Skip to main content

To detect mines by the explosive itself, several new techniques have been proposed; one of the most promising is 14N NQR. Design criteria allowing increase sensitivity of 14N NQR are discussed. It is shown that combination of 1H NMR with 14N NQR leads to selective excitation or a better S/N; in this case, a strong magnetic field has to be switched on and off. Whereas to detect anti-tank mines strong magnetic field should be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.S. Grechishkin, E.M. Shishkin, Org. Magn. Reson., 5, 1–4 (1973).

    Article  CAS  Google Scholar 

  2. E.O. Azisov, V.S. Grechishkin et al., Izv. AN SU, Physics, 42, 2182–2185 (1978).

    Google Scholar 

  3. V.P. Anferov, V.S. Grechishkin, N.Y. Sinyavskii, Nuclear Spin Resonance (new methods), LGU press, Leningrad, 1990.

    Google Scholar 

  4. V.S. Grechishkin, N. Ja, Sinjavsky, Physics-Uspekhi 163(10), 95–120 (1993).

    CAS  Google Scholar 

  5. V.S. Grechishkin, N. Ja, Sinjavsky, UFN, 167, N4, 413–427 (1997).

    Article  CAS  Google Scholar 

  6. V.S. Grechishkin, J. Molec. Struct. 83, 135–138 (1982).

    Article  Google Scholar 

  7. V.S. Grechishkin, J. Molec. Struct. 83, 345–348 (1982).

    Article  CAS  Google Scholar 

  8. V.S. Grechishkin, J. Molec. Struct. 83, 89–92 (1982).

    Article  Google Scholar 

  9. V.S. Grechishkin, Solid State Phys. 33, 947–949 (1991).

    CAS  Google Scholar 

  10. V.S. Grechishkin, Appl. Phys. A58, 63–65 (1994).

    Article  CAS  Google Scholar 

  11. V.S. Grechishkin, 16th NQR Congress, Leipzig, p. 16, 1999; NQR-DLME, Ljublyana, pp. 38–40 (2000).

    Google Scholar 

  12. V.S. Grechishkin, R.V. Grechishkina, NQR Mine-Detectors, Patent N2157002, 27.09.2000.

    Google Scholar 

  13. V.S. Grechishkin et al., Izv. Vuzov, Fizika, 6, 101–105 (2000).

    Google Scholar 

  14. V.S. Grechishkin, R.V. Grechishkina, Izv. Vuzov, Fizika, 8, 92–94 (2001).

    Google Scholar 

  15. V.S. Grechishkin, Probl. Math. Phys. Sci., 60–74 (2000); 72–81 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Grechishkin, V.S., Grechishkina, R.V., Heo, H. (2009). Signal Processing Methods in Nqr. In: Fraissard, J., Lapina, O. (eds) Explosives Detection Using Magnetic and Nuclear Resonance Techniques. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3062-7_10

Download citation

Publish with us

Policies and ethics