Skip to main content

Protein-Protein Interaction Prediction Using Homology and Inter-domain Linker Region Information

  • Chapter
Advances in Electrical Engineering and Computational Science

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 39))

One of the central problems in modern biology is to identify the complete set of interactions among proteins in a cell. The structural interaction of proteins and their domains in networks is one of the most basic molecular mechanisms for biological cells. Structural evidence indicates that, interacting pairs of close homologs usually interact in the same way. In this chapter, we make use of both homology and inter-domain linker region knowledge to predict interaction between protein pairs solely by amino acid sequence information. High quality core set of 150 yeast proteins obtained from the Database of Interacting Proteins (DIP) was considered to test the accuracy of the proposed method. The strongest prediction of the method reached over 70% accuracy. These results show great potential for the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Donaldson, J. Martin, B. Bruijn, C. Wolting, V. Lay, B. Tuekam, S. Zhang, B. Baskin, G. D. Bader, K. Michalickova, T. Pawson, and C.W. Hogue, PreBIND and Textomy — mining the biomedical literature for protein-protein interactions using a support vector machine, BMC Bioinformatics, 4(11) (2003).

    Google Scholar 

  2. E. Gharakhanian, J. Takahashi, J. Clevr, and H. Kasamatsu, In vitro assay for protein—protein interaction: carboxyl-terminal 40 residues of simian virus 40 structural protein VP3 contain a determinant for interaction with VP1, PNAS, 85(18), 6607–6611 (1998).

    Article  Google Scholar 

  3. P. L. Bartel and S. Fields, The yeast two-hybrid system. In Advances in Molecular Biology, Oxford University Press, New York, 1997.

    Google Scholar 

  4. G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann, and B. Seraphin, A generic protein purification method for protein complex characterization and proteome exploration, Nature Biotechnology, 17, 1030–1032 (1999).

    Article  Google Scholar 

  5. M. Selbach and M. Mann, Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK), Nature Methods, 3, 981–983 (2006).

    Article  Google Scholar 

  6. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg, The Database of Interacting Proteins: 2004 update, Nucleic Acids Research, 1(32), 449–51 (2004).

    Article  Google Scholar 

  7. H. W. Mewes, MIPS: analysis and annotation of proteins from whole genomes, Nucleic Acids Research, 32, 41–44 (2004).

    Article  Google Scholar 

  8. S. Peri, Human protein reference database as a discovery resource for proteomics, Nucleic Acids Research, 32, 497–501 (2004).

    Article  Google Scholar 

  9. J. Espadaler, Detecting remotely related proteins by their interactions and sequence similarity, Proceedings of the National Academy of Sciences USA, 102, 7151–7156 (2005).

    Article  Google Scholar 

  10. E. Marcotte, Detecting protein function and protein—protein interactions from genome sequences, Science, 285, 751–753 (1999).

    Article  Google Scholar 

  11. T. Dandekar, Conservation of gene order: a fingerprint of proteins that physically interact, Trends in Biochemical Sciences, 23, 324–328 (1998).

    Article  Google Scholar 

  12. M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O. Yeates, Assigning protein functions by comparative genome analysis: protein phylogenetic profiles, Proceedings of National Academy of Sciences USA, 96, 4285–4288 (1999).

    Article  Google Scholar 

  13. A. Szilagyi, V. Grimm, A. K. Arakaki, and J. Sholnick, Prediction of physical protein-protein interactions, Physical Biology, 2, 1–16 (2005).

    Article  Google Scholar 

  14. E. M. Marcotte, M. Pellegrini, M. J. Thompson, T. O. Yeates, and D. Eisenberg, A combined algorithm for genome-wide prediction of protein function, Nature, 402, 83–86 (1999).

    Article  Google Scholar 

  15. F. Pazos and A. Valencia, Similarity of phylogenetic trees as indicator of protein-protein interaction, Protein Engineering, 14, 609–614 (2001).

    Article  Google Scholar 

  16. J. Enright, I. N. Ilipoulos, C. Kyrpides, and C. A. Ouzounis, Protein interaction maps for complete genomes based on gene fusion events, Nature, 402, 86–90 (1999).

    Article  Google Scholar 

  17. D. Eisenberg, E. M. Marcotte, I. Xenarios, and T. O. Yeates, Protein function in the post-genomic era, Nature, 405, 823–826 (2000).

    Article  Google Scholar 

  18. J. Wojcik and V. Schachter, Protein-Protein interaction map inference using interacting domain profile pairs, Bioinformatics, 17, 296–305 (2001).

    Google Scholar 

  19. W. K. Kim, J. Park, and J. K. Suh, Large scale statistical prediction of protein-protein interaction by potentially interacting domain (PID) pair, Genome Informatics, 13, 42–50 (2002).

    Google Scholar 

  20. S. K. Ng, Z. Zhang, and S. H. Tan, integrative approach for computationally inferring protein domain interactions, Bioinformatics, 19, 923–929 (2002).

    Article  Google Scholar 

  21. S. M. Gomez, W. S. Noble, and A. Rzhetsky, Learning to predict protein-protein interactions from protein sequences, Bioinformatics, 19, 1875–1881 (2003).

    Article  Google Scholar 

  22. C. Huang, F. Morcos, S. P. Kanaan, S. Wuchty, A. Z. Chen, and J. A. Izaguirre, Predicting protein-protein interactions from protein domains using a set cover approach, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(1), 78–87 (2007).

    Article  Google Scholar 

  23. T. Pawson and P. Nash, Assembly of cell regulatory systems through protein interaction domains, Science, 300, 445–452 (2003).

    Article  Google Scholar 

  24. N. M. Zaki, S. Deris, and H. Alashwal, Protein—protein interaction detection based on substring sensitivity measure, International Journal of Biomedical Sciences, 1, 148–154 (2006).

    Google Scholar 

  25. P. Aloy and R. B. Russell, InterPreTS: protein interaction prediction through tertiary structure, Bioinformatics, 19, 161–162 (2003).

    Article  Google Scholar 

  26. L. Lu, Multiprospector: an algorithm for the prediction of protein—protein interactions by multimeric threading, Proteins, 49, 350–364 (2002).

    Article  Google Scholar 

  27. J. Espadaler, O. Romero-Isart, R. M. Jackson, and B. Oliva, Prediction of protein—protein interactions using distant conservation of sequence patterns and structure relationships, Bioinformatics, 21, 3360–3368 (2005).

    Article  Google Scholar 

  28. O. Keskin, A new, structurally nonredundant, diverse data set of protein—protein interfaces and its implications, Protein Sciences, 13, 1043–1055 (2004).

    Article  Google Scholar 

  29. T. Smith and M. Waterman, “Identification of common molecular subsequences”, Journal of Molecular Biology, 147, 195–197 (1981).

    Article  Google Scholar 

  30. H. Saigo, J. Vert, N. Ueda, and T. Akutsu, Protein homology detection using string alignment kernels, Bioinformatics, 20(11), 1682–1689 (2004).

    Article  Google Scholar 

  31. A. Bairoch and R. Apweiler, The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000, Nucleic Acids Research, 28, 45–48 (2000).

    Article  Google Scholar 

  32. M. Suyama and O. Ohara, DomCut: prediction of inter-domain linker regions in amino acid sequences, Bioinformatics, 19, 673–674 (2003).

    Article  Google Scholar 

  33. A. Gattiker, E. Gasteiger, and A. Bairoch, ScanProsite: a reference implementation of a PROSITE scanning tool, Applied Bioinformatics, 1, 107–108 (2002).

    Google Scholar 

  34. I. Xenarios, L. Salwínski, X. J. Duan, P. Higney, S. Kim, and D. Eisenberg, DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions, Nucleic Acids Research, Oxford University Press, 30, 303–305 (2002).

    Google Scholar 

  35. C. M. Deane, L. Salwinski, I. Xenarios, and D. Eisenberg, Protein interactions: two methods for assessment of the reliability of high throughput observations, Molecular & Cellular Proteomics, 1, 349–56 (2002).

    Article  Google Scholar 

  36. W. R. Pearson, Rapid and sensitive sequence comparisons with FASTAP and FASTA method, Methods in Enzymology, 183, 63–93 (1985).

    Article  Google Scholar 

  37. Q. Dong, X. Wang, L. Lin, and Z. Xu, Domain boundary prediction based on profile domain linker propensity index, Computational Biology and Chemistry, 30, 127–133 (2006).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Zaki, N. (2009). Protein-Protein Interaction Prediction Using Homology and Inter-domain Linker Region Information. In: Ao, SI., Gelman, L. (eds) Advances in Electrical Engineering and Computational Science. Lecture Notes in Electrical Engineering, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2311-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2311-7_54

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2310-0

  • Online ISBN: 978-90-481-2311-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics