Skip to main content

Darwinulid Ostracods: Ancient Asexual Scandals or Scandalous Gossip?

  • Chapter
  • First Online:
Lost Sex

Abstract

Whereas studies of putative ancient asexuals could help solve the paradox of sex, most research on such groups still focuses on consolidating their status. The evidence for the darwinulid ostracods is as yet inconclusive. Recent males have been found in a single species, but their functionality is uncertain and their morphology highlights the erroneous assignment of male status to a single individual of Darwinula stevensoni, presently the best candidate for an ancient asexual darwinulid. Previous records of putative fossil males for the past 200 million years have been rejected. Genetic signatures of ancient asexuality are equally inconclusive: there is no Meselson effect in the darwinulids, but neither the presence nor the absence of the Meselson effect does provide conclusive evidence for or against sex. However, it would seem that a combination of a general purpose genotype with powerful homogenising genetic mechanisms (gene conversion, DNA repair) could counter the deleterious effects of the absence of sex in at least a number of darwinulid species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abushik AF (1990) Palaeozoic Ostracoda. In: Abushik AF (ed) Manual of the Microfauna of the USSR 4, VSE-GEI, NEDRA, pp. 1–35 [In Russian]

    Google Scholar 

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97: 14473–14477

    Article  PubMed  CAS  Google Scholar 

  • Arkhipova I, Meselson M (2005a) Deleterious transposable elements and the extinction of asexuals. Bioessays 27: 76–85

    Article  PubMed  CAS  Google Scholar 

  • Arkhipova IR, Meselson M (2005b) Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci USA 102: 11781–11786

    Article  PubMed  CAS  Google Scholar 

  • Arkhipova IR, Pyatkov KI, Meselson M, Eugen’ev MB (2003) Retroelements containing introns in diverse invertebrate taxa. Nat Genet 33: 123–124

    Article  PubMed  CAS  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) Genetics of Colonizing Species, Academic Press, New York, pp. 147–172

    Google Scholar 

  • Bell G (1982) The Masterpiece of Nature. Croom Helm, London, 635 pp.

    Google Scholar 

  • Bowring SA, Erwin DH, Jin YG, Martin MW, Davidek K, Wang W (1998) U/Pb Zircon geochronology and tempo of end-Permian mass extinction. Science 280: 1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Brady GS, Norman AM (1889) A monograph of the marine and freshwater Ostracoda of the North Atlantic and of North-Western Europe. Section I: Podocopa. Sci Trans R Dublin Soc Ser 2, 4: 63–270

    Google Scholar 

  • Brady GS, Robertson D (1870) The Ostracoda and Foraminifera of tidal rivers. Ann Mag Nat Hist Ser 4, 6: 1–33, 307–309

    Google Scholar 

  • Butlin RK (2000) Virgin rotifers. Trends Ecol Evol 15: 389–390

    Article  PubMed  Google Scholar 

  • Christensen OB (1963) Ostracods from the Purbeck-Wealden beds in Bornholm. Danmarks Geol Unders Ser II 86: 1–58

    Google Scholar 

  • Decaestecker E, Gaba S, Raeymaekers J, Stoks R, Van Kerckhoven L, Ebert D, De Meester L (2007) Host-parasite Red Queen dynamics archived in pond sediment. Nature 450: 870–873

    Article  PubMed  CAS  Google Scholar 

  • Docking TR, Saadé FE, Elliott MC, Schoen DJ (2006) Retrotransposon sequence variation in four asexual plant species. J Mol Evol 62: 375–387

    Article  PubMed  CAS  Google Scholar 

  • Dolgin ES, Charlesworth B (2006) The fate of transposable elements in asexual populations. Genetics 174: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA Transposons and the evolution of Eukaryotic Genomes. Annu Rev Genet 41: 331–368

    Article  PubMed  CAS  Google Scholar 

  • Geiger W (1998) Population dynamics, life histories and reproductive modes In: Martens K (ed) Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods, Backhuys Publ, Leiden, pp. 215–228

    Google Scholar 

  • Ghiselin MT (1974) The economy of nature and the evolution of sex. University of California Press, Berkeley, CA

    Google Scholar 

  • Goodwin TDJ, Poulter RTM (2000) Multiple LTR retrotransposon families in the asexual yeast Candida albicans. Genome Res 10: 174–191

    Article  PubMed  CAS  Google Scholar 

  • Griffiths HI, Horne DJ (1998) Fossil distribution of reproductive modes in non-marine ostracods. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods, Backhuys Publ, Leiden, pp. 101–118

    Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87: 3566–3573

    Article  PubMed  CAS  Google Scholar 

  • Hayden EC (2008) Scandal! Sex-starved and still surviving. Nature 452: 678–680

    Article  PubMed  CAS  Google Scholar 

  • Hickey DA (1982) Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101: 519–531

    PubMed  CAS  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433: 160–163

    Article  PubMed  CAS  Google Scholar 

  • Hörandl E (2008) Evolutionary implications of self-compatibility and reproductive fitness in the apomictic Ranunculus auricomus polyploid complex (Ranunculaceae). Int J Plant Sci 169: 1219–1228

    Article  Google Scholar 

  • Horne DJ. Baltanas A and Paris G (1998a) Geographical distribution of reproductive modes in living non-marine ostracods. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods, Backhuys Publ, Leiden, pp. 77–99

    Google Scholar 

  • Horne DJ, Danielopol DL, Martens K (1998b) Reproductive behaviour. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publ, Leiden, pp. 157–196

    Google Scholar 

  • Horne DJ, Martens K, Mösslacher F (1998c) A short note: is there brood selection in Darwinula stevensoni? In: Crasquin-Soleau S, Braccini E and Lethiers F (eds) What about Ostracoda! Actes du 3e Congrés Européen des Ostracodologistes, Paris-Bierville, France, 8–12 Juillet 1996. Bull Centre Rech Elf Explor Prod Mem 20: 33–35

    Google Scholar 

  • Horne DJ, Schön I, Smith RJ, Martens K (2005) What are Ostracoda? A cladistic analysis of the extant superfamilies of the subclasses Myodocopa and Podocopa (Ostracoda: Crustacea). Crustac Iss 16: 249–274

    Google Scholar 

  • Hur JH, Van Doninck K, Mandigo ML, Meselson M (2008) Degenerate tetraploidy was established before bdelloid rotifer families diverged. Mol Biol Evol 26: 375–383

    Google Scholar 

  • Jokela J, Lively CM, Dybdahl MF, Fox JA (2003) Genetic variation in sexual and clonal lineages of a freshwater snail. Biol J Linn Soc 79: 165–181

    Article  Google Scholar 

  • Judson PO, Normark BB (1996) Ancient asexual scandals. Trends Ecol Evol 11: 41–46

    Article  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440

    Article  PubMed  CAS  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414: 745–748

    Article  PubMed  CAS  Google Scholar 

  • Kuhn TS (1962) The Structure of Scientific Revolutions, 1st ed, University of Chicago Press, Chicago, IL

    Google Scholar 

  • Little T, Hebert PDN (1996) Ancient asexuals: scandal or artefact? Trend Ecol Evol 11: 296

    Article  Google Scholar 

  • Lively CM, Johnson SG (1994) Brooding and the evolution of parthenogenesis: strategy models and evidence from aquatic invertebrates. Proc R Soc Lond B 256: 89–95

    Article  CAS  Google Scholar 

  • Lively CM, Jokela J (2002) Temporal and spatial distributions of parasites and sex in a freshwater snail. Evol Ecol Res 4: 219–226

    Google Scholar 

  • McGregor DL (1969) The reproductive potential, life history and parasitism of the freshwater ostracods Darwinula stevensoni (Brady and Robertson). In: Neale JW (ed) The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver and Boyd, Edinburgh, pp. 194–221.

    Google Scholar 

  • Maddocks R (1973) Zenker’s organ and a new species of Saipanetta (Ostracoda). Micropalaentology 19: 193–208.

    Article  Google Scholar 

  • Mark Welch D, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1214

    Article  PubMed  CAS  Google Scholar 

  • Mark Welch DB, Mark Welch JL, Meselson M (2008) Evidence for degenerate tetraploidy in bdelloid rotifers. Proc Natl Acad Sci USA 105: 5145–5149

    Article  PubMed  Google Scholar 

  • Mark Welch JL, Meselson M (1998) Karyotypes of bdelloid rotifers from three families. Hydrobiologia 387/388: 403–407

    Article  Google Scholar 

  • Martens K, Horne D, Griffiths H (1998) Age and diversity of non-marine ostracods. In: Martens K (ed) Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods , Backhuys Publ, Leiden, pp. 37–55

    Google Scholar 

  • Martens K, Rossetti G, Horne DJ (2003) How ancient are ancient asexuals? Proc R Soc Lond B 270: 723–729

    Article  Google Scholar 

  • Martens K, Schön I (2008) Opinion: ancient asexuals: darwinulids not exposed. Nature 453: 587

    Article  PubMed  CAS  Google Scholar 

  • Martens K, Schön I, Meisch C, Horne DJ (2008) Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193

    Article  Google Scholar 

  • Martins MJF, Vandekerkhove J, Namiotko T (2008) Environmental stability and the distribution of the sexes: insights from life history experiments with the geographic parthenogen Eucypris virens (Crustacea: Ostracoda). Oikos 117: 829–836

    Article  Google Scholar 

  • Mattews G, Goodwin TJD, Butler MI, Berryman TA, Poulter RTM (1997) pCal, a highly unusual Ty1/copia retrotransposon from the pathogenic yeast Candida albicans. J Bact 179: 7118–7128

    Google Scholar 

  • Maumus F, Allen A, Jabbari K, Vardi A, Bowler C (2008) Pirate transposons in diatom genomes. Abstract band of the International Congress on Transposable Elements, April 20–23 2008, Saint-Malo, France, p. 155

    Google Scholar 

  • Maynard Smith J (1980) Selection for recombination in a polygenic model. Genet Res 35: 269–277

    Article  Google Scholar 

  • Molostovskaya II (2000) The evolutionary history of Late Permian Darwinulocopina Sohn, 1988 (Ostracoda) from the Russian Plate. Hydrobiologia 419: 125–130

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1: 2–9

    Google Scholar 

  • Okubo I (2001) Freshwater Ostracod Darwinula stevensoni from Lake Biwa. Bull Biogeogr Soc Jp 56: 39–43

    Google Scholar 

  • Omilian AR, Cristescu MEA, Dudycha JL, Lynch M (2006) Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci USA 103: 18638–18643

    Article  PubMed  CAS  Google Scholar 

  • Otto P, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34: 401–437

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37: 485–511

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427: 733–737

    Article  PubMed  CAS  Google Scholar 

  • Pinto RL, Rocha CEF, Martens K (2007) Early release of eggs and embryos in a brooding ancient asexual ostracod: brood selection or bet-hedging to increase fecundity? Hydrobiologia 585: 249–253

    Article  Google Scholar 

  • Pritham EJ, Feschotte C, Wessler SR (2005) Unexpected diversity and differential success of DNA transposons in four species of Entamoeba Protozoans. Mol Biol Evol 22: 1751–1763

    Article  PubMed  CAS  Google Scholar 

  • Ranta E (1979) Population biology of Darwinula stevensoni (Crustacea, Ostracoda) in an oligotrophic lake. Ann Zool Fenn 16: 28–35

    Google Scholar 

  • Redfield RJ (1994) Male mutation rates and the cost of sex for females. Nature 369: 145–147

    Article  PubMed  CAS  Google Scholar 

  • Rossetti G, Martens K (1996) Redescription and morphological variability of Darwinula stevensoni (Brady & Robertson, 1870) (Crustacea, Ostracoda). Bull K Belg Inst Natuurw Biol 66: 73–92

    Google Scholar 

  • Rossetti G, Martens K (1998) Taxonomic revision of the Recent and Holocene representatives of the family Darwinulidae (Crustacea, Ostracoda), with a description of three new genera. Bull K Belg Inst Natuurw Biol 68: 55–110

    Google Scholar 

  • Rossi V, Schön I, Butlin RK, Menozzi P (1998) Clonal genetic diversity. In: Martens K (ed) Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods, Backhuys Publ, Leiden, pp. 257–274

    Google Scholar 

  • Roughgarden J (1991) The evolution of sex. Am Nat 138: 934–953

    Article  Google Scholar 

  • Schäfer I, Domes K, Heethoff M, Schneider K, Schön I, Norton RA, Scheu S, Maraun M (2006) No evidence for the ‘Meselson effect’ in parthenogenetic oribatid mites (Oribatida, Acari). J Evol Biol 19: 184–193

    Article  Google Scholar 

  • Schön I, Arkhipova IR (2006) Two families of non-LTR retrotransposons, Syrinx and Daphne, from the darwinulid ostracod, Darwinula stevensoni. Gene 371: 296–307

    Article  PubMed  CAS  Google Scholar 

  • Schön I, Butlin RK, Griffiths HI, Martens K (1998) Slow molecular evolution in an ancient asexual ostracod. Proc R Soc Lond B: 265, 235–242

    Article  Google Scholar 

  • Schön I, Gandolfi A, Di Masso E, Rossi V, Griffiths HI, Martens K, Butlin RK (2000) Persistence of asexuality through mixed reproduction in Eucypris virens (Crustacea, Ostracoda). Heredity 84: 161–169

    Article  PubMed  Google Scholar 

  • Schön I, Lamatsch D, Martens K. (2008) Lessons to learn from ancient asexuals. In: Egel R, Lankenau D-H (eds) Genomic Dynamics and Stability, Vol. 2: Meiosis and Recombination. Crossing Over and Disjunction. Springer Publishers, Berlin, pp. 341–376

    Google Scholar 

  • Schön I, Martens K (1998a) Sex determination in non-marine ostracods. In: Martens K (ed) Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods), Backhuys Publ, Leiden, pp. 25–36

    Google Scholar 

  • Schön I, Martens K (1998b) Opinion: DNA-repair in ancient asexuals: a new solution to an old problem? J nat Hist 32: 943–948

    Article  Google Scholar 

  • Schön I, Martens K (2000) Transposable elements and asexual reproduction. Trends Ecol Evol 15: 287–288

    Article  PubMed  Google Scholar 

  • Schön I, Martens K (2007) Is there molecular evidence for sex in Vestalenula cornelia? Abstract book of the 19th Senckenberg Conference and the European Ostracodologist’s Meeting VI, Frankfurt Main, Germany (5–7 september 2007), p. 45

    Google Scholar 

  • Schön I, Martens K (2003) No slave to sex. Proc R Soc Lond B 270: 827–833

    Article  Google Scholar 

  • Schön I, Martens K, Van Doninck K, Butlin RK (2003) Evolution in the slow lane: molecular rates of evolution in sexual and asexual ostracods (Crustacea: Ostracoda). Biol J Linn Soc 79: 93–100

    Article  Google Scholar 

  • Schurko AM, Neiman M, Logsdon JM Jr (2009) Signs of sex; what we know and how we know it. Trends Ecol Evol 24: 208–217

    Google Scholar 

  • Signorovitch AY, Dellaporta SL, Buss LW (2005) Molecular signatures for sex in the Placozoa. Proc Natl Acad Sci USA 102: 15518–15522

    Article  PubMed  CAS  Google Scholar 

  • Smith RJ, Kamiya T, Horne DJ (2006) Living males of the ‘ancient asexual’ Darwinulidae (Ostracoda: Crustacea). Proc R Soc Lond B 273: 1569–1578

    Article  Google Scholar 

  • Straub EB (1952) Mikropaläontologische Untersuchungen im Tertiär zwischen Ehingen und Ulm a.d. Donau. Geol Jb 66: 433–523

    Google Scholar 

  • Styk O (1976) Triassic assemblages of ostracods from Brackish marine waters of Poland. Abh Verh Naturwiss Ver Hamburg (NF) 18/19 (Suppl): 275–277

    Google Scholar 

  • Taberly G (1987) Recherches sur la parthénogenèse thélytoque de deux espèces d’acariens oribatides: Trhypochthnonius tectorum (Berlese) et Platynothrus peltifer (Koch). IV. Observations sur les males ataviques. Acarologia 29: 95–107

    Google Scholar 

  • Tétart J (1978) Les garnitures chromosomiques des Ostracodes d’ eau douce. Trav Lab Hydrobiol Univ Grenoble 39–70: 113–140

    Google Scholar 

  • Turgeon J, Hebert PDN (1995) Genetic characterization of breeding systems, ploidy levels and species boundaries in Cypricercus (Ostracoda). Heredity 75: 561–570

    Article  Google Scholar 

  • Turner CH (1895) Freshwater Ostracoda of the United States. Minn Geol Nat Hist Surv Zool Ser 2: 277–337.

    Google Scholar 

  • Urosevic D (1979) Stratigraphic position of sediments with Darwinula in the Rhaetian of Stara Planina Mountain (Yugoslavia). In: Krstic N (ed) Taxonomy, Biostratigraphy and Distribution of Ostracodes, Proc 7th Int Symp Ostracodes. Serbian Geol Soc, Beograd, pp. 109–112 [in Russian]

    Google Scholar 

  • Van den Broecke L, Schön I, Martens K (2007) DNA repair in the asexual ostracods Darwinula stevensoni and Eucypris virens. Abstract book of the Open Project Meeting of the SEXASEX EU RTN MCA project “Paradox of sex, theory and data”, Zürich, Switzerland (14–15 september 2007)

    Google Scholar 

  • Van Dijk PJ (2007) Potential and realized costs of sex in dandelions, Taraxacum officinale s.l. In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: Evolution, Mechanisms and Perspectives. Gantner, Ruggell, pp. 215–233

    Google Scholar 

  • Van Doninck K, Schön I, De Bruyn L, Martens K (2002) A general purpose genotype in an ancient asexual. Oecologia 132: 205–212

    Article  Google Scholar 

  • Van Doninck K, Schön I, Martens K, Godderis B (2003a) The life cycle of the ancient asexual ostracod Darwinula stevensoni (Brady and Robertson, 1870) (Crustacea, Ostracoda) in a temperate pond. Hydrobiologia 500: 331–340

    Article  Google Scholar 

  • Van Doninck K, Schön I, Maes F, De Bruyn L, Martens K (2003b) Ecological strategies in the ancient asexual animal group Darwinulidae. Freshwater Biol 48: 1285–1294

    Article  Google Scholar 

  • Van Valen LM (1973) A new evolutionary law. Evol Theory 1: 130

    Google Scholar 

  • Vrijenhoek RC (1979) Factors affecting clonal diversity and coexistence. Am Zool 19: 787–797

    Google Scholar 

  • Vrijenhoek RC (1984) Ecological differentiation among clones: the frozen niche variation model. In: Wöhrmann K, Loeschcke V (eds) Population Biology and Evolution. Springer-Verlag, Heidelberg, pp. 217–231

    Google Scholar 

  • White MJD (1973) Animal cytology and evolution, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Yin Y, Geiger W, Martens K (1999) Effects of genotype and environment on phenotypic variability in Limnocythere inopinata (Crustacea: Ostracoda). Hydrobiologia 400: 85–114

    Article  Google Scholar 

  • Zeyl C, Bell G, Green DM (1996) Sex and the spread of the retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae. Genetics 143: 1567–1577

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

IS and KM acknowledge the Belgian OSTC for funding (MO/36/005 and MO/36/015). This work was also funded by the EU Marie Curie Research Training Network SexAsex (From Sex to Asex: a case study on interactions between sexual and asexual reproduction, contract MRTN-CT-2004-512492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isa Schön .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schön, I., Rossetti, G., Martens, K. (2009). Darwinulid Ostracods: Ancient Asexual Scandals or Scandalous Gossip?. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_11

Download citation

Publish with us

Policies and ethics