Skip to main content

Introduction to electronic and optical properties of two-dimensional molybdenum disulfide systems

  • Chapter
No-nonsense Physicist

Part of the book series: Publications of the Scuola Normale Superiore ((SELSNS,volume 2))

Abstract

Two-dimensional (2D) nanomaterials have attracted increasing attention because of their unusual physical and chemical properties. Among these 2D nanomaterials, the monolayers of layered transition metal dichalcogenides exhibit intriguing electronic and optical properties. In this chapter, therefore, the electronic and optical properties of monolayer MoS2 are briefly reviewed. We present a model Hamiltonian within tight-binding theory, some transport properties like the charge compressibility in the mean-field approximation, plasmon modes in the Random-Phase Approximation and intrinsic optical properties of monolayer MoS2. Finally, we briefly discuss many-body ground-state of the system and its quantum phase transition in physical parametric space within Hartree-Fock theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Xu, T. Liang, M. Shi and H. Chen, Chemical Reviwes, 113 (2013), 3766.

    Article  Google Scholar 

  2. A. K. Geim and I. V. Grigorrieva, Nature (London) 499 (2013), 419.

    Article  Google Scholar 

  3. E. S. Reich, Nature 506 (2014), 19

    Article  ADS  Google Scholar 

  4. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen and Y. Zhang, Nature Nanotechnology (2014).

    Google Scholar 

  5. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol. 7 (2012), 699.

    Article  ADS  Google Scholar 

  6. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105 (2010), 136805.

    Article  ADS  Google Scholar 

  7. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nature Nanotechnol. 6 (2011), 147.

    Article  ADS  Google Scholar 

  8. S. Banerjee, W. Richardson, J. Coleman and A. Chatterjee, Electron Dev. Lett. 8 (1987), 347

    Article  Google Scholar 

  9. D. Yang and R. F. Frindt, J. Appl. Phys. 79 (1996), 2376

    Article  ADS  Google Scholar 

  10. R. F. Frindt, J. Appl. Phys. 37 (1966), 1928.

    Article  ADS  Google Scholar 

  11. Z. M. Wang, “MoS2, Materials, Physics and Devices”, Springer International Publishing, Switzerland, 2014.

    Google Scholar 

  12. Q. Li, J. T. Newberg, E. Walter, J. Hemminger and R. Penner, Nano Lett. 4 (2004), 277.

    Article  ADS  Google Scholar 

  13. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81 (2009), 109.

    Article  ADS  Google Scholar 

  14. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82 (2010), 3045.

    Article  ADS  Google Scholar 

  15. Shun-Qing Shen, “Topological Insulator: Dirac Equation in Condesed Matters”, Springer, 2012.

    Google Scholar 

  16. T. Zhang, J. Ha, N. Levy, Y. Kuk and J. Stroscio, Phys. Rev. Lett. 111 (2013), 056803.

    Article  ADS  Google Scholar 

  17. H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu and S.-Q. Shen, Phys. Rev. B 81 (2010), 115407.

    Article  ADS  Google Scholar 

  18. H. Li, L. Sheng, D. N. Sheng and D. Y. Xing, Phys. Rev. B 82 (2010), 165104.

    Article  ADS  Google Scholar 

  19. H. Li, L. Sheng and D. Y. Xing, Phys. Rev. B 85 (2012), 045118.

    Article  ADS  Google Scholar 

  20. K. F. Mak, K. He, J. Shan and T. F. Heinz, Nat. Nanotechnol. 7 (2012), 494.

    Article  ADS  Google Scholar 

  21. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz and J. Shan, Nat. Mat. 12 (2013), 207.

    Article  Google Scholar 

  22. H. Zeng, J. Dai, W. Yao, D. Xiao and X. Cui, Nat. Nanotechnol. 7 (2012), 490.

    Article  ADS  Google Scholar 

  23. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu and J. Feng, Nature Commun. 3 (2012), 887.

    Article  ADS  Google Scholar 

  24. S. Wu, J. S. Ross, G. B. Liu, G. Aivazian, A. Jones, Z. Fei, W. Zhu, D. Xiao, W. Yao, D. Cobden and X. Xu, Nat. Phys. 9 (2013), 149.

    Article  Google Scholar 

  25. A. Rycerz, J. Tworzydlo and C. W. J. Beenakker, Nat. Phys. 3 (2007), 172.

    Article  Google Scholar 

  26. D. Xiao, W. Yao and Q. Niu, Phys. Rev. Lett. 99 (2007), 236809.

    Article  ADS  Google Scholar 

  27. W. Yao, D. Xiao and Q. Niu, Phys. Rev. B 77 (2008), 235406.

    Article  ADS  Google Scholar 

  28. Di Xiao, Gui-Bin Liu, W. Feng, X. Xu and W. Yao, Phys. Rev. Lett. 108 (2012), 196802.

    Article  ADS  Google Scholar 

  29. H. Rostami, A. G. Moghaddam and R. Asgari, Phys. Rev. B 88 (2013), 085440.

    Article  ADS  Google Scholar 

  30. G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao and D. Xiao, Phys. Rev. B 88 (2013), 085433.

    Article  ADS  Google Scholar 

  31. A. Kormanyos, V. Zolyomi, N. D. Drummond, P. Rakyta, G. Burkard and V. I. Fal’ko, Phys. Rev. B 88 (2013), 045416.

    Article  ADS  Google Scholar 

  32. A. Carvalho, R. M. Ribeiro and A. H. Castro Neto, Phys. Rev. B 88 (2013), 115205.

    Article  ADS  Google Scholar 

  33. Zhou Li and J. P. Carbotte, Phys. Rev. B 86 (2012), 205425.

    Article  ADS  Google Scholar 

  34. H. Rostami and R. Asgari, Phys. Rev. B, 89 (2014), 115413.

    Article  ADS  Google Scholar 

  35. A. Kuc, N. Zibouche and T. Heine, Phys. Rev. B 83 (2011), 245213.

    Article  ADS  Google Scholar 

  36. P. L. Liao and E. A. Carter, Chem. Soc. Rev. 42 (2013), 2401

    Article  Google Scholar 

  37. H. Jiang, J. Phys. Chem. C 116 (2012), 7664

    Article  Google Scholar 

  38. Y. Ping, D. Rocca and G. Galli, Chem. Soc. Rev. 42 (2013), 2437

    Article  Google Scholar 

  39. H. S. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Dutta, S. K. Pati, C. N. R. Rao, Chem. Int. Ed. 49 (2010), 4059

    Article  Google Scholar 

  40. E. S. Kadantsev and P. Hawrylak, Solid State Commun. 152 (2012), 909.

    Article  ADS  Google Scholar 

  41. Y. Ding, Y. L. Wang, J. Ni, L. Shi, S. Q. Shi and W. H. Tang, Physica B 406 (2011), 2254

    Article  ADS  Google Scholar 

  42. T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85 (2012), 205302

    Article  ADS  Google Scholar 

  43. H. Komsa and A. V. Krasheninnikov, Phys. Rev. B 86 (2012), 241201(R).

    Article  ADS  Google Scholar 

  44. P. Johari and V. B. Shenoy, ACS Nano 6 (2012), 5449

    Article  Google Scholar 

  45. Q. Yue, J. Kang, Z. Z. Shao, X. A. Zhang, S. L. Chang, G. Wang, S. Q. Qin and J. B. Li, Phys. Lett. A 376 (2012), 1166.

    Article  ADS  Google Scholar 

  46. E. S. Kadantsev and P. Hawrylak, Solid State Commun. 152 (2012), 909

    Article  ADS  Google Scholar 

  47. H. Shi, H. Pan, Y.-W. Zhang and B. I. Yakobson, Phys. Rev. B 87 (2013), 155304.

    Article  ADS  Google Scholar 

  48. J. Kang, J. Kang, S. Tongay, J. Li and J. Wu, Appl. Phys. Lett. 102 (2013), 012111.

    Article  ADS  Google Scholar 

  49. J. C. Slater and G. F. Koster, Phys. Rev. 94 (1954), 1498.

    Article  ADS  Google Scholar 

  50. E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón and F. Guinea, Phys. Rev. B 88 (2013), 075409.

    Article  ADS  Google Scholar 

  51. H. Peelaers and C. G. Van de Walle, Phys. Rev. B 86 (2012), 241401(R).

    Article  ADS  Google Scholar 

  52. R. Winkler, “Spin Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems”, Springer, Berlin, 2003.

    Book  Google Scholar 

  53. F. G. Giuliani, J. J. Quinn and S. C. Ying, Phys. Rev. B 28 (1983), 2969.

    Article  ADS  Google Scholar 

  54. G. F. Giuliani and G. Vignale, “Quantum Theory of the Electron Liquid”, Cambridge University Press, Cambridge, 2005.

    Book  Google Scholar 

  55. A. Scholz, T. Stauber and J. Schliemann, Phys. Rev. B 88 (2013), 035135.

    Article  ADS  Google Scholar 

  56. G. Santoro and G. F. Giuliani, Phys. Rev. B 37 (1988), 937.

    Article  ADS  Google Scholar 

  57. R. Roland, E. Cappelluti1 and F. Guinea, Phys. Rev. B 88 (2013), 054515.

    Article  ADS  Google Scholar 

  58. H. Rostami and R. Asgari, Phys. Rev. B 86 (2012), 155435.

    Article  ADS  Google Scholar 

  59. G. Borghi, M. Polini, R. Asgari and A. H. MacDonaldd, Solid State Commun. 149 (2009), 1117.

    Article  ADS  Google Scholar 

  60. Hongki Min et al., Phys. Rev. B 77 (2008), 041407(R).

    Article  ADS  Google Scholar 

  61. A. Qauimzadeh and Reza Asgari, Phys. Rev. B 80 (2009), 035429.

    Article  ADS  Google Scholar 

  62. F. Bloch, Z. Physik 57 (1929), 545.

    Article  ADS  Google Scholar 

  63. G. F. Giuliani and J. J. Quinne, Phys. Rev. B 31 (1985), 6228.

    Article  ADS  Google Scholar 

  64. S. V. Kusminskiy, J. Nilsson, D. K. Campbell and A. H. Castro Neto, Phys. Rev. Lett. 100 (2008), 106805.

    Article  ADS  Google Scholar 

  65. S. Yarlagadda and G. F. Giuliani, Phys. Rev. B 40, 5432 (1989), 5432

    Article  ADS  Google Scholar 

  66. S. Yarlagadda and G. F. Giuliani, Phys. Rev. B 49 (1994), 7887

    Article  ADS  Google Scholar 

  67. S. Yarlagadda and G. F. Giuliani, Phys. Rev. B 49 (1994), 14172.

    Article  ADS  Google Scholar 

  68. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler and C. Schuller, Appl. Phys. Lett. 99 (2011), 102109.

    Article  ADS  Google Scholar 

  69. Jason S. Ross, Sanfeng Wu, Hongyi Yu, Nirmal J. Ghimire, Aaron M. Jones, Grant Aivazian, Jiaqiang Yan, David G. Mandrus, Di Xiao, Wang Yao and Xiaodong Xu, Nature Communi. 4 (2013), 1474.

    Article  ADS  Google Scholar 

  70. A. C.-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H. S. J. van der Zant and G. A. Steele, Nano Lett., 13 (2013), 5361.

    Article  ADS  Google Scholar 

  71. X. Li, F. Zhang and Q. Niu, Phys. Rev. Lett. 110 (2013), 066803.

    Article  ADS  Google Scholar 

  72. T. Stauber, N. M. R. Peres and A. K. Geim, Phys. Rev. B 78 (2008), 085432.

    Article  ADS  Google Scholar 

  73. Wang-Kong Tse and A. H. MacDonald, Phys. Rev. B 84 (2011), 205327.

    Article  ADS  Google Scholar 

  74. Steven G. Louie and Marvin L. Cohen, “Conceptual Foundations of Materials: A Standard Model for Ground-and Excited-State Properties”, Elsevier, 2006.

    Google Scholar 

  75. K. Zigler, Phys. Rev. B 75 (2007), 233407.

    Article  ADS  Google Scholar 

  76. Wang Yao, Shengyuan A. Yang and Qian Niu, Phys. Rev. Lett. 102 (2009), 096801.

    Article  ADS  Google Scholar 

  77. A. Ferreira, J. V.-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres and A. H. Castro Neto, Phys. Rev. B 84 (2011), 235410.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Scuola Normale Superiore Pisa

About this chapter

Cite this chapter

Asgari, R. (2016). Introduction to electronic and optical properties of two-dimensional molybdenum disulfide systems. In: Polini, M., Vignale, G., Pellegrini, V., Jain, J.K. (eds) No-nonsense Physicist. Publications of the Scuola Normale Superiore(), vol 2. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-536-3_3

Download citation

Publish with us

Policies and ethics