Skip to main content

Nanocomposite Latex Films and Control of Their Properties

  • Chapter
Fundamentals of Latex Film Formation

Part of the book series: Springer Laboratory ((SPLABORATORY))

Abstract

We have seen in previous chapters how identical, homogeneous particles may be used as the ‘building blocks’ of a homogeneous film. Within the past decade, there has been enhanced interest in using colloidal particles in water to create nanocomposite films, which are defined as materials made of two or more phases blended at nanometre length scales. A key advantage of the colloidal approach is that it offers control of structure at the nanoscale (within particles) and at the meso- and even macroscale through the creation of ordered assemblies of particles via film formation. The fabrication of nanocomposites offers exciting new challenges and opportunities for the science and technology of latex film formation. The film formation process offers a way of tailoring the properties of nanocomposite films through the control of the assembly of particles, just as is the case for conventional latex films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizenberg J., Braun P.V., Wiltzius P. (2000) Patterned colloidal deposition controlled by electrostatic and capillary forces. Phys Rev Lett 84:2997–3000.

    CAS  Google Scholar 

  • Ajayan P.M., Tour J.M. (2007) Materials science—Nanotube composites. Nature 447:1066–1068.

    CAS  Google Scholar 

  • Amalvy J.I., Percy M.J., Armes S.P., Wiese H. (2001) Synthesis and characterisation of novel film-forming vinyl polymer/silica colloidal nanocomposites. Langmuir 17: 4770–4778.

    CAS  Google Scholar 

  • Arsenault A.C., Puzzo D.P., Manners I., Ozin G.A. (2007) Photonic-crystal fullcolour displays. Nature Photonics 1:468–472.

    CAS  Google Scholar 

  • Asua J.M. (2002) Mini-emulsion polymerisation. Prog Polym Sci 27:1283–1346.

    CAS  Google Scholar 

  • Ayutsede J., Gandhi M., Sukigara S., Ye H., Hsu C.-M., Gogotsi Y., Ko F. (2006) Carbon nanotube reinforced Bombyx mori silk nanofibres by the electrospinning process. Biomacromolecules 7:208–214.

    CAS  Google Scholar 

  • Bauhofer W. and Kovacs J.Z. (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology 69 (Spec. Issue S.I):1486–1498

    CAS  Google Scholar 

  • Bon S.A.F., Colver P.J. (2007) Pickering miniemulsion polymerisation using Laponite clay as a stabiliser. Langmuir 23:8316–8322.

    CAS  Google Scholar 

  • Bonderer L.J., Studart A.R., Gauckler L.J. (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319:1069–1073.

    CAS  Google Scholar 

  • Bureau L., Léger L. (2004) Sliding friction at a rubber-brush interface. Langmuir 20:4253–4529.

    Google Scholar 

  • Callister W.D. (2007) Materials Science and Engineering, An Introduction. 7th ed. John Wiley & Sons, Inc. 585–595.

    Google Scholar 

  • Casoli A., Brendlé M., Schultz J., Auroy P., Reiter G. (2001) Friction induced by grafted polymeric chains. Langmuir 17:388–398.

    CAS  Google Scholar 

  • Castelvetro V., De Vita C. (2004) Nanostructured hybrid materials from aqueous polymer dispersions. Adv Coll Interf Sci 108–109:167–185.

    Google Scholar 

  • Cauvin S., Colver P.J., Bon S.A.F. (2005) Pickering stabilised miniemulsion polymerisation:Preparation of clay armoured latexes. Macromolecules 38:7887–7889.

    CAS  Google Scholar 

  • Caruso F., Susha A.S., Giersig M., Möhwald H. (1999) Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres. Adv Mater 11:950–+.

    CAS  Google Scholar 

  • Chen K.M., Jiang X., Kimerling L.C., Hammond P.T. (2000) Selective self-organisation of colloids on patterned polyelectrolyte templates. Langmuir 16:7825–7834.

    CAS  Google Scholar 

  • Chen T., Colver P.J., Bon S.A.F. (2007) Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilised Pickering emulsion polymerisation. Adv Mater 19:2286–+.

    CAS  Google Scholar 

  • Cheng W., Wang J.J., Jonas U., Fytas G., Stefanou N. (2006) Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat Mater 5:830–836.

    CAS  Google Scholar 

  • Chevalier Y., Hidalgo M., Cavaillé J.-Y., Cabane B. (1999) Structure of waterborne organic composite coatings. Macromolecules 32:7887–7896

    CAS  Google Scholar 

  • Coleman J.N., Khan U., Gun'ko Y.K. (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706.

    CAS  Google Scholar 

  • Coleman J.N., Khan U., Blau W.J., Gun'ko Y.K. (2006b) Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652.

    CAS  Google Scholar 

  • Colombini D., Hassander H., Karlsson O.J., Maurer F.H.J. (2004) Influence of the particle size and particle size ratio on the morphology and viscoelastic properties of bimodal hard/soft latex blends. Macromolecules 37:6865–6873.

    CAS  Google Scholar 

  • Colombini D., Ljungberg N., Hassander H., Karlsson O.J. (2005) The effect of polymerisation route on the amount of interphase in structured latex particles and their corresponding films. Polymer 46:1295–1308.

    CAS  Google Scholar 

  • Cong H.L., Cao W.X. (2003) Colloidal crystallisation induced by capillary force. Langmuir 19:8177–8181.

    CAS  Google Scholar 

  • Creton C., Kramer E.J., Hui C.Y., Brown H.R. (1992) Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25:3075–3088.

    CAS  Google Scholar 

  • Creton C., Brown H.R., Shull K.R. (1994) Molecular-weight effects in chain pullout. Macromolecules 27:3174–3183.

    CAS  Google Scholar 

  • Cumpston B.H., Ananthavel S.P., Barlow S., Dyer D.L., Ehrlich J.E., Erskine L.L., Heikal A.A., Kuebler S.M., Lee I.-Y.S., McCord-Maughon D., Qin J.Q., Röckel H., Rumi M., Wu X.-L., Marder S.R., Perry J.W. (1999) Two-photon polymerisation initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    CAS  Google Scholar 

  • Dai C.A., Kramer E.J., Washiyama J., Hui C.Y. (1996) Fracture toughness of polymer interface reinforced with diblock copolymer: Effect of homopolymer molecular weight. Macromolecules 29:7536–7543.

    CAS  Google Scholar 

  • Dalton A.B., Collins S., Munoz E., Razal J.M., Ebron V.H., Ferraris J.P., Coleman J.N., Kim B.G., Baughman R.H. (2003) Super-tough carbon-nanotube fibres. Nature 423:703.

    CAS  Google Scholar 

  • Deng Y., Liu C., Liu J., Zhang F., Yu T., Zhang F., Gu D., Zhao D. (2008) A novel approach to the construction of 3-D. ordered macrostructures with polyhedral particles. J Mater Chem 18:408–415.

    CAS  Google Scholar 

  • Deplace F., Rabjohns M.A., Yamaguchi T., Foster A.B., Carelli C., Lei C.-H., Ouzineb K., Keddie J.L., Lovell P.A., Creton C. (2009) Deformation and adhesion of a soft-soft nanocomposite designed with structured polymer colloid particles. Soft Matter 5:1440–1447.

    CAS  Google Scholar 

  • Diaconu G., Paulis M., Leiza J.R. (2008) Towards the synthesis of high solids content waterborne poly(methyl methacrylate-co-butyl acrtylate)/montmorrillonite nanocomposites. Polymer 49:2444–2454.

    CAS  Google Scholar 

  • Diaconu G., Micusik M., Bonnefond A., Paulis M., Leiza J.R. (2009) Macromolecules. 42: 3316–3325.

    CAS  Google Scholar 

  • Dionigi C., Stoliar P., Ruani G., Quiroga S.D., Facchini M., Biscarini F. (2007) Carbon nanotube networks patterned from aqueous solutions of latex bead carriers. J Mater Chem 17:3681–3686.

    CAS  Google Scholar 

  • Domingues dos Santos F., Leibler L. (2003) Large deformation of films from softcore/hard-shell hydrophobic latices. J Polym Sci: Pt B: Polym Phys 41:224–234.

    Google Scholar 

  • Dupin D., Schmid A., Balmer J.A., Armes S.P. (2007) Efficient synthesis of poly(2-vinylpyridine)-silica colloidal nanocomposite particles using a cationic azo initiator. Langmuir 23:11812–11818.

    CAS  Google Scholar 

  • Dziomkina N.V., Vancso G.J. (2005) Colloidal crystal assembly on topologically patterned templates. Soft Matt 1:265–279.

    CAS  Google Scholar 

  • Frith W.J. and Buscall R. (1991) Percolation and critical exponents on randomly close-packed mixtures of hard spheres. J Chem Phys 95:5983–5989.

    CAS  Google Scholar 

  • Foygel M., Morris R.D., Anez D., French S., Sobolev V.L. (2005) Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 71:104201.

    Google Scholar 

  • Fustin C.A., Glasser G., Spiess H.W., Jonas U. (2004) Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces. Langmuir 20:9114–9123.

    CAS  Google Scholar 

  • Giannelis E.P. (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–&.

    CAS  Google Scholar 

  • Gilman J.W., Jackson C.L., Morgan A.B., Harris R., Manias E., Giannelis E.P., Wuthenow M., Hilton D., Phillips S.H. (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nano-composites. Chem Mater 12:1866–1873.

    CAS  Google Scholar 

  • Grossiord N.G., Loos J., Koning C.E. (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15:2349–2352.

    CAS  Google Scholar 

  • Grunlan J.C., Gerberich W.W., Francis L.F. (2001) Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J Appl Polym Sci 80:692–705.

    Google Scholar 

  • Guyot A., Landfester K., Schork F.J., Wang C. (2007) Hybrid polymer latexes. Prog Polym Sci 32:1439–1461.

    CAS  Google Scholar 

  • Halpin J.C., Kardso J.L. (1976) Halpin-Tsai equations—review. Polymer Engineering and Science 16:344–352

    CAS  Google Scholar 

  • Haraguchi K., Ebato M., Takehisa T. (2006) Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency. Adv Mater 18:2250–2254.

    CAS  Google Scholar 

  • Harley S., Thompson D.W., Vincent B. (1992) The adsorption of small particles onto larger particles of the opposite charge—Direct electron-microscope studies. Colloids and Surfaces 62:163–176.

    CAS  Google Scholar 

  • Hasell T., Yang J.X., Wang W.X., Li J., Brown P.D., Poliakoff M., Lester E., Howdle S.M. (2007) Preparation of hybrid polymer nanocomposite microparticles by a nanoparticle stabilised dispersion polymerisation. J Mater Chem 17:4382–4386.

    CAS  Google Scholar 

  • Hayward R.C., Saville D.A., Aksay I.A. (2000) Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404:56–59.

    CAS  Google Scholar 

  • Hoa M.L.K., Lu M.H., Zhang Y. (2006) Preparation of porous materials with ordered hole structure. Adv Colloid Interface Sci 121:9–23.

    CAS  Google Scholar 

  • Ji X.L., Jing J.K., Jiang W., Jiang B.Z. (2002) Tensile modulus of polymer nanocomposites. Polymer Engineering and Science 42:983–993.

    CAS  Google Scholar 

  • Jiang P. (2006) Large-scale fabrication of periodic nanostructured materials by using hexagonal non-close-packed colloidal crystals as templates. Langmuir 22:3955–3958.

    CAS  Google Scholar 

  • Jiang P., McFarland M.J. (2004) Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J Am Chem Soc 126:13778–13786.

    CAS  Google Scholar 

  • Jiang P., McFarland M.J. (2005) Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals. J Am Chem Soc 127:3710–3711.

    CAS  Google Scholar 

  • Karg M., Pastoriza-Santos I., Pérez-Juste J., Hellweg T., Liz-Marzán L.M. (2007) Nanorod coated PNIPAM microgels: Thermoresponsive optical properties. Small 3:1222–1229.

    CAS  Google Scholar 

  • Kashiwagi T., Morgan A.B., Antonucci J.M., Van Landingham M.R., Harris R.H., Awad W.H., Shield J.R. (2003) Thermal and flammability properties of silicapoly(methylmethacrylate) nanocomposite. J Appl Polym Sci 89:2072–2078.

    CAS  Google Scholar 

  • Khan M.A., Perruchot C., Armes S.P., Randall D.P. (2001) Synthesis of gold-decorated latexes via conducting polymer redox templates. J Mater Chem 11:2363–2372

    CAS  Google Scholar 

  • Kitaev V., Ozin G.A. (2003) Self-assembled surface patterns of binary colloidal crystals. Adv Mater 15:75–+.

    CAS  Google Scholar 

  • Kotov N.A., Liu Y.F., Wang S.P., Cumming C., Eghtedari M., Vargas G., Motamedi M., Nichlos J., Cortiella J. (2004) Inverted colloidal crystals as three-dimensional cell scaffolds. Langmuir 20:7887–7892.

    CAS  Google Scholar 

  • Kyrylyuk A.V., van der Schoot P. (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc. Nat. Acad. Sci - USA. 105:8221–8226.

    CAS  Google Scholar 

  • Kumacheva E., Kalinina O., Lilge L. (1999) Three-dimensional arrays in polymer nanocomposites. Adv Mater 11:231–+.

    CAS  Google Scholar 

  • Kusy R.P. (1977) Influence of particle size ratio on continuity of aggregates. J Appl Phys 48:5301–5305.

    CAS  Google Scholar 

  • Landfester K. (2009) Miniemulsion polymerisation and the structure of polymer and hybrid nanoparticles. Angewandte Chemie International Edition 48:4488–4507

    CAS  Google Scholar 

  • Lattuada M., Hatton T.A. (2007) Functionalisation of monodisperse magnetic nanoparticles. Langmuir 23:2158–2168

    CAS  Google Scholar 

  • Lee K., Asher S.A. (2000) Photonic crystal chemical sensors: pH. and ionic strength. J Am Chem Soc 122:9534–9537.

    CAS  Google Scholar 

  • Lee W., Chan A., Bevan M.A., Lewis J.A., Braun P.V. (2004) Nanoparticle-mediated epitaxial assembly of colloidal crystals on patterned substrates. Langmuir 20:5262–5270

    CAS  Google Scholar 

  • Lee J., Shanbhag S., Kotov N.A. (2006) Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures. J Mater Chem 16:3558–3564

    CAS  Google Scholar 

  • Li, D.J., Sheng X., Zhao B. (2005) Environmentally responsive ‘hairy’ nanoparticles: Mixed homopolymer brushes on silica nanoparticles synthesised by living radical polymerization techniques. J Am Chem Soc 127:6248–6256.

    CAS  Google Scholar 

  • Lin Y., Zhou B., Fernando K.A.S., Liu P., Allard L.F., Sun Y.-P. (2003) Polymerica carbon nanocomposites from carbon nanotubes functionalised with matrix polymer. Macromolecules 36:7199–7204.

    CAS  Google Scholar 

  • Lin Y., Meziani M.J., Sun P. (2007) Functionalised carbon nanotubes for polymeric nanocomposites. J Mater Chem 17:1143–1148.

    CAS  Google Scholar 

  • Liu Y.F., Wang S.P., Lee J.W., Kotov N.A. (2005) A floating self-assembly route to colloidal crystal templates for 3D. cell scaffolds. Chem Mater 17:4918–4924.

    CAS  Google Scholar 

  • Liu Y.Y., Chen X.Q., Wang R.H., Xin J.H. (2006) Polymer microspheres stabilised by titania nanoparticles. Mater Lett 60:3731–3734.

    CAS  Google Scholar 

  • Lu C.H., Qi L.M., Cong H.L., Wang X.Y., Yang J.H., Yang L.L., Zhang D.Y., Ma J.M., Cao W.X. (2005) Synthesis of calcite single crystals with porous surface by templating of polymer latex particles. Chem Mater 17:5218–5224.

    CAS  Google Scholar 

  • Mackay M.E., Dao T.T., Tuteja A., Ho D.L., Van Horn B., Kim H.-C., Hawker C.J. (2003) Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nature Materials 2:762–766.

    CAS  Google Scholar 

  • Malaquin L., Kraus T., Schmid H., Delamarche E., Wolf H. (2007) Controlled particle placement through convective and capillary assembly. Langmuir 23:11513–11521.

    CAS  Google Scholar 

  • Masuda Y., Itoh T., Itoh M., Koumoto K. (2004) Self-assembly patterning of colloidal crystals constructed from opal structure or NaCl structure. Langmuir 20:5588–5592.

    CAS  Google Scholar 

  • Mayer A.B.R., Grebner W., Wannemacher R. (2000) Preparation of silver-latex composites. J Phys Chem B 104:7278–7285.

    CAS  Google Scholar 

  • McCullen S.D., Stevens D.R., Roberts W.A., Ojha S.S., Clarke L.I., Gorga R.E. (2007) Morphological, electrical and mechanical characterisation of electrospun nanofibre mats containing multiwalled carbon nanotubes. Macromolecules 40:997–1003.

    CAS  Google Scholar 

  • Mezzenga R., Ruokolainen J., Fredrickson G.H., Kramer E.J., Moses D., Heeger A.J., Ikkala O. (2003) Templating organic semiconductors via self-assembly of polymer colloids. Science 299:1872–1874.

    CAS  Google Scholar 

  • Miaudet P., Badaire S., Maugey M., Derré A., Pichot V., Launois P. (2005) Hot-drawing of single and multiwall carbon nanotube fibres for high toughness and alignment. Nano Lett 5:2212–2215.

    CAS  Google Scholar 

  • Mihi A., Ocana M., Miguez H. (2006) Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv Mater 18:2244–+.

    CAS  Google Scholar 

  • Moniruzzaman M., Winey K.I. (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205.

    CAS  Google Scholar 

  • Negrete-Herrara N., Putaux J.-L., David L., De Haas F., Bourgeat-Lami E. (2007) Polymer/laponite composite latexes: Particle morphology, film microstructure, and properties. Macromol Rapid Commun 28:1567–1573.

    Google Scholar 

  • Noh M.H., Lee D.C. (1999) Comparison of characteristics of SAN-MMT nano-composites prepared by emulsion and solution polymerisation. J Appl Polym Sci 74:2811–2810

    CAS  Google Scholar 

  • Norton L.J., Smigolova V., Pralle M.U., Hubenko A., Dai K.H., Kramer E.J. (1995) Effect of end-anchored chains on the adhesion at a thermoset-thermoplastic interface. Macromolecules 28:1999–2008.

    CAS  Google Scholar 

  • Ohno K., Koh K., Tsujii Y., Fukuda T. (2002) Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerisation. Macromolecules 35:8989–8993.

    CAS  Google Scholar 

  • Pan F., Zhang J.Y., Cai C., Wang T.M. (2006) Rapid fabrication of large-area colloidal crystal monolayers by a vertical surface method. Langmuir 22:7101–7104

    CAS  Google Scholar 

  • Paunov V.N., Panhuis M.I.H. (2005) Fabrication of carbon nanotube-based microcapsules by a colloid templating technique. Nanotechnology 16:1522–1525.

    CAS  Google Scholar 

  • Pauchard L., Abou B., Sekimoto K. (2009) Influence of mechanical properties of nanoparticles on macrocrack formation. Langmuir 25:6672–6677

    CAS  Google Scholar 

  • Percy M.J., Barthet C., Lobb J.C., Khan M.A., Lascelles S.F., Vamvakaki M., Armes S.P. (2000) Synthesis and characterisation of vinyl polymer-silica nano-composites. Langmuir 16:6913–6920.

    CAS  Google Scholar 

  • Pich A., Hain J., Prots Y., Adler H.J. (2005) Composite polymeric particles with ZnS. shells. Polymer 46:7931–7944.

    CAS  Google Scholar 

  • Pickering S.U. (1907) Emulsions. J Chem Soc 91:2001–2021.

    Google Scholar 

  • Prevo B.G., Velev O.D. (2004) Controlled, rapid deposition of structured coatings from micro- and nanoparticles suspensions. Langmuir 20:2099–2107

    CAS  Google Scholar 

  • Pyun J., Matyjaszewski K. (2001) Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/'living' radical polymerisation. Chem Mater 13:3436–3438.

    CAS  Google Scholar 

  • Radtchenko I.L., Sukhorukov G.B., Gaponik N., Kornowski A., Rogach A.L., Mohwald H. (2001) Core-shell structures formed by the solvent controlled precipitation of luminescent CdTe nanocrystals on latex spheres. Adv Mater 13:1684–1687.

    CAS  Google Scholar 

  • Ramsden W. (1903) Separation of solids in the surface-layers of solutions and ‘suspensions’ (Observations on the surface-membranes, bubbles, emulsions, and mechanical coagulation). Preliminary account. Proc R Soc London 72:156–164

    CAS  Google Scholar 

  • Reculusa S., Poncet-Legrand C., Ravaine S., Mingotaud C., Duguet E., Bourgeat-Lami E. (2002) Syntheses of raspberry-like silica/polystyrene materials. Chem Mater 14:2354–2359.

    CAS  Google Scholar 

  • Regev O., El Kati P.N.B., Loos J., Koning C.E. (2004) Preparation of conductive nanotube-polymer composites using latex technology. Adv Mater 16:248–+.

    CAS  Google Scholar 

  • Ren Z.Y., Li X., Zhang J.H., Li W., Zhang X.M., Yang B. (2007) Tunable two-dimensional non-close-packed microwell arrays using colloidal crystals as templates. Langmuir 23:8272–8276.

    CAS  Google Scholar 

  • Rodríguez R., de las Heras Alarcón C., Ekanayake P., McDonald P.J., Keddie J.L., Barandiaran M.J., Asua J.M. (2009) Correlation of Silicone Incorporation into Hybrid Acrylic Coatings with the Resulting Hydrophobic and Thermal Properties. Macromolecules 41, 8537–8546

    Google Scholar 

  • Rogach A., Susha A., Caruso F., Sukhorukov G., Kornowski A., Kershaw S., Möhwald H., Eychmüller A., Weller H. (2000) Nano- and microengineering: Three-dimensional colloidal photonic crystals prepared from submicometresize polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells. Adv Mater 12:333–+.

    CAS  Google Scholar 

  • Rogers J.A. (2001) Electronics—Toward paper-like displays. Science 291:1502–1503.

    CAS  Google Scholar 

  • Rossi G.B., Beaucage G., Dang T.D., Vaia R.A. (2002) Bottom-up synthesis of polymer nanocomposites and molecular composites: Ionic exchange with PMMA latex. Nano Lett 2:319–323.

    CAS  Google Scholar 

  • Ruhl T., Spahn P., Hellmann G.P. (2003) Artificial opals prepared by melt compression. Polymer 44:7625–34

    CAS  Google Scholar 

  • Schaak R.E., Cable R.E., Leonard B.M., Norris B.C. (2004) Colloidal crystal microarrays and two-dimensional superstructures: A versatile approach for patterned surface assembly. Langmuir 20:7293–7297.

    CAS  Google Scholar 

  • Schellenberg C., Tauer K., Antonietti (2000) Nanostructured polymer films based on core-shell latexes: Preparation and characterisation. Macromol Symp 151:465–71.

    CAS  Google Scholar 

  • Schmid A., Fujii S., Armes S.P. (2006) Polystyrene-silica nanocomposite particles via alcohol dispersion polymerisation using a cationic azo initiator. Langmuir 22:4923–4927.

    CAS  Google Scholar 

  • Schmid A., Fujii S., Armes S.P., Leite C.A.P., Galembeck F., Minami H., Saito N., Okubo M. (2007) Polystyrene-silica colloidal nanocomposite particles prepared by alcoholic dispersion polymerisation. Chem Mater 19:2435–2445.

    CAS  Google Scholar 

  • Schuler B., Baumstark R., Kirsch S., Pfau A., Sandor M., Zosel A. (2000) Structure and properties of multiphase particles and their impact on the performance of architectural coatings. Prog Org Coatings 40:139–150.

    CAS  Google Scholar 

  • Shah D., Maiti P., Gunn E., Schmidt D.F., Jiang D.D., Batt C.A., Giannelis E.P. (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nano-composites via nanoclay-directed crystal structure and morphology. Adv Mater 16:1173–1177.

    CAS  Google Scholar 

  • Shah D., Fytas G., Vlassopoulos D., Di J., Sogah D., Giannelis E.P. (2005) Structure and dynamics of polymer-grafted clay suspensions. Langmuir 21:19–25.

    CAS  Google Scholar 

  • Sherman R.L., Ford W.T. (2005) Semiconductor nanoparticle/polystyrene latex composite materials. Langmuir 21:5218–5222.

    CAS  Google Scholar 

  • Shi J.H., Yang B.X., Pramoda K.P., Goh S.H. (2007) Enhancement of the mechanical performance of poly(vinyl chloride) using poly(n-butyl methacrylate)-grafted multi-walled carbon nanotubes. Nanotechnology 18:375704.

    Google Scholar 

  • Shimmin R.G., DiMauro A.J., Braun P.V. (2006) Slow vertical deposition of colloidal crystals: A Langmuir-Blodgett process? Langmuir 22:6507–6513.

    CAS  Google Scholar 

  • Shvartzman-Cohen R., Levi-Kalisman Y., Nativ-Roth E., Yerushalmi-Rozen R. (2004) Generic approach for dispersing single-walled carbon nanotubes: The strength of weak interaction. Langmuir 20:6085–6088

    CAS  Google Scholar 

  • Shvartzman-Cohen R., Nativ-Roth E., Baskaran E., Levi-Kalisman Y., Szleifer I., Yerushalmi-Rozen R. (2004b) Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. J Am Chem Soc 126:14850–14857.

    CAS  Google Scholar 

  • Stein A., Li F., Denny N.R. (2008) Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater 20:649–666.

    CAS  Google Scholar 

  • Stubbs J.M., Sundberg D.C. (2007) The dynamics of morphology development in multiphase latex particles. Prog Org. Coatings 61:156–165.

    Google Scholar 

  • Stubbs J.M., Sundberg D.C. (2008) Core-shell and other multiphase latex particles—confirming their morphologies and relating these to synthesis variables. JCT Research 5:169–180.

    CAS  Google Scholar 

  • Sun C.H., Linn N.C., Jiang P. (2007) Templated fabrication of periodic metallic nanopyramid arrays. Chem Mater 19:4551–4556

    CAS  Google Scholar 

  • Suresh K.I., Pakula T., Bartsch E. (2007) Synthesis, morphology and rheological behaviour of fluoropolymer-polyacrylate nanocomposites. Macromol React Eng 1:253–263

    CAS  Google Scholar 

  • Susha A.S., Caruso F., Rogach A.L., Sukhorukov G.B., Kornowski A., Möhwald H., Giersig M., Eychmüller A., Weller H. (2000) Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids. Colloid Surface A 163:39–44.

    CAS  Google Scholar 

  • Tian C.G., Mao B.D., Wang E.B., Kang Z.H., Song Y.L., Wang C.L., Li S.H. (2007) Simple strategy for preparation of core colloids modified with metal nanoparticles. J Phys Chem C 111:3651–3657.

    CAS  Google Scholar 

  • Tiarks F., Landfester K., Antonietti M. (2001) Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerisation. Langmuir 17:5775–5780.

    CAS  Google Scholar 

  • Tiarks F., Leuninger J., Wagner O., Jahns E., Wiese H. (2007) Nanocomposite dispersions for water-based coatings. Surf Coatings Intern 5:221–229.

    Google Scholar 

  • Tuteja A., Mackay M.E., Hawker C.J., Van Horn B. (2005) Effect of ideal, organic nanoparticles on the flow properties of linear polymers: Non-Einsteinlike behaviour. Macromolecules 38:8000–8011

    CAS  Google Scholar 

  • Tuteja A., Duxbury P.M., Mackay M.E. (2007) Multifunctional nanocomposites with reduced viscosity. Macromolecules 40:9427–9434

    CAS  Google Scholar 

  • Tuteja A., Mackay M.E., Narayanan S., Asokan S., Wong M.S. (2007b) Breakdown of the continuum Stokes-Einstein relation for nanoparticle diffusion. Nano Letters 7:1276–1281

    CAS  Google Scholar 

  • Vandervorst, P., Lei C., Lin Y., Dupont O., Dalton A.B., Sun Y.-P., and Keddie J.L. (2006) Prog Organic Coat. 57:91–97

    CAS  Google Scholar 

  • Vaia R.A., Maguire J.F. (2007) Polymer nanocomposites with prescribed morphology: Going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751.

    CAS  Google Scholar 

  • Vaisman L., Wagner H.D., and Marom G. (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46.

    Google Scholar 

  • Venkatesh S., Jiang P., Jiang B. (2007) Generalised fabrication of two-dimensional non-close-packed colloidal crystals. Langmuir 23:8231–8235.

    CAS  Google Scholar 

  • Von Werne T., Patten T.E. (1999) Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerisations. J Am Chem Soc 121:7409–7410.

    Google Scholar 

  • Von Werne T., Patten T.E. (2001) Atom transfer radical polymerisation from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/'living' radical polymerisations from surfaces. J Am Chem Soc 123:7497–7505.

    Google Scholar 

  • Voorn D.J., Ming W., van Herk A.M. (2006) Polymer-clay nanocomposite latex particles by inverse Pickering emulsion polymerisation stabilised with hydrophobic montmorillonite platelets. Macromolecules 39:2137–2143.

    CAS  Google Scholar 

  • Wang D.Y., Möhwald H. (2004) Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Adv Mater 16:244–+.

    CAS  Google Scholar 

  • Wang C., Chu F., Graillat C., Guyot A., Gauthier C., Chapel J.P. (2005) Hybrid polymer latexes: acrylics-polyurethane from miniemulsion polymerisation: properties of hybrid latexes versus blends. Polymer 46:1113–1124.

    CAS  Google Scholar 

  • Wang T., Lei C.H., Dalton A.B., Creton C., Lin Y., Shiral Fernando K.A., Sun Y.-P., Manea M., Asua J.M., Keddie J.L. (2006) Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency and electrical conductivity. Adv Mater 18:2730–2734.

    CAS  Google Scholar 

  • Wang J., Wen Y., Ge H., Sun Z., Zheng Y., Song Y., Jiang L. (2006b) Simple fabrication of full colour colloidal crystal films with tough mechanical strength. Macromol Chem Phys 207:596–604.

    CAS  Google Scholar 

  • Wang L.K., Zhao X.S. (2007) Fabrication of crack-free colloidal crystals using a modified vertical deposition method. J Phys Chem C 111:8538–8542.

    CAS  Google Scholar 

  • Wang T., Lei C.-H., Liu D., Manea M., Asua J.M., Creton C., Dalton A.B., Keddie J.L. (2008) A molecular mechanism for toughening and strengthening waterborne nanocomposites. Adv Mater 20:90–94.

    Google Scholar 

  • Wang J., Ahl S., Li Q., Kreiter M., Neumann T., Burkert K., Knoll W., Jonas U. (2008b) Structural and optical characterisation of 3D. binary colloidal crystal and inverse opal films prepared by direct co-deposition. J Mater Chem 18:981–988.

    CAS  Google Scholar 

  • Wang T., Dalton A.B., Keddie J.L. (2008c) Importance of molecular friction in a soft polymer-nanotube nanocomposite. Macromolecules 41:7656–7661.

    CAS  Google Scholar 

  • Wang T., Keddie J.L. (2009) Design and fabrication of colloidal polymer nano-composites. Adv Coll Interf Sci. 147–148:319–332.

    Google Scholar 

  • Watanabe J. and Lepoutre P. (1982) A mechanism for the consolidation of the structure of clay-latex coatings. J Appl Polym Sci 27:4207–4219

    CAS  Google Scholar 

  • Weitenkopf D. (2009) www.col9.de (accessed July 1, 2009)

  • Wohlleben W., Bartels F.W., Altmann S., Leyrer R.J. (2007) Mechano-optical octave-tuneable elastic colloidal crystals made from core-shell polymer beads with self-assembly techniques. Langmuir 23:2961–2969.

    CAS  Google Scholar 

  • Xia Y.N., Yin Y.D., Lu Y., McLellan J. (2003) Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv Funct Mater 13:907–918.

    CAS  Google Scholar 

  • Xie L., Qiu F., Lu H.B., Yang Y.L. (2007) Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40:3296–3305.

    CAS  Google Scholar 

  • Xu L., Reeder S., Thopasridharan M., Ren J., Shipp D.A., Krishnamoorti R. (2005) Structure and melt rheology of polystyrene-based layered silicate nano-composites. Nanotechnology 16: S514–S521

    Google Scholar 

  • Xue Z. and Wiese H. (2006) U.S. patent U.S7094830B2 2006.

    Google Scholar 

  • Yang Z.Z., Qiu D., Li J. (2002) Waterborne dispersions of a polymer-encapsulated inorganic particle nanocomposite by phase-inversion emulsification. Macromol Rapid Commun 23:479–483.

    CAS  Google Scholar 

  • Yang J., Hasell T., Wang W.X., Li J., Brown P.D., Poliakoff M., Lester E., Howdle S.M. (2008) Preparation of hybrid polymer nanocomposite microparticles by a nanoparticle stabilised dispersion. J Mater Chem 18:998–1001.

    CAS  Google Scholar 

  • Yerushalmi-Rozen R., Szleifer I. (2006) Utilising polymers for shaping the interface behaviour of carbon nanotubes. Soft Matt. 2:24–28.

    CAS  Google Scholar 

  • Zhang J., Chen K.Q., Zhao H.Y. (2008) PMMA colloid particles armoured by clay layers with PDMAEMA brushes. J Polym Sci Part A Polym Chem 46:2632–2639.

    CAS  Google Scholar 

  • Zhang K.Q., Liu X.Y. (2004) In situ observation of colloidal crystal monolayer nucleation driven by an alternating electric field. Nature 429:739–743.

    CAS  Google Scholar 

  • Zhang Q., Archer L.A. (2002) Poly(ethylene oxide)/silica nanocomposites: Structure and rheology. Langmuir 18:10435–10442

    CAS  Google Scholar 

  • Zhang Y.J., Wang S.P., Eghtedari M., Motamedi M., Kotov N.A. (2005) Inverted-colloidal-crystal hydrogel matrices as three-dimensional cell scaffolds. Adv Funct Mater 15:725–731.

    CAS  Google Scholar 

  • Zhou T.H., Ruan W.H., Rong M.Z., Zhang M.Q., Mai Y.L. (2007) Keys to toughening of non-layered nanoparticles/polymer composites. Adv Mater 19:2667–+.

    CAS  Google Scholar 

  • Zhu J., Morgan A.B., Lamelas F.J., Wilkie C.A. (2001) Fire properties of polystyrene-clay nanocomposites. Chem Mater 13:3774–3780.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Keddie, J.L., Routh, A.F. (2010). Nanocomposite Latex Films and Control of Their Properties. In: Fundamentals of Latex Film Formation. Springer Laboratory. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2845-7_7

Download citation

Publish with us

Policies and ethics