryoglobulinemia

  • Chapter
  • First Online:
HCV Infection and Cryoglobulinemia

Abstract

The B-lymphocyte stimulator BLyS is one of the key regulators of B cell survival and proliferation. Consistent with this function, high BLyS levels in the serum and/or in affected tissues have been documented in several autoimmune and lymphoproliferative diseases. In patients with mixed cryoglobulinemic syndrome (MCsn), BLyS serum levels are significantly elevated and correlate with markers of HCV-associated B-cell lymphoproliferation. BlyS is also increased, however, in HCV-infected individuals without MCsn. Thus, HCV infection appears to be a crucial, early trigger of BLyS up-regulation. BLyS expression induced by HCV infection or by other pathogenetic events may therefore favor the development of autoimmune and lymphoproliferative features. While the etiologic role of chronic infection is well established in MCsn, such information is lacking in other autoimmune diseases, in which the role of a putative infectious trigger is strongly hypothesized. Accordingly, BLyS up-regulation in HCV-positive MC is an important model linking viral infection, B cell proliferation, and autoimmune disease. Besides direct targeting of the infectious trigger HCV and the B-cell autoimmune/lymphoproliferative disorder, indirect B-cell targeting might likewise prove effective in the treatment of HCV-related MCsn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore PA, Belvedere O, Orr A et al (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285(5425):260–263

    Article  PubMed  CAS  Google Scholar 

  2. Shu HB, Hu WH, Johnson H (1999) TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leukoc Biol 65(5):680–683

    PubMed  CAS  Google Scholar 

  3. Schneider P, MacKay F, Steiner V et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189(11):1747–1756

    Article  PubMed  CAS  Google Scholar 

  4. Nardelli B, Belvedere O, Roschke V et al (2001) Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97(1):198–2045

    Article  PubMed  CAS  Google Scholar 

  5. Huard B, Arlettaz L, Ambrose C et al (2004) BAFF production by antigen-presenting cells provides T cell co-stimulation. Int Immunol 16(3):467–475

    Article  PubMed  CAS  Google Scholar 

  6. Schaumann DH, Tuischer J, Ebell W et al (2007) VCAM-1-positive stromal cells from human bone marrow producing cytokines for B lineage progenitors and for plasma cells: SDF-1, flt3L, and BAFF. Mol Immunol 44(7):1606–1612

    Article  PubMed  CAS  Google Scholar 

  7. Ohata J, Zvaifler NJ, Nishio M et al (2005) Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J Immunol 174(2):864–870

    PubMed  CAS  Google Scholar 

  8. Krumbholz M, Theil D, Derfuss T et al (2005) BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 201(2):195–200

    Article  PubMed  CAS  Google Scholar 

  9. Ittah M, Miceli-Richard C, Gottenberg JE et al (2008) Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol 38(4):1058–1064

    Article  PubMed  CAS  Google Scholar 

  10. Xu W, He B, Chiu A et al (2007) Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat Immunol 8(3):294–303

    Article  PubMed  CAS  Google Scholar 

  11. Ogden CA, Pound JD, Batth BK et al (2005) Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol 174(5):3015–3023

    PubMed  CAS  Google Scholar 

  12. Batten M, Groom J, Cachero TG et al (2000) BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 192(10):1453–1466

    Article  PubMed  CAS  Google Scholar 

  13. Thien M, Phan TG, Gardam S et al (2004) Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20(6):785–798

    Article  PubMed  CAS  Google Scholar 

  14. Zhang W, Wen L, Huang X et al (2008) hsBAFF enhances activity of NK cells by regulation of CD4(+) T lymphocyte function. Immunol Lett 120(1–2):96–102

    Article  PubMed  CAS  Google Scholar 

  15. Shu H-B, Johnson H (2000) B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1. Proc Natl Acad Sci USA 97:9156–9161

    Article  PubMed  CAS  Google Scholar 

  16. Mackay F, Schneider P (2008) TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine Growth Factor Rev 19(3–4):263–276

    Article  PubMed  CAS  Google Scholar 

  17. Thompson JS et al (2001) BAFF-R, a novel TNF receptor that specifically interacts with BAFF. Science 293:2108–2111

    Article  PubMed  CAS  Google Scholar 

  18. Treml JF, Hao Y, Stadanlick JE, Cancro MP (2009) The BLyS family: toward a molecular understanding of B cell homeostasis. Cell Biochem Biophys 53(1):1–16

    Article  PubMed  CAS  Google Scholar 

  19. Yu G et al (2000) APRIL and TALL-1 and receptors BCMA and TACI: system for regulating humoral immunity. Nat Immunol 1:252–256

    Article  PubMed  CAS  Google Scholar 

  20. Mackay F, Schneider P, Rennert P, Browning J (2003) BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 21:231–264

    Article  PubMed  CAS  Google Scholar 

  21. Woodland RT, Fox CJ, Schmidt MR et al (2008) Multiple signaling pathways promote B lymphocyte stimulator dependent B-cell growth and survival. Blood 111(2):750–760

    Article  PubMed  CAS  Google Scholar 

  22. Fu L, Lin-Lee YC, Pham LV et al (2009) BAFF-R promotes cell proliferation and survival through interaction with IKKbeta and NF-kappaB/c-Rel in the nucleus of normal and neoplastic B-lymphoid cells. Blood 113(19):4627–4636

    Article  PubMed  CAS  Google Scholar 

  23. Gross JA et al (2001) TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease: impaired B cell maturation in mice lacking BLyS. Immunity 15:289–302

    Article  PubMed  CAS  Google Scholar 

  24. Mackay F, Woodcock SA, Lawton P et al (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190(11):1697–1710

    Article  PubMed  CAS  Google Scholar 

  25. Batten M, Fletcher C, Ng LG et al (2004) TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphoma. J Immunol 172(2):812–822

    PubMed  CAS  Google Scholar 

  26. Groom J, Kalled SL, Cutler AH et al (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest 109(1):59–68

    PubMed  CAS  Google Scholar 

  27. Cheema GS, Roschke V, Hilbert DM, Stohl W (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44:1313–1319

    Article  PubMed  CAS  Google Scholar 

  28. Mariette X, Roux S, Zhang J et al (2003) The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis 62(2):168–171

    Article  PubMed  CAS  Google Scholar 

  29. Stohl W (2003) SLE – systemic lupus erythematosus: a BLySful, yet BAFFling, disorder. Arthritis Res Ther 5(3):136–138

    Article  PubMed  CAS  Google Scholar 

  30. Bosello S, Youinou P, Daridon C et al (2008) Concentrations of BAFF correlate with autoantibody levels, clinical disease activity, and response to treatment in early rheumatoid arthritis. J Rheumatol 35(7):1256–1264

    PubMed  CAS  Google Scholar 

  31. Matsushita T, Hasegawa M, Matsushita Y et al (2007) Elevated serum BAFF levels in patients with localized scleroderma in contrast to other organ-specific autoimmune diseases. Exp Dermatol 16(2):87–93

    Article  PubMed  CAS  Google Scholar 

  32. Thangarajh M, Gomes A, Masterman T et al (2004) Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol 152(1–2):183–190

    Article  PubMed  CAS  Google Scholar 

  33. Mackay IR, Groom J, Mackay CR (2003) Levels of BAFF in serum in primary biliary cirrhosis and autoimmune diabetes. Autoimmunity 35(8):551–553

    Article  Google Scholar 

  34. Fabris M, Visentini D, De Re V et al (2010) Elevated B cell-activating factor of the tumour necrosis factor family in coeliac disease. Scand J Gastroenterol 42(12):1434–1439

    Article  Google Scholar 

  35. Fabris M, Grimaldi F, Villalta D et al (2010) BLyS and April serum levels in patients with autoimmune thyroid diseases. Autoimmun Rev 9(3):165–169

    Article  PubMed  CAS  Google Scholar 

  36. Becker-Merok A, Nikolaisen C, Nossent HC (2006) B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus 15(9):570–576

    Article  PubMed  CAS  Google Scholar 

  37. Pers JO, Daridon C, Devauchelle V et al (2005) BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci 1050:34–39

    Article  PubMed  CAS  Google Scholar 

  38. Szodoray P, Alex P, Jonsson MV et al (2005) Distinct profiles of Sjögren’s syndrome patients with ectopic salivary gland germinal centers revealed by serum cytokines and BAFF. Clin Immunol 117(2):168–176

    Article  PubMed  CAS  Google Scholar 

  39. Jonsson MV, Szodoray P, Jellestad S et al (2005) Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjögren’s syndrome. J Clin Immunol 25(3):189–201

    Article  PubMed  CAS  Google Scholar 

  40. Neusser MA, Lindenmeyer MT, Edenhofer I et al (2011) Intrarenal production of B-cell survival factors in human lupus nephritis. Mod Pathol 24(1):98–107

    Article  PubMed  CAS  Google Scholar 

  41. Cancro MP (2006) The BLyS/BAFF family of ligands and receptors: key targets in the therapy and understanding of autoimmunity. Ann Rheum Dis 65(Suppl 3):iii34–iii36

    Article  PubMed  Google Scholar 

  42. Ota M, Duong BH, Torkamani A et al (2010) Regulation of the B cell receptor repertoire and self-reactivity by BAFF. J Immunol 185(7):4128–4136

    Article  PubMed  CAS  Google Scholar 

  43. Toubi E, Gordon S, Kessel A et al (2006) Elevated serum B-Lymphocyte activating factor (BAFF) in chronic hepatitis C virus infection: association with autoimmunity. J Autoimmun 27(2):134–139

    Article  PubMed  CAS  Google Scholar 

  44. Fabris M, Quartuccio L, Sacco S et al (2007) B-Lymphocyte stimulator (BLyS) up-regulation in mixed cryoglobulinaemia syndrome and hepatitis-C virus infection. Rheumatology (Oxford) 46(1):37–43

    Article  CAS  Google Scholar 

  45. Sène D, Limal N, Ghillani-Dalbin P et al (2007) Hepatitis C virus-associated B-cell proliferation–the role of serum B lymphocyte stimulator (BLyS/BAFF). Rheumatology (Oxford) 46(1):65–69

    Article  Google Scholar 

  46. Tarantino G, Marco VD, Petta S et al (2009) Serum BLyS/BAFF predicts the outcome of acute hepatitis C virus infection. J Viral Hepat 16(6):397–405

    Article  PubMed  CAS  Google Scholar 

  47. Giannini C, Gragnani L, Piluso A et al (2008) Can BAFF promoter polymorphism be a predisposing condition for HCV-related mixed cryoglobulinemia? Blood 112(10):4353–4354

    Article  PubMed  CAS  Google Scholar 

  48. Novak AJ, Slager SL, Fredericksen ZS et al (2009) Genetic variation in B-cell-activating factor is associated with an increased risk of developing B-cell non-Hodgkin lymphoma. Cancer Res 69(10):4217–4224

    Article  PubMed  CAS  Google Scholar 

  49. Nossent JC, Lester S, Zahra D et al (2008) Polymorphism in the 5′ regulatory region of the B-lymphocyte activating factor gene is associated with the Ro/La autoantibody response and serum BAFF levels in primary Sjogren’s syndrome. Rheumatology (Oxford) 47(9):1311–1316

    Article  CAS  Google Scholar 

  50. De Vita S, Quartuccio L, Fabris M (2008) Hepatitis C virus infection, mixed cryoglobulinemia and BLyS upregulation: targeting the infectious trigger, the autoimmune response, or both? Autoimmun Rev 8(2):95–99

    Article  PubMed  Google Scholar 

  51. De Re V, De Vita S, Gasparotto D et al (2002) Salivary gland B cell lymphoproliferative disorders in Sjögren’s syndrome present a restricted use of antigen receptor gene segments similar to those used by hepatitis C virus-associated non-Hodgkins’s lymphomas. Eur J Immunol 32(3):903–910

    Article  PubMed  Google Scholar 

  52. Lavie F, Miceli-Richard C, Quillard J et al (2004) Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome. J Pathol 202(4):496–502

    Article  PubMed  CAS  Google Scholar 

  53. Varin MM, Le Pottier L, Youinou P et al (2010) B-cell tolerance breakdown in Sjögren’s syndrome: focus on BAFF. Autoimmun Rev 9(9):604–608

    Article  PubMed  CAS  Google Scholar 

  54. Quartuccio L, Fabris M, Moretti M et al (2008) Resistance to Rituximab therapy and local BAFF overexpression in Sjögren’s syndrome-related myoepithelial sialadenitis and low-grade parotid B-cell lymphoma. Open Rheumatol J 2:38–43

    Article  PubMed  CAS  Google Scholar 

  55. Novak AJ, Grote DM, Stenson M et al (2004) Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome. Blood 104(8):2247–2253

    Article  PubMed  CAS  Google Scholar 

  56. Ju S, Wang Y, Ni H et al (2009) Correlation of expression levels of BLyS and its receptors with multiple myeloma. Clin Biochem 42(4–5):387–399

    Article  PubMed  CAS  Google Scholar 

  57. Tecchio C, Nadali G, Scapini P et al (2007) High serum levels of B-lymphocyte stimulator are associated with clinical-pathological features and outcome in classical Hodgkin lymphoma. Br J Haematol 137(6):553–559

    Article  PubMed  CAS  Google Scholar 

  58. Mackay F, Tangye SG (2004) The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Curr Opin Pharmacol 4(4):347–354

    Article  PubMed  CAS  Google Scholar 

  59. Landau DA, Rosenzwajg M, Saadoun D et al (2009) The B lymphocyte stimulator receptor-ligand system in hepatitis C virus-induced B cell clonal disorders. Ann Rheum Dis 68(3):337–344

    Article  PubMed  CAS  Google Scholar 

  60. Sansonno D, Carbone A, De Re V, Dammacco F (2007) Hepatitis C virus infection, cryoglobulinaemia, and beyond. Rheumatology (Oxford) 46(4):572–578

    Article  CAS  Google Scholar 

  61. De Re V, De Vita S, Sansonno D et al (2006) Type II mixed cryoglobulinaemia as an oligo rather than a mono B-cell disorder: evidence from GeneScan and MALDI-TOF analyses. Rheumatology (Oxford) 45(6):685–693, 58

    Article  Google Scholar 

  62. De Re V, De Vita S, Marzotto A et al (2000) Pre-malignant and malignant lymphoproliferations in an HCV-infected type II mixed cryoglobulinemic patient are sequential phases of an antigen-driven pathological process. Int J Cancer 87:211–216

    Article  PubMed  Google Scholar 

  63. Fu L, Lin-Lee YC, Pham LV et al (2006) Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood 107(11):4540–4548

    Article  PubMed  CAS  Google Scholar 

  64. Pham LV, Fu L, Tamayo AT et al (2011) Constitutive BR3 receptor signaling in diffuse large B-cell lymphomas stabilizes NF-{kappa}B-inducing kinase, while activating both canonical and alternative NF-{kappa}B pathways. Blood 117(1):200–210

    Article  PubMed  CAS  Google Scholar 

  65. De Re V, De Vita S, Sansonno D, Toffoli G (2008) Mixed cryoglobulinemia syndrome as an additional autoimmune disorder associated with risk for lymphoma development. Blood 111(12):5760

    Article  PubMed  Google Scholar 

  66. Libra M, De Re V, Gloghini A et al (2004) Detection of bcl-2 rearrangement in mucosa-associated lymphoid tissue lymphomas from patients with hepatitis C virus infection. Haematologica 89(7):873–874

    PubMed  CAS  Google Scholar 

  67. Saadoun D, Suarez F, Lefrere F et al (2005) Splenic lymphoma with villous lymphocytes, associated with type II cryoglobulinemia and HCV infection: a new entity? Blood 105:74–76

    Article  PubMed  CAS  Google Scholar 

  68. Ramos-Casals M, De Vita S, Tzioufas AG (2005) Hepatitis C virus, Sjögren’s syndrome and B-cell lymphoma: linking infection, autoimmunity and cancer. Autoimmun Rev 4:8–15

    Article  PubMed  Google Scholar 

  69. Landau DA, Saadoun D, Calabrese LH, Cacoub P (2007) The pathophysiology of HCV induced B-cell clonal disorders. Autoimmun Rev 6(8):581–587

    Article  PubMed  CAS  Google Scholar 

  70. Dispenzieri A, Gorevic PD (1999) Cryoglobulinemia. Hematol Oncol Clin North Am 13(6):1315–1349

    Article  PubMed  CAS  Google Scholar 

  71. Levine W, Gota C, Fessler B et al (2005) Persistent cryoglobulinemic vasculitis following successful treatment of Hepatitis C Virus. J Rheumatol 32:1164–1167

    PubMed  Google Scholar 

  72. La Civita L, Zignego AL, Lombardini F et al (1996) Exacerbation of peripheral neuropathy during alpha- interferon therapy in a patient with mixed cryoglobulinemia and hepatitis B virus infection. J Rheumatol 23(9):1641–1643

    PubMed  Google Scholar 

  73. Beuthien W, Mellinghoff HU, Kempis J (2005) Vasculitic complications of interferon-alpha treatment for chronic hepatitis C virus infection: case report and review of the literature. Clin Rheumatol 24(5):507–515

    Article  PubMed  Google Scholar 

  74. Quartuccio L, De Marchi G, Fabris M, De Vita S (2007) Development of type II mixed cryoglobulinaemic syndrome after effective and persistent hepatitis C virus eradication. Rheumatology (Oxford) 46(2):367–368

    Article  CAS  Google Scholar 

  75. Carson DA, Chen PP, Fox RI et al (1987) Rheumatoid factor and immune networks. Annu Rev Immunol 5:109–126

    Article  PubMed  CAS  Google Scholar 

  76. Cambridge G, Isenberg DA, Edwards J et al (2008) B cell depletion therapy in systemic lupus erythematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann Rheum Dis 67(7):1011–1016

    Article  PubMed  CAS  Google Scholar 

  77. Cambridge G, Stohl W, Leandro MJ et al (2006) Circulating levels of B lymphocyte stimulator in patients with rheumatoid arthritis following rituximab treatment: relationships with B cell depletion, circulating antibodies, and clinical relapse. Arthritis Rheum 54(3):723–732

    Article  PubMed  CAS  Google Scholar 

  78. Navarra S, Ilianova E, Bae SC, BLISS-52 Study Group, et al (2010) Belimumab, a BlyS-specific inhibitor reduced disease activity, flares and steroid use in patients with seropositive systemic lupus erythematosus (SLE): BLISS-52 study. Ann Rheum Dis 69(S1)

    Google Scholar 

  79. Furie RA, Gladman D, d’Cruz D et al (2010) Belimumab: a BLyS specific inhibitor, reduced disease activity and severe flares with seropositive SLE: BLISS-76 study. Lupus 19S:13

    Google Scholar 

  80. De Vita S, Quartuccio L (2010) Rituximab monotherapy, rather than rituximab plus antiviral drugs, for initial treatment of severe hepatitis C virus-associated mixed cryoglobulinemia syndrome: comment on the article by Terrier et al. Arthritis Rheum 62(3):908–909

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore De Vita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Fabris, M., De Vita, S. (2012). Up-Regulation of B-Lymphocyte Stimulator (BLyS) in Patients with Mixed Cryoglobulinemia. In: Dammacco, F. (eds) HCV Infection and Cryoglobulinemia. Springer, Milano. https://doi.org/10.1007/978-88-470-1705-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1705-4_15

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1704-7

  • Online ISBN: 978-88-470-1705-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics