Skip to main content

Role of Host Molecular Chaperones in Responses to Bacterial Infection and Endotoxin Exposure

  • Chapter
  • First Online:
Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease

Part of the book series: Heat Shock Proteins ((HESP,volume 4))

  • 650 Accesses

Abstract

Recent studies of heat shock protein-mediated modulation of the inflammatory and immune responses suggest its involvement in host responses to infection. In addition, during infection, the mammalian host is faced with the interaction of the heat shock responses of two competing organisms. Indeed, both mammalian and pathogenic heat shock proteins bind to host cells where they can signal danger, mediate inflammation and influence immune cell function. These overlapping repertoires of stress proteins may thus participate in determining the outcome of pathogenic infections by their abilities to take part in, work to prevent, or resolve infection. In this account, we have examined the role of heat shock proteins largely from the point of view of the mammalian host during the infection by non-viral microorganisms. When assessing the role of heat shock proteins in infection, a number of issues must be unraveled. The first is the relative roles of intracellular and extracellular mammalian heat shock proteins in pro- or anti-inflammatory processes. It is thus apparent that the intracellular heat shock proteins, heat shock transcription factor1 (HSF1) and the heat shock response (HSR) influence the infection of mammals by pathogenic organisms. The HSR and intracellular heat shock proteins protect against severe sepsis and fever as demonstrated in experiments using Hsp70 and HSF1 knockout mice. However, in addition, heat shock protein in the extracellular spaces may be involved in earlier phases of infection, in processes such as in complement activation, microorganism engulfment by phagocytes, cytokine secretion and immune responses to pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aneja, R., Odoms, K., Dunsmore, K., Shanley, T. P. and Wong, H. R. (2006) Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol 177, 7184–92.

    PubMed  CAS  Google Scholar 

  2. Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C. and Calderwood, S. K. (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6, 435–42.

    Article  PubMed  CAS  Google Scholar 

  3. Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A. and Calderwood, S. K. (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277, 15028–34.

    Article  PubMed  CAS  Google Scholar 

  4. Baldwin, A. S. (1996) The NFκB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14, 649–83.

    Article  PubMed  CAS  Google Scholar 

  5. Bijian, K. and Cybulsky, A. V. (2005) Stress proteins in glomerular epithelial cell injury. Contrib Nephrol 148, 8–20.

    Article  PubMed  CAS  Google Scholar 

  6. Bohana-Kashtan, O., Ziporen, L., Donin, N., Kraus, S. and Fishelson, Z. (2004) Cell signals transduced by complement. Mol Immunol 41, 583–97.

    Article  PubMed  CAS  Google Scholar 

  7. Bonini, N. M. (2002) Chaperoning brain degeneration. Proc Natl Acad Sci USA 99(Suppl 4), 16407–11.

    Article  PubMed  CAS  Google Scholar 

  8. Bradley, J. R. (2008) TNF-mediated inflammatory disease. J Pathol 214, 149–60.

    Article  PubMed  CAS  Google Scholar 

  9. Bukau, B., Weissman, J. and Horwich, A. (2006) Molecular chaperones and protein quality control. Cell 125, 443–51.

    Article  PubMed  CAS  Google Scholar 

  10. Bulut, Y., Michelsen, K. S., Hayrapetian, L., Naiki, Y., Spallek, R., Singh, M. and Arditi, M. (2005) Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 280, 20961–7.

    Article  PubMed  CAS  Google Scholar 

  11. Cahill, C. M., Waterman, W. R., Xie, Y., Auron, P. E. and Calderwood, S. K. (1996) Transcriptional repression of the prointerleukin 1β gene by heat shock factor 1. J Biol Chem 271, 24874–9.

    PubMed  CAS  Google Scholar 

  12. Calderwood, S. K. (2005) Regulatory interfaces between the stress protein response and other gene expression programs in the cell. Methods 35, 139–48.

    Article  PubMed  CAS  Google Scholar 

  13. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. and Ciocca, D. R. (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31, 164–72.

    Article  PubMed  CAS  Google Scholar 

  14. Calderwood, S. K., Thériault, J., Gray, P. J. and Gong, J. (2007) Cell surface receptors for molecular chaperones. Methods 43, 199–206.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, G., Cao, P. and Goeddel, D. V. (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9, 401–10.

    Article  PubMed  CAS  Google Scholar 

  16. Chu, B., Soncin, F., Price, B. D., Stevenson, M. A. and Calderwood, S. K. (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271, 30847–57.

    Article  PubMed  CAS  Google Scholar 

  17. Delneste, Y., Magistrelli, G., Gauchat, J., Haeuw, J., Aubry, J., Nakamura, K., Kawakami-Honda, N., Goetsch, L., Sawamura, T., Bonnefoy, J. and Jeannin, P. (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17, 353–62.

    Article  PubMed  CAS  Google Scholar 

  18. Dinarello, C. A. (2005) Interleukin-1beta. Crit Care Med 33, S460–2.

    Article  PubMed  Google Scholar 

  19. Dinarello, C. A. (2007) Historical insights into cytokines. Eur J Immunol 37(Suppl 1), S34–45.

    Article  PubMed  CAS  Google Scholar 

  20. Dinarello, C. A., Dempsey, R. A., Alegretta, M., Lopreste, G., Dainiak, K., Parkinson, R. and Mier, J. W. (1986) Inhibitory effects of elevated temperature on human cytokine production and natural killer activity. Cancer Res 46, 6236–41.

    PubMed  CAS  Google Scholar 

  21. Ding, X. Z., Fernandez-Prada, C. M., Bhattacharjee, A. K. and Hoover, D. L. (2001) Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16, 210–9.

    Article  PubMed  CAS  Google Scholar 

  22. Eisenhut, M. (2007) Effects of HSP70.1/3 gene knockout on NF-κB-mediated and cytokine-induced reduction in alveolar ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 292, L365; author reply L366.

    PubMed  Google Scholar 

  23. Ellis, R. J. (2007) Protein misassembly: macromolecular crowding and molecular chaperones. Adv Exp Med Biol 594, 1–13.

    Article  PubMed  Google Scholar 

  24. Floto, R. A., MacAry, P. A., Boname, J. M., Mien, T. S., Kampmann, B., Hair, J. R., Huey, O. S., Houben, E. N., Pieters, J., Day, C., Oehlmann, W., Singh, M., Smith, K. G. and Lehner, P. J. (2006) Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science 314, 454–8.

    Article  PubMed  CAS  Google Scholar 

  25. Habich, C., Kempe, K., van der Zee, R., Rumenapf, R., Akiyama, H., Kolb, H. and Burkart, V. (2005) Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 174, 1298–305.

    PubMed  CAS  Google Scholar 

  26. Hasday, J. D., Fairchild, K. D. and Shanholtz, C. (2000) The role of fever in the infected host. Microbes Infect 2, 1891–904.

    Article  PubMed  CAS  Google Scholar 

  27. Hasday, J. D. and Singh, I. S. (2000) Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5, 471–80.

    Article  PubMed  CAS  Google Scholar 

  28. Hayden, M. and Ghosh, S. (2004) Signaling to NFκB. Genes Dev 18, 2195–224.

    Article  PubMed  CAS  Google Scholar 

  29. Hsieh, C. S., Heimberger, A. B., Gold, J., O‘Garra, A. and Murphy, K. (1992) Differential regulation of T helper phenotype development by interleukins 4 and 10 in an α:β T cell receptor transgenic system. Proc Natl Acad Sci USA 89, 6065–9.

    Article  PubMed  CAS  Google Scholar 

  30. Ianaro, A., Ialenti, A., Maffia, P., Di Meglio, P., Di Rosa, M. and Santoro, M. G. (2003) Anti-inflammatory activity of 15-deoxy-delta12,14-PGJ2 and 2-cyclopenten-1-one: role of the heat shock response. Mol Pharmacol 64, 85–93.

    Article  PubMed  CAS  Google Scholar 

  31. Jean-Baptiste, E. (2007) Cellular mechanisms in sepsis. J Intensive Care Med 22, 63–72.

    Article  PubMed  Google Scholar 

  32. Jeannin, P., Bottazzi, B., Sironi, M., Doni, A., Rusnati, M., Presta, M., Maina, V., Magistrelli, G., Haeuw, J. F., Hoeffel, G., Thieblemont, N., Corvaia, N., Garlanda, C., Delneste, Y. and Mantovani, A. (2005) Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 22, 551–60.

    Article  PubMed  CAS  Google Scholar 

  33. Khaleque, M. A., Bharti, A., Gong, J., Gray, P. J., Sachdev, V., Ciocca, D. R., Stati, A., Fanelli, M. and Calderwood, S. K. (2008) Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene 27, 1886–1893.

    Google Scholar 

  34. Kohn, G., Wong, H. R., Bshesh, K., Zhao, B., Vasi, N., Denenberg, A., Morris, C., Stark, J. and Shanley, T. P. (2002) Heat shock inhibits TNF-induced ICAM-1 expression in human endothelial cells via I kappa kinase inhibition. Shock 17, 91–7.

    Article  PubMed  Google Scholar 

  35. Kopp, E. and Ghosh, S. (1994) Inhibition of NF-κB by sodium salicylate and aspirin. Science 265, 956–9.

    Article  PubMed  CAS  Google Scholar 

  36. Langhorne, J., Albano, F. R., Hensmann, M., Sanni, L., Cadman, E., Voisine, C. and Sponaas, A. M. (2004) Dendritic cells, pro-inflammatory responses, and antigen presentation in a rodent malaria infection. Immunol Rev 201, 35–47.

    Article  PubMed  CAS  Google Scholar 

  37. Lindquist, S. and Craig, E. A. (1988) The heat shock proteins. Ann Rev Genet 22, 631–7.

    Article  PubMed  CAS  Google Scholar 

  38. Luft, B. J., Gorevic, P. D., Jiang, W., Munoz, P. and Dattwyler, R. J. (1991) Immunologic and structural characterization of the dominant 66- to 73-kDa antigens of Borrelia burgdorferi. J Immunol 146, 2776–82.

    PubMed  CAS  Google Scholar 

  39. Malhotra, V., Eaves-Pyles, T., Odoms, K., Quaid, G., Shanley, T. P. and Wong, H. R. (2002) Heat shock inhibits activation of NF-κB in the absence of heat shock factor-1. Biochem Biophys Res Commun 291, 453–7.

    Article  PubMed  CAS  Google Scholar 

  40. Mambula, S. S. and Calderwood, S. K. (2006a) Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int J Hyperthermia 22, 575–85.

    Article  PubMed  CAS  Google Scholar 

  41. Mambula, S. S. and Calderwood, S. K. (2006b) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177, 7849–57.

    PubMed  CAS  Google Scholar 

  42. Mambula, S. S., Stevenson, M. A., Ogawa, K. and Calderwood, S. K. (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43, 168–75.

    Article  PubMed  CAS  Google Scholar 

  43. McMillan, D. R., Xiao, X., Shao, L., Graves, K. and Benjamin, I. J. (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273, 7523–8.

    Article  PubMed  CAS  Google Scholar 

  44. Nollen, E. A. and Morimoto, R. I. (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115, 2809–16.

    PubMed  CAS  Google Scholar 

  45. Ogden, C. A., deCathelineau, A., Hoffmann, P. R., Bratton, D., Ghebrehiwet, B., Fadok, V. A. and Henson, P. M. (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194, 781–95.

    Article  PubMed  CAS  Google Scholar 

  46. Osterloh, A., Kalinke, U., Weiss, S., Fleischer, B. and Breloer, M. (2007) Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide. J Biol Chem 282, 4669–80.

    Article  PubMed  CAS  Google Scholar 

  47. Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W. and Fesus, L. (2007) Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Differ 14, 1117–28.

    Article  PubMed  CAS  Google Scholar 

  48. Pilzer, D. and Fishelson, Z. (2005) Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol 17, 1239–48.

    Article  PubMed  CAS  Google Scholar 

  49. Pockley, A. G., Muthana, M. and Calderwood, S. K. (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33, 71–79.

    Google Scholar 

  50. Prohaszka, Z., Duba, J., Lakos, G., Kiss, E., Varga, L., Janoskuti, L., Csaszar, A., Karadi, I., Nagy, K., Singh, M., Romics, L. and Fust, G. (1999) Antibodies against human heat-shock protein (hsp) 60 and mycobacterial hsp65 differ in their antigen specificity and complement-activating ability. Int Immunol 11, 1363–70.

    Article  PubMed  CAS  Google Scholar 

  51. Prohaszka, Z., Singh, M., Nagy, K., Kiss, E., Lakos, G., Duba, J. and Fust, G. (2002) Heat shock protein 70 is a potent activator of the human complement system. Cell Stress Chaperones 7, 17–22.

    Article  PubMed  CAS  Google Scholar 

  52. Quintana, F. J., Carmi, P., Mor, F. and Cohen, I. R. (2004) Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum 50, 3712–20.

    Article  PubMed  CAS  Google Scholar 

  53. Rechner, C., Kuhlewein, C., Muller, A., Schild, H. and Rudel, T. (2007) Host glycoprotein Gp96 and scavenger receptor SREC interact with PorB of disseminating Neisseria gonorrhoeae in an epithelial invasion pathway. Cell Host Microbe 2, 393–403.

    Article  PubMed  CAS  Google Scholar 

  54. Repasky, E. and Issels, R. (2002) Physiological consequences of hyperthermia: heat, heat shock proteins and the immune response. Int J Hyperthermia 18, 486–9.

    Article  PubMed  CAS  Google Scholar 

  55. Romagnani, S. (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85, 9–18; quiz 18, 21.

    Article  PubMed  Google Scholar 

  56. Rossi, A., Elia, G. and Santoro, M. G. (1997) Inhibition of nuclear factor kappa B by prostaglandin A1: an effect associated with heat shock transcription factor activation. Proc Natl Acad Sci USA 94, 746–50.

    Article  PubMed  CAS  Google Scholar 

  57. Shin, Y., Klucken, J., Patterson, C., Hyman, B. T. and McLean, P. J. (2005) The cochaperone CHIP mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem.

    Google Scholar 

  58. Singh, I. S., Calderwood, S. K., Kalvokalanu, I., Viscardi, R. M. and Hasday, J. D. (2000) Inhibition of tumor necrosis factor-alpha in macrophages exposed to febrile range temperatutre: A possible role for heat shock factor 1. J Biol Chem 275, 9841–8.

    Article  PubMed  CAS  Google Scholar 

  59. Singh, I. S., He, J. R., Calderwood, S. and Hasday, J. D. (2002) A high affinity HSF-1 binding site in the 5’-untranslated region of the murine tumor necrosis factor-α gene is a transcriptional repressor. J Biol Chem 277, 4981–8.

    Article  PubMed  CAS  Google Scholar 

  60. Singleton, K. D. and Wischmeyer, P. E. (2006) Effects of HSP70.1/3 gene knockout on acute respiratory distress syndrome and the inflammatory response following sepsis. Am J Physiol Lung Cell Mol Physiol 290, L956–61.

    Article  PubMed  CAS  Google Scholar 

  61. Soncin, F. and Calderwood, S. K. (1996) Reciprocal effects of pro-inflammatory stimuli and anti-inflammatory drugs on the activity of heat shock factor-1 in human monocytes. Biochem Biophys Res Commun 229, 479–84.

    Article  PubMed  CAS  Google Scholar 

  62. Stahl, P. D. (1992) The mannose receptor and other macrophage lectins. Curr Opin Immunol 4, 49–52.

    Article  PubMed  CAS  Google Scholar 

  63. Stevenson, M. A., Zhao, M. J., Asea, A., Coleman, C. N. and Calderwood, S. K. (1999) Salicylic acid and aspirin inhibit the activity of RSK2 kinase and RSK2-dependent transcription of Cyclic AMP response element binding protein and NF-κB responsive genes. J Immunol 163, 5608–16.

    PubMed  CAS  Google Scholar 

  64. Takeda, K., Kaisho, T. and Akira, S. (2003) Toll-like receptors. Annu Rev Immunol 21, 335–76.

    Article  PubMed  CAS  Google Scholar 

  65. Theriault, J. R., Adachi, H. and Calderwood, S. K. (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177, 8604–11.

    PubMed  CAS  Google Scholar 

  66. Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D. and Wagner, H. (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277, 15107–12.

    Article  PubMed  CAS  Google Scholar 

  67. Vabulas, R. M. and Wagner, H. (2005) Toll-like receptor-dependent activation of antigen presenting cells by hsp60, Gp96 and hsp70.. Cambridge University Press, Cambridge.

    Google Scholar 

  68. van Eden, W., van der Zee, R. and Prakken, B. (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5, 318–30.

    Article  PubMed  CAS  Google Scholar 

  69. Wang, R., Kovalchin, J. T., Muhlenkamp, P. and Chandawarkar, R. Y. (2006a) Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood 107, 1636–42.

    Article  PubMed  CAS  Google Scholar 

  70. Wang, R., Town, T., Gokarn, V., Flavell, R. A. and Chandawarkar, R. Y. (2006b) HSP70 enhances macrophage phagocytosis by interaction with lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. J Surg Res 136, 58–69.

    Article  PubMed  CAS  Google Scholar 

  71. Wang, X., Asea, A., Xie, Y., Kabingu, E., Stevenson, M. A. and Calderwood, S. K. (2000) RSK2 represses HSF1 activation during heat shock. Cell stress Chaperones 5, 432–7.

    Article  PubMed  CAS  Google Scholar 

  72. Wang, X., Grammatikakis, N., Siganou, A. and Calderwood, S. K. (2003) Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14–3-3ε binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 23, 6013–26.

    Article  PubMed  CAS  Google Scholar 

  73. Wang, X., Grammatikakis, N., Siganou, A., Stevenson, M. A. and Calderwood, S. K. (2004) Interactions between extracellular signal-regulated protein kinase 1, 14–3-3ε, and heat shock factor 1 during stress. J Biol Chem 279, 49460–9.

    Article  PubMed  CAS  Google Scholar 

  74. Wang, X., Khaleque, M. A., Zhao, M. J., Zhong, R., Gaestel, M. and Calderwood, S. K. (2006c) Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 281, 782–91.

    Article  PubMed  CAS  Google Scholar 

  75. Warger, T., Hilf, N., Rechtsteiner, G., Haselmayer, P., Carrick, D. M., Jonuleit, H., von Landenberg, P., Rammensee, H. G., Nicchitta, C. V., Radsak, M. P. and Schild, H. (2006) Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 281, 22545–53.

    Article  PubMed  CAS  Google Scholar 

  76. Wirth, D., Bureau, F., Melotte, D., Christians, E. and Gustin, P. (2004) Evidence for a role of heat shock factor 1 in inhibition of NF-κB pathway during heat shock response-mediated lung protection. Am J Physiol Lung Cell Mol Physiol 287, L953–61.

    Article  PubMed  CAS  Google Scholar 

  77. Xie, Y., Chen, C., Stevenson, M. A., Auron, P. E. and Calderwood, S. K. (2002a) Heat shock factor 1 represses transcription of the IL-1β gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277, 11802–10.

    Article  PubMed  CAS  Google Scholar 

  78. Xie, Y., Chen, C., Stevenson, M. A., Hume, D. A., Auron, P. E. and Calderwood, S. K. (2002b) NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem Biophys Res Commun 291, 1071–80.

    Article  PubMed  CAS  Google Scholar 

  79. Xie, Y., Chen, C., Stevenson, M. A., Hume, D. A., Auron, P. E. and Calderwood, S. K. (2002c) NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem Biophys Res Commun 291, 1071–80.

    Article  PubMed  CAS  Google Scholar 

  80. Xie, Y., Zhong, R., Chen, C. and Calderwood, S. K. (2003) Heat shock factor 1 contains two functional domains that mediate transcriptional repression of the c-fos and c-fms genes. J Biol Chem 278, 4687–98.

    Article  PubMed  CAS  Google Scholar 

  81. Zhong, G. and Brunham, R. C. (1992) Antibody responses to the chlamydial heat shock proteins hsp60 and hsp70 are H-2 linked. Infect Immun 60, 3143–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Department of Radiation Oncology at BIDMC. These studies were also supported by NIH grants 5RO1CA047407 and 3RO1CA094397 (SKC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart K. Calderwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Netherlands

About this chapter

Cite this chapter

Calderwood, S.K., Murshid, A., Zhu, B., Mambula, S.S. (2009). Role of Host Molecular Chaperones in Responses to Bacterial Infection and Endotoxin Exposure. In: Pockley, A., Calderwood, S., Santoro, M. (eds) Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease. Heat Shock Proteins, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2976-8_5

Download citation

Publish with us

Policies and ethics