Skip to main content

Supramolecular Chemistry and the Life Sciences

  • Chapter
  • First Online:
Supramolecular Chemistry

Abstract

Life is introduced as a supramolecular phenomenon and analogies drawn between the interactions associated with biological molecules and those responsible for the formation of supramolecules. The syntheses and structural features of the major biological molecules and supramolecules (amino acids, proteins, sugars, glycoproteins, lipids, RNA and DNA) are described. Self-replication is considered in both biological and artificial systems leading to a discussion about the requirements of replicators, replicator evolution and the orthogonal translation of information from one medium to another. Supramolecular self-replication, self-assembly and self-replicating motifs are described as analogues of biological processes. The relevance of supramolecular chemistry to the origin of life is illustrated with reference to three ‘origin of life’ scenarios: the Lipid World, Iron-Sulfur World and RNA World models. Similarities between supramolecular biology and synthetic biology are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrödinger E (1944) What is life?. Cambridge University Press, Cambridge

    Google Scholar 

  2. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mo Biol 157:105–132

    Article  CAS  Google Scholar 

  3. Biou V et al (1994) The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science 263:1404–1410 PDBID:1SER

    Article  CAS  Google Scholar 

  4. Doyle DA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77 PDBID:1BL8

    Article  CAS  Google Scholar 

  5. Fischer E (1894) Einflus der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  6. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104

    Article  CAS  Google Scholar 

  7. Pearson JG et al (1997) Predicting the chemical shifts in proteins: structure refinement of valine residues by using ab initio and empirical geometry observations. J Am Chem Soc 119:11941–11950

    Article  CAS  Google Scholar 

  8. Lange OF et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    Article  CAS  Google Scholar 

  9. Mendel G (1865) Versuche über Plflanzen-hybriden read to the Brünn Natural History Society on February 8th and March 8th

    Google Scholar 

  10. Meischer F (1869) Letter I to Wilhelm His Tübingen February 26th 1869. In: W. His et al (eds) Die Histochemischen und Physiologischen Arbeiten von Friedrich Miescher—Aus dem wissenschaftlichen Briefwechsel von F. Miescher vol 1 FCW Vogel Leipzig pp 33–38

    Google Scholar 

  11. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79:137–158

    Article  CAS  Google Scholar 

  12. Levene PA (1919) The structure of yeast nucleic acid. J Biol Chem 40:415–424

    CAS  Google Scholar 

  13. Vischer E, Zamenhof S, Chargaff E (1949) Microbial nucleic acids: the desoxypentose nucleic acids of avian tubercle bacilli and yeast. J Biol Chem 177:429–438

    CAS  Google Scholar 

  14. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  15. Gamow G (1954) Possible relation between deoxyribonucleic acid and protein structures. Nature 173:318

    Article  CAS  Google Scholar 

  16. Nirenberg MW, Mattaei JH (1961) The dependence of cell-free protein synthesis in E coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602

    Article  CAS  Google Scholar 

  17. Singleton MR, Scaife S, Wigley DB (2001) Structural analysis of DNA replication fork reversal by RecG. Cell. 107:79–89 PDBID:1GM5

    Article  CAS  Google Scholar 

  18. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 2261211–1213

    Article  CAS  Google Scholar 

  19. Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211

    Article  CAS  Google Scholar 

  20. Hadden JM et al (2007) The structural basis of Holliday junction resolution by T7 endonuclease I. Nature 449:621–624 PDBID:2PFJ

    Article  CAS  Google Scholar 

  21. Dawkins R (2006) The selfish gene, pp 13–20. Oxford University Press, New York, NY

    Google Scholar 

  22. Drexler KE (2001) Machine-phase nanotechnology. Sci Am 285:66–67

    Article  Google Scholar 

  23. Lehn JM et al (1987) Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations – structure of an inorganic double helix. Proc Natl Acad Sci USA 84:2565–2569

    Article  CAS  Google Scholar 

  24. Kramer R et al (1993) Self-assembly, structure, and spontaneous resolution of a trinuclear triple-helix from an oligobipyridine ligand and Ni(II) ions. Angew Chem Int Ed Engl 32:703–706

    Article  Google Scholar 

  25. Quayle JM, Slawin AMZ, Philp D (2002) A structurally simple self-replicating system. Tetrahedron Letts 43:7229–7233

    Article  CAS  Google Scholar 

  26. von Neumann J (1961) The general and logical theory of automata. In: Taub AH (ed) John von Neumann collected works Vol V. Pergamon Press, New York, NY

    Google Scholar 

  27. Ibid p 315

    Google Scholar 

  28. Wyler R, De Mendoza J, Rebek J (1993) A synthetic cavity assembles through self-complementary hydrogen-bonds. Angew Chem Int Ed Engl 32:1699–1701

    Article  Google Scholar 

  29. Arduini A et al (1995) Calix[4]arenes blocked in a rigid cone conformation by selective functionalization at the lower rim. J Org Chem 60:1454–1457

    Article  CAS  Google Scholar 

  30. Ajami D, Rebek J (2008) Gas behavior in self-assembled capsules. Angew Chem Int Ed Engl 47:6059–6061

    CAS  Google Scholar 

  31. Rudzevich V, Rudzevich Y, Böhmer V (2009) Dimerization and self-sorting of tetraurea calix[4]arenes. Synlett 1887–1904

    Google Scholar 

  32. Cram DJ et al (1992) Host-guest complexation 62. Solvophobic and entropic driving forces for forming velcraplexes, which are 4-fold, lock-key dimers in organic media. J Am Chem Soc 114:7748–7765

    Article  CAS  Google Scholar 

  33. Liu S, Gibb BC (2008) High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule. Chem Commun 3709–3716

    Google Scholar 

  34. Schall O, Gokel GW (1994) Molecular boxes derived from crown ethers and nucleotide bases: probes for Hoogsteen vs Watson-Crick H-bonding and other base-base interactions in self-assembly processes. J Am Chem Soc 116:6089–6100

    Article  CAS  Google Scholar 

  35. Conn MM, Rebek J (1997) Self-assembling capsules. Chem Rev 97:1647–1668

    Article  CAS  Google Scholar 

  36. Timmerman P et al (1997) Noncovalent assembly of functional groups on calix[4]arene molecular boxes. Chem Eur J 3:1823–1832

    Article  CAS  Google Scholar 

  37. Rebek J (1994) Synthetic self-replicating molecules. Sci Am 271:48–55

    Article  CAS  Google Scholar 

  38. Siegel S et al (2000) Molecular recognition of a dissolved carboxylate by amidinium monolayers at the air-water interface. Progr Coll Poly Sci 115:233–237

    Article  CAS  Google Scholar 

  39. von Kiedrowski G (1986) A self-replicating hexadeoxyribonucleotide. Angew Chem Int Ed Engl 25:932–935

    Google Scholar 

  40. Sievers D, von Kiedrowski G (1994) Self-replication of complementary nucleotide-based oligomers. Nature 369:221–224

    Article  CAS  Google Scholar 

  41. Lee DH et al (1996) A self-replicating peptide. Nature 382:525–528

    Article  CAS  Google Scholar 

  42. Sadownik J, Philp D (2008) A simple synthetic replicator amplifies itself from a dynamic reagent pool. Angew Chem Int Ed Engl 47:9965–9970

    Article  CAS  Google Scholar 

  43. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry – the iron sulfur world. Progr Biophys Mol Biol 58:85–201

    Article  Google Scholar 

  44. Westheimer FH (1986) Nature 319:534–536

    Article  CAS  Google Scholar 

  45. Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  46. Woese C (1968) The genetic code. Harper & Row, New York , NY

    Google Scholar 

  47. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyramidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Google Scholar 

  48. Martins Z et al (2008) Extraterrestrial nucleobases in the Murchison meteorite Earth Planet. Sci Lett 270:130–136

    CAS  Google Scholar 

  49. Szybalski W, Skalka A (1978) Nobel prizes and restriction enzymes. Gene 4:181–182

    Article  CAS  Google Scholar 

  50. Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiol 152:2529–2536

    Article  CAS  Google Scholar 

  51. Smith RG, D’Souza N, Nicklin S (2008) A review of biosensors and biologically-inspired systems for explaosives detection. Analyst 133:571–584

    Article  CAS  Google Scholar 

  52. Sismour AM, Benner SA (2005) The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res 33:5640–5646

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Cragg .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cragg, P.J. (2010). Supramolecular Chemistry and the Life Sciences. In: Supramolecular Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2582-1_2

Download citation

Publish with us

Policies and ethics