Skip to main content

Abstract

The oligodendrocyte, predominantly found in the white matter, is the cell responsible for myelin production. As a general rule, demyelinating diseases result from either attacks on this cell or failure of these cells to regenerate under normal conditions. As a result, focal or diffuse myelin loss occurs. Multiple sclerosis (MS) is the prototypical white matter disease. Many other diseases may mimic its appearance on imaging studies. Although not an exhaustive list, this review highlights the important imaging manifestations that allow more specific diagnosis of these demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hauser SL (1994) Multiple sclerosis and other demyelinating disease. In: Isselbacher KJ, Graunwald E, Wilson JD et al (eds) Harrison’s principle of internal medicine. McGraw-Hill, New York, pp 2287–2295

    Google Scholar 

  2. Farlow MR, Bonine JM (1993) Clinical and neuropathological features of multiple sclerosi. Neuroradiol Clin North Am 3:213–228

    Google Scholar 

  3. Trobe JD (1994) High-dose corticosteroid regimen retards development of multiple sclerosis in optic neuritis treatment trial. Arch Ophthalmol 112:35–36

    Article  PubMed  CAS  Google Scholar 

  4. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    Google Scholar 

  5. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  6. Grossman RI, McGowan JC (1998) Perspective of multiple sclerosis. AJNR Am J Neuroradiol 19:1251–1265

    PubMed  CAS  Google Scholar 

  7. Wolinsky JS (2003) The diagnosis of primary progressive multiple sclerosis. J Neurol Sci 206:145–152

    Article  PubMed  Google Scholar 

  8. Niebler G, Harris T, Davis T, Roos K (1992) Fulminant multiple sclerosis. AJNR Am J Neuroradiol 13:1547–1551

    PubMed  CAS  Google Scholar 

  9. Gharagozloo AM, Poe LB, Collins GH (1994) Antemortem diagnosis of Balo concentric sclerosis: correlative MR imaging and pathologic features. Radiology 191:817–819

    PubMed  CAS  Google Scholar 

  10. Matiello M, Jacob A, Wingerchuk D, Weinshenker B (2007) Neuromyelitis optica. Current Opinion Neurology 20:255–260

    Article  Google Scholar 

  11. Jacob A, Matiello M, Wingerchuk D et al (2007) Neuromyelitis optica: changing concepts. J Neuroimmunol 187:126–138

    Article  PubMed  CAS  Google Scholar 

  12. Lucchinetti CF, Popescu BF, Bunyan RF et al (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365:2188–2197

    Article  PubMed  CAS  Google Scholar 

  13. Barkhof F, Scheltens P, Frequin STFM et al (1992) Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 159:1041–1047

    Article  PubMed  CAS  Google Scholar 

  14. Nesbit GM, Forbes GS, Scheithauer BW et al (1991) Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 180:467–474

    PubMed  CAS  Google Scholar 

  15. Horowitz AL, Kaplan RD, Grewe G et al (1989) The ovoid lesion: a new MR observation in patients with multiple sclerosis. AJNR Am J Neuroradiol 10:303–305

    PubMed  CAS  Google Scholar 

  16. Gean-Marton AD, Vezina LG, Marton KI et al (1991) Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis. Radiology 180:215–221

    PubMed  CAS  Google Scholar 

  17. Hashemi RH, Bradley WGJ, Chen D-Y et al (1995) Suspected multiple sclerosis: MR imaging with a thin-section fast FLAIR pulse sequence. Radiology 196:505–510

    PubMed  CAS  Google Scholar 

  18. Stevenson V, Parker G, Barker G et al (2000) Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis. J Neurol Sci 178:81–87

    Article  PubMed  CAS  Google Scholar 

  19. Dagher AP, Smirniotopoulous JG (1996) Tumefactive demyelinating lesions. Neuroradiology 38:560–565

    Article  PubMed  CAS  Google Scholar 

  20. Grossman RI, Gonzalez-Scarano F, Atlas SW et al (1986) Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology 161:721–725

    PubMed  CAS  Google Scholar 

  21. Simon J, Li D, Traboulsee A et al (2006) Standardized MR imaging protocol for multiple sclerosis: consortium of MS centers consensus guidelines. AJNR Am J Neuroradiol 27:455–461

    PubMed  CAS  Google Scholar 

  22. Miller D, Thompson AJ, Filippi M (2003) Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 250:1407–1419

    Article  PubMed  CAS  Google Scholar 

  23. Montalban X, Tintore M, Swanton J et al (2010) MRI criteria for MS in patients with clinically isolated syndromes. Neurology 74:427–434

    Article  PubMed  CAS  Google Scholar 

  24. Chabas D, Castillo-Trivino T, Mowry EM (2008) Vanishing MS T2-bright lesions before puberty: a distinct MRI phenotype? Neurology 71:1090–1093

    Article  PubMed  CAS  Google Scholar 

  25. Ge Y, Grossman RI, Udupa JK et al (2000) Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 214:665–670

    PubMed  CAS  Google Scholar 

  26. Dietemann JL, Beigelman C, Rumbach L et al (1988) Multiple sclerosis and corpus callosum atrophy: relationship of MRI findings to clinical data. Neuroradiology 30:478–480

    Article  PubMed  CAS  Google Scholar 

  27. Mehta RC, Pike GB, Enzmann DR (1996) Measure of magnetization transfer in multiple sclerosis demyelinating plaques, white matter ischemic lesions, and edema. AJNR Am J Neuroradiol 17:1051–1055

    PubMed  CAS  Google Scholar 

  28. Grossman RI, Lenkinski RE, Ramer KN et al (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13:1535–1543

    PubMed  CAS  Google Scholar 

  29. Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19:223–229

    PubMed  CAS  Google Scholar 

  30. Monden Y, Yamagata T, Kuroiwa Y et al (2011) A case of ADEM with atypical MRI findings of a centrally-located long spinal cord lesion. Brain Dev [Epub ahead of print]

    Google Scholar 

  31. Singh S, Alexander M, Korah IP (1999) Acute disseminated encephalomyelitis: MR imaging features. AJR Am J Roentgenol 173:1101–1107

    Article  PubMed  CAS  Google Scholar 

  32. Tan CS, Koralnik IJ (2010) Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 9:425–437

    Article  PubMed  CAS  Google Scholar 

  33. Vennegoor A, Wattjes MP, van Munster ET et al (2011) Indolent course of progressive multifocal leukoencephalopathy during natalizumab treatment in MS. Neurology 76:574–576

    Article  PubMed  CAS  Google Scholar 

  34. Whiteman M, Post MJD, Berger JR et al (1993) Progressive multifocal leukoencephalopathy in 47 HIV-seropositive patients: neuroimaging with clinical and pathologic correlation. Radiology 187:233–240

    PubMed  CAS  Google Scholar 

  35. Thurner M, Post M, Rieger A et al (2001) Initial and followup MR imaging findings in AIDS-related progressive multifocal leukoencephalopathy treated with highly active antiretroviral therapy. AJNR Am J Neuroradiol 22:977–984

    Google Scholar 

  36. McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4:543–555

    Article  PubMed  Google Scholar 

  37. McArthur JC, Sacktor N, Seines O (1999) Human immunodeficiency virus-associated dementia. Semin Neurol 19:105–111

    Article  Google Scholar 

  38. Menegon P, Sibon I, Pachai C et al (2005) Marchiafava-Bignami disease: diffusion-weighted MRI in corpus callosum and cortical lesions. Neurology 65:475–477

    Article  PubMed  CAS  Google Scholar 

  39. Tung CS, Wu SL, Tsou JC et al (2010) Marchiafava-Bignami disease with widespread lesions and complete recovery. AJNR Am J Neuroradiol 31:1506–1507

    Article  PubMed  Google Scholar 

  40. Izquierdo G, Quesada MA, Chacon J, Martel J (1992) Neuroradiologic abnormalities in Marchiafava-Bignami disease of benign evolution. Eur J Radiol 15:71–74

    Article  PubMed  CAS  Google Scholar 

  41. Zuccoli G, Santa Cruz D, Bertolini M et al (2009) MR imaging findings in 56 patients with Wernicke encephalopathy: nonalcoholics may differ from alcoholics. AJNR Am J Neuroradiol 30:171–176

    Article  PubMed  CAS  Google Scholar 

  42. Louis G, Megarbane B, Lavoue S et al (2011) Long-term outcome of patients hospitalized in intensive care units with central or extrapontine myelinolysis. Crit Care Med [Epub ahead of print]

    Google Scholar 

  43. Ruzek, KA, Campeau N, Miller G (2004) Early diagnosis of central pontine myelinolysis with diffusion-weighted imaging. AJNR Am J Neuroradiol 25:210–213

    PubMed  Google Scholar 

  44. Miller GM, Baker HL, Okazaki H, Whisnant JP (1988) Central pontine myelinolysis and its imitators: MR findings. Radiology 168:795–802

    PubMed  CAS  Google Scholar 

  45. Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487

    PubMed  CAS  Google Scholar 

  46. Chan Y, Leung S, King AD et al (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 213:800–807

    PubMed  CAS  Google Scholar 

  47. Davis P, Hoffman JJ, Pearl G, Braun I (1986) CT evaluation of effects of cranial radiation therapy in children. AJR Am J Roentgenol 147:587–592

    Article  PubMed  CAS  Google Scholar 

  48. Wijdicks EF, Campeau N, Sundt T (2008) Reversible unilateral brain edema presenting with major neurologic deficit after valve repair. Ann Thorac Surg 86:634–637

    Article  PubMed  Google Scholar 

  49. McKinney AM, Short J, Truwit CL et al (2007) Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol 189:904–912

    Article  PubMed  Google Scholar 

  50. Covarrubias D, Luetmer P, Campeau N (2002) Posterior reversible encephalopathy syndrome: prognostic utility of quantitative diffusion-weighted MR images. AJNR Am J Neuroradiol 23:1038–1048

    PubMed  Google Scholar 

  51. Post JD, Beauchamp NJ (1998) Reversible intracerebral pathologic entities mediated by vascular autoregulatory dysfunction. Radiographics 18:353–367

    Google Scholar 

  52. Yousry TA, Seelos K, Mayer M et al (1999) Characteristic MR lesion pattern and correlation of T1 and T2 lesion volume with neurologic and neuropsychological findings in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). AJNR Am J Neuroradiol 20:91–100

    PubMed  CAS  Google Scholar 

  53. van dem Boom R, Lesnick Oberstein S, van den Berg-Huysmans A et al (2006) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging changes and apolipoportein E genotype. AJNR Am J Neuroradiol 27:359–362

    PubMed  Google Scholar 

  54. Kendall BE (1992) Disorders of lysosomes, peroxisomes, and mitochondria. AJNR Am J Neuroradiol 13:621–653

    PubMed  CAS  Google Scholar 

  55. Barkovich AJ, Patay Z (2012) Metabolic, toxic, and inflammatory brain disorders. In: Barkovich AJ, Raybaud C (eds) Pediatric Neuroimaging. Lippincott, Williams & Wilkins, Philadelphia, pp 81–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this paper

Cite this paper

Koeller, K.K., Barkhof, F. (2012). Demyelinating Diseases. In: Hodler, J., von Schulthess, G.K., Zollikofer, C.L. (eds) Diseases of the Brain, Head & Neck, Spine 2012–2015. Springer, Milano. https://doi.org/10.1007/978-88-470-2628-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2628-5_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2627-8

  • Online ISBN: 978-88-470-2628-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics