Skip to main content

Features of Reparative Osteogenesis and the Management of Distraction Osteogenesis in External Fixation

  • Chapter
  • First Online:
The Basic Principles of External Skeletal Fixation Using the Ilizarov and Other Devices

Abstract

There are currently two types of bone regeneration, physiological and reparative. Many authors consider reparative regeneration as occurring only in case of traumatic or other type of pathogenic injury of bone [106–110]. The basis for reparative regeneration is cell division [111]. If following injury, the differentiated structures are substituted by a dense fibrous connective tissue scar, the process is referred to as substitution [110, 111].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voitkevich AA, Krasnoschekov GP (1971) Some aspects on modern posttraumatic regeneration. Archiv anatomii 3:92–106

    Google Scholar 

  2. Lavrischeva GI, Onoprienko GA (1996) Morphologic and clinical aspects of reparative regeneration of limbs and tissues. Meditsina, Moscow

    Google Scholar 

  3. Mjadelets OD (2002) Main principles of cytology, embryology and general gystology. NGMA, N. Novgorod

    Google Scholar 

  4. Avrunin AS, Kornilov NV et al (2001) Restructuring of mineral matrix of bone tissue. Morfologia 2:37–40

    Google Scholar 

  5. Kchussar PU et al (2001) Posttraumatic tibial reparation on rats. Morfologia vol 120(5):84–91

    Google Scholar 

  6. Jarigin NE, Serov VV (1977) Atlas of pathological histology. Meditsina, Moscow

    Google Scholar 

  7. Belous AM, Pankov EY (1972) Bone tissue regeneration mechanisms. Meditsina, Moscow

    Google Scholar 

  8. Mikchailova LN (1988) Reparative regeneration of bone and cartilage tissue under influence of different biomechanical factors. MD dissertation, Moscow, p 29

    Google Scholar 

  9. Vinogradova TP, Lavrischeva GI (1974) Bone regeneration and grafting. Meditsina, Moscow

    Google Scholar 

  10. Kamalov II (1976) Regeneration in skull injuries and defects. In: Reparative regeneration and its regulation, vol XX. Leningrad, pp 101–107

    Google Scholar 

  11. Shevtsov VI, Irjianov UM (1999) Ultrastructural features of ontogenesis in fracture fusion. Genij ortopedii 4:13–18

    Google Scholar 

  12. Ozaki A et al (2000)

    Google Scholar 

  13. Gololobov VG, Deev RV (2003) Stromal cells and osteoblastic cell differon. Morfologia 123(1):9–19

    PubMed  CAS  Google Scholar 

  14. Korzh AA, Belous AM, Pankov EA (1972) Reparative bone regeneration. Moscow

    Google Scholar 

  15. Axhausen W (1956) Osteogenic phases of regeneration of bone; historical and experimental study. J Bone Joint Surg 38-A:593–600

    PubMed  CAS  Google Scholar 

  16. Tevosjan GV (1979) Bone marrow in bone formation and its reparative potentiality in fracture healing. PhD thesis, Erevan

    Google Scholar 

  17. Frindstein AY, Lalikina KS (1973) Bone tissue induction and osteogenous cells. Meditsina, Moscow

    Google Scholar 

  18. Bruder et al (1994)

    Google Scholar 

  19. Nogemi et al (1984)

    Google Scholar 

  20. Danilov PK et al (2000) Histological principles of limb tissue regeneration. Ortopedia i travmatologia 2:102

    Google Scholar 

  21. Ulumbekov EG et al (1998) Histology (introduction to pathology). GOETAR-MED, Moscow

    Google Scholar 

  22. Rodionova NV (1989) Functional cellular morphology in osteogenesis. Naukova dumka, Kiev

    Google Scholar 

  23. Caplan (1987)

    Google Scholar 

  24. Baroukh et al (2000)

    Google Scholar 

  25. Gololobov VG (2004) Posttraumatic bone tissue regeneration. In: Fundamental and applied problems, vol 257. VMA, St. Petersburg, pp 94–109

    Google Scholar 

  26. Rusakov AV (1959) Pathological anatomy of bone diseases. An introduction into physiology and pathology of bone tissue. Nauka, Moscow

    Google Scholar 

  27. Stetsula VI (1993) System knowledge of real complexity of fracture healing. Ortopedia i travmotologia 2:57–61

    Google Scholar 

  28. Sukchanov AV, Avrunin AC, Kornilov NV (1997) Bone tissue restructuring after bone damage. Morfologia 112:82–87

    Google Scholar 

  29. Miller SC, De Saint-Georges L, Bowman BM, Jee WS (1989) Bone lining cells: structure and function. Scanning Microsc 3:953–960; discussion 960–961

    PubMed  CAS  Google Scholar 

  30. Kruglikov GG et al (1977) Fibroplasts differentiation in collagen formation. Ontogenesis 8:186–190

    CAS  Google Scholar 

  31. Samusev RP, Pupisheva GI, Smirnov AV (2004) Atlas of cytology, histology and embryology. ONICS 21, Moscow

    Google Scholar 

  32. Jurina et al (1990)

    Google Scholar 

  33. Popsujshapka (1992)

    Google Scholar 

  34. Ham A, Cormac D (1983) Histology. Mir, Moscow

    Google Scholar 

  35. Shimizu et al (1989) Chapter 8

    Google Scholar 

  36. Delloye et al (1990)

    Google Scholar 

  37. Ilizarov GA, Shreiner AA, Imerlishvili IA (1986) Osteogenous potentiality of bone marrow diaphysis. In: Proceedings of international conference on transosseous osteosynthesis. RSC “RTO”, Kurgan, 1986, pp 28–28

    Google Scholar 

  38. Golovin (1961)

    Google Scholar 

  39. Ilizarov GA (1975) External fixation using the author’s device in acute trauma. In: Third all-union congress of traumatologists and orthopedists, Moscow, 1975, pp 148–153

    Google Scholar 

  40. Shreiner (1990) Chapter 8 (in reference group 143–147)

    Google Scholar 

  41. Barabash AP, Solomin LN (1997) “Esperanto” of transosseous elements insertion in osteosynthesis by Ilizarov device. Nauka, Novosibirsk

    Google Scholar 

  42. Solomin et al (2003)

    Google Scholar 

  43. Ilizarov GA, Imershvili IA, Bachlikov UN (1982) Reparative bone formation in distraction osteosynthesis by Ilizarov. In: Problems of transosseous osteosynthesis in orthopedics and traumotology, RSC “RTO”, Kurgan, 1982, vol 8, pp 27–33

    Google Scholar 

  44. Ilizarov GA, Ledjaev V I, Imerlishvili I A (1972) Some facts from morphologic studying of bone formation in case of distraction osteosynthesis. In: Transosseous compression and distraction osteosynthesis in traumotology and orthopaedics. RSC “RTO”, Kurgan, 1972, vol 2, pp 217–237

    Google Scholar 

  45. Ilizarov et al (1999)

    Google Scholar 

  46. Ilizarov GA (1984) Importance of optimum mechanical and biological factors in trasosseous osteosynthesis regeneration. In: Proceedings of international symposium on transosseous osteosynthesis. RSC “RTO”, Kurgan, 1984, pp 8–49

    Google Scholar 

  47. Iljina VK, Meerson EM (1998) Cellular and genetic parameters of reparative osteosynthesis. Ontogenesis 29(6):471

    Google Scholar 

  48. Kataev IA, Lobko AJa, Chernish VU (1996) Limb lengthening. In: Proceedings of V republican conference of crimean traumotologists, Yalta, 1996, pp 46–47

    Google Scholar 

  49. Shevtsov VI, Popkov AV, Burlakov EV (2000) Sheboop distracter. Genij ortopedii 1:93–95

    Google Scholar 

  50. Bliskunov AI (1983) Lengthening of hip by guided implants. Moscow

    Google Scholar 

  51. Golubev GSh (1998) Ilizarov device computer navigation. Dissertation, Moscow

    Google Scholar 

  52. Ilizarov GA et al (1988) Drive to compression-distraction device. Patent 1423114, Bulletin 34

    Google Scholar 

  53. Pursley JA, Holloway JM, Wakefield TL (1990) Automatic compression-distraction-torsion method and apparatus. US Patent 4,973,331

    Google Scholar 

  54. Paley D et al (1990) Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop 250:81–104

    PubMed  Google Scholar 

  55. Lass et al (1996)

    Google Scholar 

  56. Popkov AV, Saldin VV, Novikov KI, Schukin AA (1998) Rehabilitation of short people (methodological recommendations). RSC “RTO,” Kurgan, 1998

    Google Scholar 

  57. Chirkova AM, Erofeev CA (1997) Reparative regeneration and bone restructuring after braking distraction regenerate. Genij ortopedii 4:39–42

    Google Scholar 

  58. Stetsula VI, Devjatov AA (1987) Transosseous osteosynthesis in traumotology. Zdorovje, Kiev

    Google Scholar 

  59. Shevtsov (1997)

    Google Scholar 

  60. Popkov AV, Erofeev SA, Popkov DA (2000) Bone formation X-ray examination dynamics in compression-distraction osteosynthesis. Genij ortopedii 3:5–9

    Google Scholar 

  61. Devjatov AA, Kaplunov AG (1978) Complications in Ilizarov device external fixation. Compression and distraction transosseous osteosyntesis 4:84–92

    Google Scholar 

  62. Kochutina LN (1992) Muscle and tendon limb regeneration in lengthening with aid of mono and bilocal distraction osteosynthesis by Ilizarov. MD dissertation, St. Petersburg

    Google Scholar 

  63. Aranovich AM et al (2002) Contracture of knee joint at lengthening of lower leg in achondroplasia. Genius Orthop 3:58–60

    Google Scholar 

  64. Reutov AI (2002) Comparative characteristics of mono and bilocal distraction osteosynthesis by Ilizarov. Ginij ortopedii 3:108–105

    Google Scholar 

  65. De Deyne (2002)

    Google Scholar 

  66. Green et al (2002)

    Google Scholar 

  67. Osepjan IA et al (1988) Autotransplantation of bone tissue fibroblasts in grammatology and orthopedics. Vestnik kchirurgii 5:70–71

    Google Scholar 

  68. Prokopova LV, Nikolaeva NG (1990) Use of UV-irradiated autological bone marrow at treating bone defects in children. Ortopedia i travmotologia 9:25–28

    Google Scholar 

  69. Sirij OM (1987) Bone marrow autografting in bone tissue damage. PhD thesis, Moscow

    Google Scholar 

  70. Shevtsov VI, Shved SI, Sisenko JM (2002) Transosseous osteosynthesis in treatment of comminuted fractures. ZAO Dammi, Kurgan

    Google Scholar 

  71. Shevtsov VI et al (2003) Distraction regenerate osteogenesis stimulation using bone marrow. Genij ortopedii 3:131–138

    Google Scholar 

  72. Desyatchenko KS et al (1989) Influence of protein growth control factors of out cell bone tissue matrix on reparative osteogenesis and blood supply. Tsitologia 31(9):92

    Google Scholar 

  73. Grebneva (1998)

    Google Scholar 

  74. Kovinka MA (2002) Bone regeneration regulation in achondroplasia. PhD dissertation, Tumen

    Google Scholar 

  75. Desyatchenko KS et al. (1997) Influence of bone growth factors on distraction regenerate. Bull Exp Biol Med 8:233–236.

    Google Scholar 

  76. Desyatcheko KS et al (2002) Methods of reparative osteogenesis stimulation. Patent 2193868 of Russian Federation. Bulletin 34

    Google Scholar 

  77. Teot (1987)

    Google Scholar 

  78. Lascombes (2001)

    Google Scholar 

  79. Prévot et al (1993)

    Google Scholar 

  80. Shevtsov et al (2004)

    Google Scholar 

  81. Bliskunov AI et al (1996) Various osteotomies in lengthening of hip by Bliskunov device. Vestnik travmatologii i ortopedii 3:22–30

    Google Scholar 

  82. Guichet JM et al (2003) Gradual femoral lengthening with the albizzia intramedullary nail. J Bone Joint Surg 85:838–848

    PubMed  Google Scholar 

  83. Paley D et al (1994) Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin North Am 25:425–465

    PubMed  CAS  Google Scholar 

  84. Кojimoto et al (1991)

    Google Scholar 

  85. Paley et al (1993)

    Google Scholar 

  86. Kocaoglu M et al (2004) Complications encountered during lengthening over an intramedullary nail. J Bone Joint Surg 86-A:2406–2411

    PubMed  Google Scholar 

  87. Paley D, Herzenberg JE, Paremain G, Bhave A (1997) Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J Bone Joint Surg 79-A(10):1464–1480

    Google Scholar 

  88. Huang et al (1998)

    Google Scholar 

  89. Baumgart et al (1996)

    Google Scholar 

  90. Lee et al (1997)

    Google Scholar 

  91. Yamamoto et al (1998)

    Google Scholar 

  92. Simpson AH, Cole AS, Kenwright J (1999) Leg lengthening over an intramedullary nail. J Bone Joint Surg 81-B:1041–1045

    Article  Google Scholar 

  93. Shepherd et al (2001)

    Google Scholar 

  94. Gordon JE et al (2002) Femoral lengthening over a humeral intramedullary nail in preadolescent children. J Bone Joint Surg 84-A:930–937

    PubMed  Google Scholar 

  95. Kreitz et al (2000)

    Google Scholar 

  96. Kristiansen et al (1999)

    Google Scholar 

  97. Lin et al (1996)

    Google Scholar 

  98. Caton et al (2001)

    Google Scholar 

  99. Vinogradova TP, Lavrischeva GI (1974) Bone regeneration and grafting. Meditsina, Moscow

    Google Scholar 

  100. Shevtsov VI, Makushin BD, Pozharishchensky KE (1994) The treatment of patients with tibial defects by the method of reconstructive tibialization of the fibula. Periodika, Kurgan

    Google Scholar 

  101. Larionov et al (1999)

    Google Scholar 

  102. Larionov et al (2004)

    Google Scholar 

  103. Omeljanenko NP, Slutski LI (2009) Connective tissue (histology and biochemistry). Izvestija, Moscow

    Google Scholar 

  104. Razumovsky (1983)

    Google Scholar 

  105. Nikitin et al (2001)

    Google Scholar 

  106. Rodenburg (1974)

    Google Scholar 

  107. Lotzeva et al (1974)

    Google Scholar 

  108. Lotzeva (1980)

    Google Scholar 

  109. Tkachenko and Rutzkij (1987)

    Google Scholar 

  110. Boltrukevitch (1989)

    Google Scholar 

  111. Vyaljko (1997)

    Google Scholar 

  112. Grischenko (2000)

    Google Scholar 

  113. Kalatcheva (2004)

    Google Scholar 

  114. Lekishvili (2002)

    Google Scholar 

  115. von Verzen (1993)

    Google Scholar 

  116. Saveljev and Sivkov (1986)

    Google Scholar 

  117. Urist MR, Strates BS (1970) Bone formation in implants of partially and wholly demineralized bone matrix: including observations on acetone-fixed intra and extracellular proteins. Clin Orthop Relat Res 71:271–278

    Article  PubMed  CAS  Google Scholar 

  118. Aspenberg P, Wittbjer J, Thorngren KG (1986) Pulverized bone matrix as an injectable bone graft in rabbit radius defects. Clin Orthop Relat Res 206:261–268

    PubMed  Google Scholar 

  119. Russell JL, Block JE (1999) Clinical utility of demineralized bone matrix for osseous defects, arthrodesis, and reconstruction: impact of processing techniques and study methodology. Orthopedics 22:524–531

    PubMed  CAS  Google Scholar 

  120. Omeljanenko and Buturin (1994)

    Google Scholar 

  121. Omelyanenko et al (1996)

    Google Scholar 

  122. Omelyanenko (2002)

    Google Scholar 

  123. Malakhov et al (2003)

    Google Scholar 

  124. Lekishvili (2004)

    Google Scholar 

  125. Barabash (2001)

    Google Scholar 

  126. Guljnazarova et al (2001)

    Google Scholar 

  127. Snetkov et al (2002)

    Google Scholar 

  128. Kesjan et al (2003)

    Google Scholar 

  129. Krasnov et al (2004)

    Google Scholar 

  130. Pitkevitch et al (2004)

    Google Scholar 

  131. Lavrikova (2004)

    Google Scholar 

  132. Boden (1999)

    Google Scholar 

  133. Barkov (2000)

    Google Scholar 

  134. Samodaj et al (2005)

    Google Scholar 

  135. Lane et al (1999)

    Google Scholar 

  136. Lavrikova and Sumarokov (2004)

    Google Scholar 

  137. Krasnov (2005)

    Google Scholar 

  138. Krasnoyarov and Stemplevskij (2004)

    Google Scholar 

  139. Kanukin et al (1999)

    Google Scholar 

  140. Malakhov et al (2004)

    Google Scholar 

  141. Urist et al (2001)

    Google Scholar 

  142. Termaat et al (2005)

    Google Scholar 

  143. Chekanov AV et al (2010) Making new osteoinductive materials on the basis of recombinative morphologic genetic VMR proteins for bone tissue regeneration. In: Proceedings of IV Russian symposium on tissue and cellular transplantology, St. Petersburg, 2010, pp 199–200

    Google Scholar 

  144. Lietman et al (2005)

    Google Scholar 

  145. Kochetkov US (2002) Biological and surgical aspects of osteogenesis stimulation. MD dissertation, Kurgan

    Google Scholar 

  146. Kirillova et al (2008)

    Google Scholar 

  147. Nikolaienko NS et al (2009) Problems of standardization, cultivation and differentiation of stroma cells of bone marrow in humans and animals. In: Autologous cells: experiments and application. Litterra, Moscow, pp 42–57

    Google Scholar 

  148. Bruder et al (1998)

    Google Scholar 

  149. Mironov SP (2007) Biomedical technologies of reparative osteogenesis control. In: Proceedings of III Russian symposium on tissue and cellular transplantology, Moscow, 2007, pp 27–28

    Google Scholar 

  150. Krugljakov PV, Sokolova IB (2005) Influence of singenic complexes on bone tissue regeneration in grafting of demineralised bone matrix. Tsitoligia 47:466–476

    Google Scholar 

  151. Malginov NN, Frolov EN (2007) Reparative regeneration of rat’s bones at inserting titan implants with xenogeny mesenchimal stem cells. In: Proceedings of III Russian symposium on tissue and cellular transplantology, Moscow, 2007, pp 83–84

    Google Scholar 

  152. Krasheninnikov et al (2010)

    Google Scholar 

  153. Maljginov et al (2007)

    Google Scholar 

  154. Shevtsov VI et al (2004) Experimental adaptive distraction osteogenesis stimulation by means of automiel transplantation. In: Proceedings of international conference on limb function, Kurgan, 2004, pp 345–347

    Google Scholar 

  155. Erofeev SA, Osipova EV, Emanov AA (2010) Influence of cultivated fetal fibroplasts on bone regenerate mineralization in case of transosseous distraction osteogenesis. Actual issues of tissue and cell transplantology. Theses of symposium, St. Petersburg, 2010, pp 254–255

    Google Scholar 

  156. Fridenshtein (1986)

    Google Scholar 

  157. Goel et al (2005)

    Google Scholar 

  158. Belousov VD, Chobanu AA, Chobanu FI (1990) Conservative treatment of long bone non-unions. STIINTSA, Kishinev

    Google Scholar 

  159. Osepjan IA et al (1987) Treatment of malunions, non-unions and defects of long bones using grafting of fibroblasts grown in vitro and impregnated in sponge bone matrix. Ortopedia i travmatologia 9:59–61

    Google Scholar 

  160. Savintsev AM, Smoljaninov AB, Malko AV (2010) Stroma stem cells in surgery of neck of femur. In: Proceedings of IV Russian symposium on tissue and cellular transplantology, St. Petersburg, 2010, pp 286–287

    Google Scholar 

  161. Onischenko et al (2009)

    Google Scholar 

  162. Sizikov MU et al (2006) Therapy of posttraumatic limb bone pseudoarthroses by means of autologous stroma stem cells osteoinduction. In: Proceedings of the annual international conference on stem cells, Moscow, 2006, pp 95–97

    Google Scholar 

  163. Schepkina EA (2010) Grafting of autogenous maltipotent mesenchimal stroma cells on deminerilized bone matrix in treatment of long bone non-unions. Kletochnaja transplantologia I tkanevaja injeniria 2:67–74

    Google Scholar 

  164. Osepjan IA et al (1987) Treatment of malunions, non-unions and defects of long bones using grafting of fibroblasts grown in vitro and impregnated in sponge bone matrix. Ortopedia i travmatologia 9:59–61

    Google Scholar 

  165. Schepkina EA, Krugljakov PV et al (2007) Grafting of autologous mesenchimal stem cells on deminerilized bone matrix in non-unions and bone defects plastics. In: Actual issues of cellular and tissue transplantology. CITO, Moscow, p 113

    Google Scholar 

  166. Bistrov AV, Shumakov IV et al (2009) Use of bone marrow cells immobilized on matrix. LAVR, Moscow

    Google Scholar 

Download references

Note

After the title of this chapter, all Authors, who have contributed to the chapter, are listed. The specific authorship of the individual paragraphs is given after each section title.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Aleksandrovich Erofeev M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Erofeev, S.A., Shchepkina, E.A. (2012). Features of Reparative Osteogenesis and the Management of Distraction Osteogenesis in External Fixation. In: Solomin, L. (eds) The Basic Principles of External Skeletal Fixation Using the Ilizarov and Other Devices. Springer, Milano. https://doi.org/10.1007/978-88-470-2619-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2619-3_8

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2618-6

  • Online ISBN: 978-88-470-2619-3

  • eBook Packages: Medicine

Publish with us

Policies and ethics