Skip to main content

String-Localized Quantum Fields, Modular Localization, and Gauge Theories

  • Conference paper
New Trends in Mathematical Physics

Abstract

The concept of modular localization introduced by Brunetti, Guido and Longo, and Schroer, can be used to construct quantum fields. It combines Wigner’s particle concept with the Tomita-Takesaki modular theory of operator algebras. I report on the construction of free fields which are localized in semi-infinite strings extending to space-like infinity (mainly in collaboration with B. Schroer and J. Yngvason). Particular applications are: The first local (in the above sense) construction of fields for Wigner’s massless “infinite spin” particles; String-localized vector/tensor potentials for Photons and Gravitons, respectively; Massive vector bosons. Some speculative ideas are be presented concerning the perturbative construction of gauge theories (and quantum gravity) completely within a Hilbert space, trading gauge dependence with dependence on the direction of the localization string.

Supported by CNPq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.F. Abbott, Massless particles with continuous spin indices. Phys. Rev. D 13, 2291 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.J. Bisognano and E.H. Wichmann, On the duality condition for a Hermitean scalar field. J. Math. Phys. 16, 985 (1975)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. J. Bros and H. Epstein, Charged physical states and analyticity of scattering amplitudes in the Buchholz Fredenhagen framework. 11th International Conference on Mathematical Physics, July 1994, pp. 330–341

    Google Scholar 

  4. J. Bros and U. Moschella, Two-point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 8, 324 (1996)

    MathSciNet  Google Scholar 

  5. R. Brunetti and K. Fredenhagen, Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. R. Brunetti and K. Fredenhagen, Towards a background independent formulation of perturbative quantum gravity. Workshop on Mathematical and Physical Aspects of Quantum Gravity, Blaubeuren, Germany (2006). arXiv:gr-qc/0603079

  7. R. Brunetti, D. Guido, and R. Longo, Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–786 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Buchhholz, The physical state space of quantum electrodynamics. Commun. Math. Phys. 85, 49 (1982)

    Article  ADS  Google Scholar 

  9. D. Buchholz and K. Fredenhagen, Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. S. Doplicher and J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131, 51–107 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. S. Doplicher, R. Haag, and J.E. Roberts, Fields, observables and gauge transformations II. Commun. Math. Phys. 15, 173–200 (1969)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. M. Dütsch, T. Hurth, F. Krahe, and G. Scharf, Causal construction of Yang-Mills theories, 1. Nuovo Cimento 106, 1029–1041 (1993)

    Article  ADS  Google Scholar 

  13. H. Epstein and V. Glaser, The role of locality in perturbation theory. Ann. Poincaré Phys. Theor. A 19, 211–295 (1973)

    MathSciNet  Google Scholar 

  14. L. Fassarella and B. Schroer, Wigner particle theory and local quantum physics. J. Phys. A 35, 9123–9164 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. T. Hurth, Higgs-free massive non-Abelian gauge theories. Helv. Phys. Acta 70, 406–416 (1997)

    MATH  MathSciNet  Google Scholar 

  16. G.J. Iverson and G. Mack, Quantum fields and interactions of massless particles: The continuous spin case. Ann. Phys. 64, 211–253 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  17. P. Kristensen, C. Møller, and K. Dan, Vidensk. Selsk. Mat.-Fis. Medd. 27(7) (1952)

    Google Scholar 

  18. S. Mandelstam, Quantum electrodynamics without potentials. Ann. Phys. 19, 1–24 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. R. Marnelius, Action principle and nonlocal field theories. Phys. Rev. D 8, 2472–2495 (1973)

    Article  ADS  Google Scholar 

  20. C. Møller, Proceedings of the International Conference on Theoretical Physics, Kyoto and Tokyo, Science Council of Japan, September 1953

    Google Scholar 

  21. J. Mund, The Bisognano-Wichmann theorem for massive theories. Ann. Henri Poincaré 2, 907–926 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Mund, Modular localization of massive particles with “any” spin in d=2+1. J. Math. Phys. 44, 2037–2057 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. J. Mund, Two-point functions and propagators of string-localized free fields (in preparation)

    Google Scholar 

  24. J. Mund, B. Schroer, and J. Yngvason, String-localized quantum fields from Wigner representations. Phys. Lett. B 596, 156–162 (2004)

    ADS  MathSciNet  Google Scholar 

  25. J. Mund, B. Schroer, and J. Yngvason, String-localized quantum fields and modular localization. Commun. Math. Phys. 268, 621–672 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. G. Scharf, Quantum Gauge Theories. Wiley, New York (2001)

    MATH  Google Scholar 

  27. O. Steinmann, A Jost-Schroer theorem for string fields. Commun. Math. Phys. 87, 259–264 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. F. Strocchi, Gauge problem in quantum field theory. Phys. Rev. 5, 1429–1438 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  29. F. Strocchi, Gauge problem in quantum field theory. II. Difficulties of combining Einstein equations and Wightman theory. Phys. Rev. 166, 1302–1307 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Weinberg, Feynman rules for any spin. Phys. Rev. 133, B1318–B1320 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Weinberg, Photons and gravitons in perturbation theory: Derivation of maxwell’s and Einstein’s equations. Phys. Rev. 138, B988–B1002 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Weinberg, The Quantum Theory of Fields I. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  33. G.B. West, General infrared and ultraviolet properties of the gluon propagator in the axial gauge. Phys. Rev. D 27, 1878–1893 (1983)

    ADS  Google Scholar 

  34. E.P. Wigner, Relativistische Wellengleichungen. Z. Phys. 124, 665–684 (1948)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. F. Wilczek, Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49(14), 957–1149 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Yngvason, Zero-mass infinite spin representations of the Poincaré group and quantum field theory. Commun. Math. Phys. 18, 195–203 (1970)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Mund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Mund, J. (2009). String-Localized Quantum Fields, Modular Localization, and Gauge Theories. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_33

Download citation

Publish with us

Policies and ethics