Skip to main content

Water Balance and the Regulation of Stomatal Movements

  • Chapter
  • First Online:
Abiotic Stress Adaptation in Plants

Summary

Stomata form a crucial interface between plants and the atmosphere and are essential to the control of water balance in plants. Prolonged soil dehydration or a drop in atmospheric relative humidity lead to a decrease in biomass production, plant water loss and eventually death. For plants to survive, it is essential that stomata close in response to drought conditions. The phytohormone abscisic acid (ABA) has been shown to play a central role in this process. The first part of this chapter reviews the mechanisms by which drought is translated into signals that lead to stomatal closure, and especially the building up of bioactive ABA concentrations in and around guard cells. The second part introduces the biophysical and metabolic mechanisms used by guard cells to control stomatal aperture. Furthermore, we illustrate how these mechanisms are the target of a signal transduction network integrating drought with other environmental signals. Finally, the third part briefly proposes that stomata represent a putative target to engineer desiccation avoidance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAO:

ascorbate oxidase

ABA:

abscisic acid

ABC:

ATP-binding cassette transporters

ABI:

ABA insensitive

AHG:

ABA hypersensitive germination

AtBG:

Arabidopsis thalliana β-glucosidase

AtKC:

Arabidopsis thaliana K+ rectifying channel

cADPR:

cyclic ADP-ribose

CDPK:

calcium dependent protein kinase

FV:

fast vacuolar

GCR2:

G-protein coupled receptor

GORK:

guard cell outward rectifying K+ channel

GPA:

G protein alpha subunit

GTG:

GPCR type G protein

HAB1:

homologue to ABI1 protein phosphatase

HIC:

high carbon dioxide signaling pathway

IP:

phosphoinositides

KAT:

ketoacyl-coenzyme A thiolase

MPK:

mitosis associated protein kinase

NCED:

9-cis-epoxycarotenoid dioxygenase enzymes

PEPC:

phospho enol pyruvate carboxylase

PLC:

phospholipase C

PLD:

phospholipase D

PP2C:

protein phosphatases type 2C

RNAi:

RNA interference

RPK:

receptor-like protein kinase

R-type channels:

rapid-type anion channels

S-type channels:

slow-type anion channels

SV:

slow vacuolar

TPC:

two pore channel

VK:

K+-selective vacuolar

References

  • Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett 486:93-98

    Article  PubMed  CAS  Google Scholar 

  • Allan AC, Fricker MD, Ward JL, Beale MH, Trewavas AJ (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6:1319-1328

    PubMed  CAS  Google Scholar 

  • Allen GJ, Sanders D (1994) Two voltage-gated, calcium release channels co reside in the vacuolar membrane of broad bean guard cells. Plant Cell 6:685-694

    PubMed  CAS  Google Scholar 

  • Allen GJ, Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J 10:1055-1069

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785-1798

    PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338-2342

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053-1057

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Murata Y, Chu SP, Nafisi M, Schroeder JI (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyl transferase mutant era1-2. Plant Cell 14:1649-1662

    Article  PubMed  CAS  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736-3740

    Article  PubMed  CAS  Google Scholar 

  • Artsaenko O, Peisker M, zur Nieden U, Fiedler U, Weiler EW, Muntz K, Conrad U (1995) Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J 8:745-750

    Google Scholar 

  • Assmann SM, Simoncini L, Schroeder JI (1985) Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318:285-287

    Article  CAS  Google Scholar 

  • Assmann SM, Snyder JA, Lee YRJ (2000) ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ 23:387-395

    Article  CAS  Google Scholar 

  • Barrero JM, Rodriguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL (2006) Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29:2000-2008

    Article  PubMed  CAS  Google Scholar 

  • Barton MK (2007) Making holes in leaves: promoting cell state transitions in stomatal development. Plant Cell 19:1140-1143

    Article  PubMed  CAS  Google Scholar 

  • Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141:1316-1327

    Article  PubMed  CAS  Google Scholar 

  • Bergmann DC, Sack FD (2007) Stomatal development. Annu Rev Plant Biol 58:163-181

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR, Armstrong F (1993) K+ channels of stomatal guard cells: abscisic-acid evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191:330-341

    Article  CAS  Google Scholar 

  • Boudsocq M, Droillard MJ, Barbier-Brygoo H, Lauriere C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63:491-503

    Article  PubMed  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113-122

    Article  PubMed  CAS  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275-292

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143-1162

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Hoffmann T, Teplova I, Grill E, Muller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209-219

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167-174

    Article  PubMed  CAS  Google Scholar 

  • Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651-654

    Article  PubMed  CAS  Google Scholar 

  • Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724-737

    Article  PubMed  CAS  Google Scholar 

  • Daeter W, Hartung W (1995) Stress-dependent redistribution of abscisic acid (ABA) in Hordeum vulgare L. leaves: the role of epidermal ABA metabolism, tonoplastic transport and the cuticle. Plant Cell Environ 18:1367-1376

    Article  CAS  Google Scholar 

  • Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449-460

    Article  CAS  Google Scholar 

  • Du Z, Aghoram K, Outlaw WH Jr (1997) In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid. Arch Biochem Biophys 337:345-350

    Article  PubMed  CAS  Google Scholar 

  • Eun SO, Bae SH, Lee Y (2001) Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abi1-1 mutant in Arabidopsis. Planta 212:466-469

    Article  PubMed  CAS  Google Scholar 

  • Fairley-Grenot K, Assmann SM (1991) Evidence for G-protein regulation of inward k+ channel current in guard cells of fava bean. Plant Cell 3:1037-1044

    PubMed  CAS  Google Scholar 

  • Fischer RA (1968) Stomatal opening: role of potassium uptake by guard cells. Science 160:784-785

    Article  PubMed  CAS  Google Scholar 

  • Franks PJ, Cowan IR, Farquhar GD (1998) A study of stomatal mechanics using the cell pressure probe. Plant Cell Environ 21:94-100

    Article  Google Scholar 

  • Gao XQ, Li CG, Wei PC, Zhang XY, Chen J, Wang XC (2005) The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. Plant Physiol 139:1207-1216

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Zeng Q, Guo J, Cheng J, Ellis BE, Chen JG (2007) Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J 52:1001-1013

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116-11121

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769-771

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Fricker MD, Read ND, Trewavas AJ (1991) Role of calcium in signal transduction of Commelina guard cells. Plant Cell 3:333-344

    PubMed  CAS  Google Scholar 

  • Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJ (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726-10731

    Article  PubMed  CAS  Google Scholar 

  • Goh CH, Kinoshita T, Oku T, Shimazaki K (1996) Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplasts. Plant Physiol 111:433-440

    PubMed  CAS  Google Scholar 

  • Gollan, T., Schurr, U, Schulze, E.D. (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of the xylem sap. Plant Cell Environ. 15:551-559

    Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897-1910

    PubMed  CAS  Google Scholar 

  • Gowing DJG, Davies WJ, Jones HG (1990) A positive root-sourced signal as an indicator of soil drying in apple, Malus X domestica Borkh. J Exp Bot 41:1535-1540

    Article  Google Scholar 

  • Gowing DJG, Jones HG, Davies WJ (1993) Xylem-transported abscisic acid: the relative importance of its mass and its concentration in the control of stomatal aperture. Plant Cell Environ 16:453-459

    Article  CAS  Google Scholar 

  • Grabov A, Blatt MR (1997) Parallel control of the inward-rectifier K+ channel by cytosolic free Ca+ and pH in Vicia guard cells. Planta 201:84-95

    Article  CAS  Google Scholar 

  • Grabov A, Blatt MR. (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci U S A 95:4778-4783

    Google Scholar 

  • Grabov A, Blatt MR (1999) A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol 119:277-288

    Article  PubMed  CAS  Google Scholar 

  • Grabov A, Leung J, Giraudat J, Blatt MR (1997) Alteration of anion channel kinetics in wild-type and abi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid. Plant J 12:203-213

    Article  PubMed  CAS  Google Scholar 

  • Gray JE (2007) Plant development: three steps for stomata. Curr Biol 17:R213-215

    Article  CAS  Google Scholar 

  • Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713-716

    Article  PubMed  CAS  Google Scholar 

  • Gudesblat GE, Iusem ND, Morris PC (2007) Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173:713-721

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Zeng Q, Emami M, Ellis BE, Chen JG (2008) The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS ONE 3:e2982

    Article  CAS  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233-244

    Article  PubMed  CAS  Google Scholar 

  • Hafke JB, Hafke Y, Smith JA, Luttge U, Thiel G (2003) Vacuolar malate uptake is mediated by an anion-selective inward rectifier. Plant J 35:116-128

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DW, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967-4972

    Article  PubMed  CAS  Google Scholar 

  • Han S, Tang R, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196-200

    Article  PubMed  CAS  Google Scholar 

  • Hartung, W, Radin, J.W. (1989) Abscisic acid in the mesophyll apoplast and in the root xylem sap of water-stressed plants: the significance of pH gradients. Curr Top Plant Biochem Physiol 8:110-124

    Google Scholar 

  • Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI, Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8:391-397

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833-836

    Article  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901-908

    Article  PubMed  CAS  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549-5554

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477-487

    Article  PubMed  CAS  Google Scholar 

  • Humble GD, Raschke K (1971) Stomatal opening quantitatively related to potassium transport: evidence from electron probe analysis. Plant Physiol 48:447-453

    Article  PubMed  CAS  Google Scholar 

  • Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE (2003) Phospholipase C is required for the control of stomatal aperture by ABA. Plant J 34:47-55

    Article  PubMed  CAS  Google Scholar 

  • Hurst AC, Meckel T, Tayefeh S, Thiel G, Homann U (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. Plant J 37:391-397

    Article  PubMed  CAS  Google Scholar 

  • Incoll, L.D, Jewer, P.C. (1987) Cytokinins and stomata. In Zeiger, E., Farquhar, G.D. and Cowan, I.R. (eds.), Stomatal function. Stanford University Press, Stanford, Calif

    Google Scholar 

  • Irving HR, Gehring CA, Parish RW (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci USA 89:1790-1794

    Article  PubMed  CAS  Google Scholar 

  • Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9:654-663

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325-333

    Article  PubMed  CAS  Google Scholar 

  • Jacob T, Ritchie S, Assmann SM, Gilroy S (1999) Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci USA 96:12192-12197

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Sudhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863-911

    Article  PubMed  CAS  Google Scholar 

  • Jia W, Zhang J (1997) Comparison of exportation and metabolism of xylem-delivered ABA in maize leaves at different water status and xylem sap pH. Plant Growth Regul 21:43-49

    Article  CAS  Google Scholar 

  • Keller BU, Hedrich R, Raschke K (1989) Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 341:450-453

    Article  Google Scholar 

  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411-423

    Article  PubMed  CAS  Google Scholar 

  • Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152-2163

    Article  PubMed  CAS  Google Scholar 

  • Kohler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J 32:185-194

    Article  PubMed  Google Scholar 

  • Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61:385-393

    Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plantarum 61:377-383

    Article  CAS  Google Scholar 

  • Kuhn JM, Schroeder JI (2003) Impacts of altered RNA metabolism on abscisic acid signaling. Curr Opin Plant Biol 6:463-469

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140:127-139

    Article  PubMed  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647-1656

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14:2849-2861

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623-2633

    Article  PubMed  CAS  Google Scholar 

  • Lahav M, Abu-Abied M, Belausov E, Schwartz A, Sadot E (2004) Microtubules of guard cells are light sensitive. Plant Cell Physiol 45:573-582

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109-1120

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev 15:1808-1816

    Article  PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA, Brearley CA (2000) Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc Natl Acad Sci USA 97:8687-8692

    Article  PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 100:10091-10095

    Article  PubMed  CAS  Google Scholar 

  • Leon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JA, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655-661

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt N, Vavasseur A, Forestier C (1999) ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells. Plant Cell 11:1141-1152

    PubMed  CAS  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596-615

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448-1452

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis abscisic acid-insensitive2 (ABi2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759-771

    PubMed  CAS  Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci USA 102:4203-4208

    Article  PubMed  CAS  Google Scholar 

  • Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537-540

    Article  PubMed  CAS  Google Scholar 

  • Leymarie J, Vavasseur A, Lasceve G (1998) CO2 sensing in stomata of abi1-1 and abi2-1 mutants of Arabidopsis thaliana. Plant Physiology Biochem 36:539-543

    Article  CAS  Google Scholar 

  • Li J, Assmann SM (1996) An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell 8:2359-2368

    PubMed  CAS  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300-303

    Article  PubMed  CAS  Google Scholar 

  • Li J, Kinoshita T, Pandey S, Ng CK, Gygi SP, Shimazaki K, Assmann SM (2002) Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 418:793-797

    Article  PubMed  CAS  Google Scholar 

  • Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4:e312

    Article  CAS  Google Scholar 

  • Li Y, Wang GX, Xin M, Yang HM, XJ W, Li T (2004) The parameters of guard cell calcium oscillation encodes stomatal oscillation and closure in Vicia faba. Plant Sci 166:415-421

    Article  CAS  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G-protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712-1716

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064-1068

    PubMed  CAS  Google Scholar 

  • MacRobbie EAC (1983) Effects of light/dark on cation fluxes in guard cells of Commelina communis L. J Exp Bot 34:1695-1710

    Article  Google Scholar 

  • MacRobbie EA (2000) ABA activates multiple calcium fluxes instrumental guard cells, triggering potassium (rubidium) release. Proc Natl Acad Sci USA 97:12362-12368

    Article  Google Scholar 

  • MacRobbie EAC, Lettau J (1980) Ion content and aperture in ‘isolated’ guard cells of Commelina communis L. J Memb Biol 53:199-205

    Article  CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331-2342

    PubMed  CAS  Google Scholar 

  • Marten H, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2007) Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tobbacum. Plant Physiol 143:28-37

    Article  PubMed  CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343:186-188

    Article  CAS  Google Scholar 

  • McAinsh MR, Webb A, Taylor JE, Hetherington AM (1995) Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell 7:1207-1219

    PubMed  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295-303

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Muller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216-3226

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452-1455

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749-2766

    Article  PubMed  CAS  Google Scholar 

  • Mills LN, Hunt L, Leckie CP, Aitken FL, Wentworth M, McAinsh MR, Gray JE, Hetherington AM (2004) The effects of manipulating phospholipase C on guard cell ABA-signalling. J Exp Bot 55:199-204

    Article  PubMed  CAS  Google Scholar 

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264-266

    Article  PubMed  CAS  Google Scholar 

  • Mori IC, Muto S (1997) Abscisic acid activates a 48 kilodalton protein kinase in guard cell protoplasts. Plant Physiol 113:833-839

    PubMed  CAS  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:e327

    Article  CAS  Google Scholar 

  • Morison JIL (1985) Sensitivity of stomata and water use efficiency to high CO2. Plant Cell Environ 8:467-474

    Article  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513-2523

    PubMed  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089-3099

    Article  PubMed  CAS  Google Scholar 

  • Nakamura RL, McKendree WL, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371-374

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165-185

    Article  PubMed  CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483-486

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13-16

    Article  PubMed  CAS  Google Scholar 

  • Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596-599

    Article  PubMed  CAS  Google Scholar 

  • Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53:988-998

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105-1119

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G-protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616-1632

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Zhang W, Assmann SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 581:2325-2336

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136-148

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068-1071

    PubMed  CAS  Google Scholar 

  • Pei ZM, Ward JM, Harper JF, Schroeder JI (1996) A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J 15:6564-6574

    PubMed  CAS  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409-423

    PubMed  CAS  Google Scholar 

  • Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI (1998) Role of farnesyl transferase in ABA regulation of guard cell anion channels and plant water loss. Science 282:287-290

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731-734

    Article  PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404-408

    Article  PubMed  CAS  Google Scholar 

  • Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276:3215-3221

    Article  PubMed  CAS  Google Scholar 

  • Radin, J.W., Parker, L.L, Guinn, G. (1982) Water relations of cotton plants under nitrogen deficiency. V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. Plant Physiol 70:1066-1070

    Google Scholar 

  • Raschke K (1979) Movements of stomata. In: Hale W, Feinleib E (eds) Encyclopedia of plant physiology. Springer-Verlag, Berlin, pp 384-441

    Google Scholar 

  • Raschke K, Shabahang M, Wolf R (2003) The slow and the quick anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217:639-650

    Article  PubMed  CAS  Google Scholar 

  • Riera M, Redko Y, Leung J (2006) Arabidopsis RNA-binding protein UBA2a relocalizes into nuclear speckles in response to abscisic acid. FEBS Lett 580:4160-4165

    Article  PubMed  CAS  Google Scholar 

  • Ritte G, Rosenfeld J, Rohrig K, Raschke K (1999) Rates of sugar uptake by guard cell protoplasts of Pisum sativum L. Related to the solute requirement for stomatal opening. Plant Physiol 121:647-656

    Article  PubMed  CAS  Google Scholar 

  • Robert N, Merlot S, N’Guyen V, Boisson-Dernier A, Schroeder JI (2006) A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling in Arabidopsis. FEBS Lett 580:4691-4696

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema MR, Levchenko V, Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37:578-588

    Article  PubMed  CAS  Google Scholar 

  • Romano LA, Jacob T, Gilroy S, Assmann SM (2000) Increases in cytosolic Ca2+ are not required for abscisic acid inhibition of inward K+ currents in guard cells of Vicia faba. Planta 11:309-317

    Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37:354-369

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141:1389-1399

    Article  PubMed  CAS  Google Scholar 

  • Sang Y, Zheng S, Li W, Huang B, Wang X (2001) Regulation of plant water loss by manipulating the expression of phospholipase Da. Plant J 28:135-144

    Article  PubMed  CAS  Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991-1997

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654-1658

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Schelle I, Liao YJ, Schroeder JI (1995) Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci USA 92:9535-9539

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Starke J, Gambale F, Carpaneto A (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arch Biochem Biophys 434:43-50

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338:427-430

    Article  Google Scholar 

  • Schroeder JI, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of non-selective Ca2+ permeable channels. Proc Natl Acad Sci USA 87:9305-9309

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89:5025-5029

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Raschke K, Neher E (1987) Voltage dependence of K+ channels in guard-cell protoplasts. Proc Natl Acad Sci USA 84:4108-4112

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001a) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627-658

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001b) Guard cell abscissic acid signalling and engineering drought hardiness in plants. Nature 410:327-330

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296-302

    Article  PubMed  CAS  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663-665

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823-826

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki K, Iino M, Zeiger E (1986) Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. Nature 319:324-326

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotech 7:161-167

    Article  PubMed  CAS  Google Scholar 

  • Shope JC, DeWald DB, Mott KA (2003) Changes in surface area of intact guard cells are correlated with membrane internalization. Plant Physiol 133:1314-1321

    Article  PubMed  CAS  Google Scholar 

  • Siegel RS, Xue S, Murata Y, Yang Y, Nishimura N, Wang A, Schroeder JI. (2009) Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K channels in Arabidopsis guard cells. Plant J. 59:207-220

    Google Scholar 

  • Sokolovski S, Blatt MR (2004) Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol 136:4275-4284

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Buttner M, Ache P, Hedrich R, Ivashikina N, Melzer M, Shearson SM, Smith SM, Sauer N (2003) Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. Plant Physiol 133:528-537

    Article  PubMed  CAS  Google Scholar 

  • Staxen II, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96:1779-1784

    Article  PubMed  CAS  Google Scholar 

  • Stoll, M., Loveys, B. and Dry, P. (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627-1634

    Google Scholar 

  • Suh SJ, Wang YF, Frelet A, Leonhardt N, Klein M, Forestier C, Mueller-Roeber B, Cho MH, Martinoia E, Schroeder JI (2007) The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. J Biol Chem 282:1916-1924

    Article  PubMed  CAS  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536-1545

    Article  PubMed  CAS  Google Scholar 

  • Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17:1396-1402

    Article  PubMed  CAS  Google Scholar 

  • Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98:2917-2921

    Article  PubMed  CAS  Google Scholar 

  • Talbott LD, Zeiger E (1996) Central roles for potassium and sucrose in guard-cell osmo-regulation. Plant Physiol 111:1051-1057

    PubMed  CAS  Google Scholar 

  • Talbott LD, Zeiger E (1998) The role of sucrose in guard cell osmo-regulation. J Exp Bot 49:329-337

    Google Scholar 

  • Tanaka Y, Kutsuna N, Kanazawa Y, Kondo N, Hasezawa S, Sano T (2007) Intra-vacuolar reserves of membranes during stomatal closure: the possible role of guard cell vacuoles estimated by 3-D reconstruction. Plant Cell Physiol 48:1159-1169

    Article  PubMed  CAS  Google Scholar 

  • Tang RH, Han S, Zheng H, Cook CW, Choi CS, Woerner TE, Jackson RB, Pei ZM (2007) Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315:1423-1426

    Article  PubMed  CAS  Google Scholar 

  • Trejo CL, Clephan AL, Davies W (1995) How do stomata read abscisic acid signals? Plant Physiol 109:803-811

    PubMed  CAS  Google Scholar 

  • Trejo CL, Davies WJ, Ruiz L (1993) Sensitivity of stomata to abscisic acid (an effect of the mesophyll). Plant Physiol 102:497-502

    PubMed  CAS  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major ABA 8’-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171-182

    Article  PubMed  CAS  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signaling. Nature 452:487-491

    Article  PubMed  CAS  Google Scholar 

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665-682

    Article  PubMed  CAS  Google Scholar 

  • Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575-603

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070-2072

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413-424

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669-683

    PubMed  CAS  Google Scholar 

  • Webb AAR, McAinsh MR, Mansfield TA, Hetherington AM (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J 9:297-304

    Article  CAS  Google Scholar 

  • Weinl S, Held K, Schlucking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J (2008) A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179:675-686

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, S., Clephan, A.L. and Davies, W.J. (2001) Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566-1578

    Google Scholar 

  • Wilkinson, S., Corlett, J.E., Oger, L. and Davies, W.J. (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves. A vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703-709

    Google Scholar 

  • Wilkinson S., Davies WJ. (1997) Xylem Sap pH Increase: A Drought Signal Received at the Apoplastic Face of the Guard Cell That Involves the Suppression of Saturable Abscisic Acid Uptake by the Epidermal Symplast. Plant Physiol. 113:559-573

    Google Scholar 

  • Wille AC, Lucas WJ (1984) Ultrastructural and histochemical studies on guard cells. Planta 160:129-142

    Article  Google Scholar 

  • Xie X, Wang Y, Williamson L, Holroyd GH, Tagliavia C, Murchie E, Theobald J, Knight MR, Davies WJ, Leyser HM, Hetherington AM (2006) The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Curr Biol 16:882-887

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4:6

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473-1483

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310-5318

    Article  PubMed  CAS  Google Scholar 

  • Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA 103:7506-7511

    Article  PubMed  CAS  Google Scholar 

  • Yu R, Huang RF, Wang XC, Yuan M (2001) Microtubule dynamics are involved in stomatal movement of Vicia faba L. Protoplasma 216:113-118

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Davies WJ (1990) Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ 13:277-285

    Article  CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Da 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508-9513

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438-1448

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14:3009-3028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the author’s laboratories was supported by the Centre National de la Recherche Scientifique (CB and ST), a PhD fellowship from the Ministère de la Recherche et des Nouvelles Technologies to CB and National Institutes of Health (R01GM060396), National Science Foundation (MCB 0417118-0918220) and Department of Energy (DE-FG02-03ER15449) grants to J.I.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian I. Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Belin, C., Thomine, S., Schroeder, J.I. (2009). Water Balance and the Regulation of Stomatal Movements. In: Pareek, A., Sopory, S., Bohnert, H. (eds) Abiotic Stress Adaptation in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3112-9_14

Download citation

Publish with us

Policies and ethics