Skip to main content

Monte Carlo Methods

  • Chapter
  • First Online:
Nuclear Computational Science

Abstract

Monte Carlo methods comprise a large and still growing collection of methods of repetitive simulation designed to obtain approximate solutions of various problems by playing games of chance. Often these methods are motivated by randomness inherent in the problem being studied (as, e.g., when simulating the random walks of “particles” undergoing diffusive transport), but this is not an essential feature of Monte Carlo methods. As long ago as the eighteenth century, the distinguished French naturalist Compte de Buffon [1] described an experiment that is by now well known: a thin needle of length l is dropped repeatedly on a plane surface that has been ruled with parallel lines at a fixed distance d apart. Then, as Laplace suggested many years later [2], an empirical estimate of the probability P of an intersection obtained by dropping a needle at random a large number, N, of times and observing the number, n, of intersections provides a practical means for estimating π

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course, even pseudorandom sequences are deterministic, a fact that has stirred some debate about whether a probabilistic analysis made any sense at all for pseudorandomly implemented Monte Carlo. This, in turn, was one of the motives for developing a mathematically rigorous analysis divorced from probability theory and based only on a notion of uniformity arising out of number-theoretic considerations.

References

  1. Buffon GC (1777) Essai d’arithmetique morale. Supplement á l’histoire naturelle 4

    Google Scholar 

  2. Laplace MP-S (1886) Theory Analytiques des Probabilities, Livre 2, contained in Oeuvres Completes de Laplace, de L’Academie des Sciences, vol 7, part 2. Paris, pp 365–366

    Google Scholar 

  3. Mantel N (1953) An extension of the Buffon needle problem. Ann Math Stat 24:674–677

    MATH  MathSciNet  Google Scholar 

  4. Kahan BC (1961) A practical demonstration of a needle experiment designed to give a number of concurrent estimates of π. J R Stat Soc Series A 124:227–239

    Google Scholar 

  5. Hammersley JM, Morton KW (1956) A new Monte Carlo technique: antithetic variates. Proc Camb Phil Soc 52:449–475

    MATH  MathSciNet  Google Scholar 

  6. Fishman G (1996) Monte Carlo: Concepts, Algorithms, and Applications, Springer Series in Operations Research

    Google Scholar 

  7. Cashwell ED, Everett J (1959) Monte Carlo method for random walk problems. Pergamon, New York

    Google Scholar 

  8. Hammersley JM, Handscomb DC (1964) Monte Carlo methods. Methuen & Co., Ltd., London

    MATH  Google Scholar 

  9. Kalos MH, Whitlock PA (1986) Monte Carlo methods, Volume I: basics. Wiley-Interscience, New York

    MATH  Google Scholar 

  10. Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods, #63 in CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA

    Google Scholar 

  11. Spanier J, Gelbard EM (1969) Monte Carlo principles and neutron transport problems. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  12. Lux I, Koblinger L (1991) Monte Carlo particle transport methods: neutron and photon calculations. CRC Press, Boca Raton, FL

    Google Scholar 

  13. Kalos MH, Nakache FR, Celnik J (1968) Monte Carlo methods in reactor computations. In: Greenspan H, Kelber CN, Okrent D (eds) Computing methods in reactor physics. Gordon & Breach, New York, pp 365–438

    Google Scholar 

  14. Greenspan H, Kelber CN, Okrent D (eds) (1968) Computing methods in reactor physics. Gordon & Breach, New York, pp 365–438

    MATH  Google Scholar 

  15. X-5 Monte Carlo Team (2003) MCNP – a general N-particle transport code, Version 5,” LA-UR-03–1987, Los Alamos National Laboratory

    Google Scholar 

  16. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341

    MATH  MathSciNet  Google Scholar 

  17. Kahn H (1954) Applications of Monte Carlo, RAND Corp. Report AECU – 3259 (April 1954; revised April 1956)

    Google Scholar 

  18. Kahn H (1956) Use of different Monte Carlo sampling techniques. In: Meyer HA (ed) Symposium on Monte Carlo methods. Wiley, New York, pp 146–190

    Google Scholar 

  19. Coveyou RR (1969) Random number generation is too important to be left to chance. Appl Math 3:70–111

    Google Scholar 

  20. Devroye L (1986) Non-uniform random variate generation. Springer, New York

    MATH  Google Scholar 

  21. Stadlober E, Kremer R (1992) Sampling from discrete and continuous distributions with C-Rand. In: Pflug G, Dieter U (eds) Simulation and optimization. Lecture notes in economics and math. systems, vol 374. Springer, Berlin, pp 154–162

    Google Scholar 

  22. Stadlober E, Niederl F (1994) C-Rand: a package for generating nonuniform random variates. In Compstat’94, Software Descriptions, pp 63–64

    Google Scholar 

  23. Lehmer DH (1964) Mathematical methods in large-scale computing units. Proc 2nd Symp on Large-Scale Calculating Machinery (1949), Ann Comp Lab Harvard Univ 26:141–146

    Google Scholar 

  24. Knuth DE (1998) The art of computer programming, Seminumerical Algorithms, vol 2, 3rd edn. Addison-Wesley, Reading, MA

    Google Scholar 

  25. Coveyou RR (1960) Serial correlation in the generation of pseudo-random numbers. J ACM 7:72–74

    MATH  MathSciNet  Google Scholar 

  26. MacLaren MD, Marsaglia G (1965) Uniform random number generators. J ACM 12:83–89

    MATH  MathSciNet  Google Scholar 

  27. Marsaglia G (1968) Random numbers fall mainly in the planes. Proc Natl Acad Sci USA 61:25–28

    MATH  MathSciNet  Google Scholar 

  28. Anderson SL (1990) Random number generators on vector supercomputers and other advanced architectures. SIAM Rev 32:221–251

    MATH  MathSciNet  Google Scholar 

  29. Dagpunar J (1988) Principles of random variate generation. Oxford University Press, Oxford

    MATH  Google Scholar 

  30. Deak I (1989) Random number generators and simulation. Akademiai Kiado, Budapest

    Google Scholar 

  31. Dieter U (1986) Non-uniform random variate generation. Springer, New York

    Google Scholar 

  32. James F (1990) A review of pseudorandom number generators. Comp Phys Commun 60:329–344

    MATH  Google Scholar 

  33. L’Ecuyer P (1990) Random numbers for simulation. Commun ACM, 33:85–97

    Google Scholar 

  34. L’Ecuyer P (1994) Uniform random number generation. Ann Oper Res 53:77–120

    MATH  MathSciNet  Google Scholar 

  35. Niederreiter H (1995) New developments in uniform random number and vector generation. In: Niedderreiter H, Shiue P J-S (eds) Monte Carlo and quasi-Monte Carlo methods in scientific computing, Lecture Notes in Statistics #106. Springer, New York, pp 87–120

    Google Scholar 

  36. Niederreiter H (1993) Finite fields, pseudorandom numbers, and quasi-random points. In: Mullen GL, Shiue PJ-S (eds) Finite fields, coding theory, and advances in communications and computing. Marcel Dekker, New York, pp 375–394

    Google Scholar 

  37. Bergstrom V (1936) Einige Bemerkungen zur Theorie der Diophantischen Approximationen. Fysiogr Salsk Lund Forh 6(13):1–19

    Google Scholar 

  38. Van der Corput JG, Pisot C (1939) Sur la Discrépance Modulo un. Indag Math 1:143–153, 184–195, 260–269

    Google Scholar 

  39. Bratley P, Fox BL, Schrage LE (1987) A guide to simulation, 2nd edn. Springer, New York

    Google Scholar 

  40. Fishman G, Moore III LS (1986) An exhaustive analysis of multiplicative congruential random number generators with modulus 231 – 1. SIAM J Sci Stat Comp 7:24–45

    MATH  MathSciNet  Google Scholar 

  41. Fishman G (1989) Multiplicative congruential random number generators with modulus 2β: an exhaustive analysis for β = 32 and a partial analysis for β = 48. Math Comp 54:331–344

    MathSciNet  Google Scholar 

  42. Ripley BD (1983) The lattice structure of pseudo-random number generators. Proc R Soc Lond Ser A 389:197–204

    MATH  MathSciNet  Google Scholar 

  43. Law AM, Kelton WD (2002) Simulation modeling and analysis, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  44. L’Ecuyer P (1998) Random number generation. Chapter 4. In: Banks J (ed) Handbook of simulation. Wiley, New York, pp 93–137

    Google Scholar 

  45. Hellekalek P, Larcher G (eds) (1998) Random and quasi-random point sets, vol 138 of Lecture Notes in Statistics. Springer, New York

    Google Scholar 

  46. L’Ecuyer P, Simard R (2000) On the performance of birthday spacings tests for certain families of random number generators. Math Comp Simul 55:131–137

    MathSciNet  Google Scholar 

  47. L’Ecuyer P (1999) Good parameters and implementations for combined multiple recursive random number generators. Oper Res 47:159–164

    MATH  Google Scholar 

  48. Eichenauer J, Lehn J (1986) A nonlinear congruential pseudorandom number generator. Stat Papers 27:315–326

    MATH  MathSciNet  Google Scholar 

  49. L’Ecuyer P (2002) Random numbers. In: Smelser NJ, Paul B Baltes (eds) The international encyclopedia of the social and behavioral sciences. Pergamon, Oxford, pp 12735–12738

    Google Scholar 

  50. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comp Simul 8:3–30

    MATH  Google Scholar 

  51. L’Ecuyer P, Andres TH (1997) A random number generator based on the combination of four LCGs. Math Comp Simul 44:99–107

    MATH  MathSciNet  Google Scholar 

  52. L’Ecuyer P (1999) Tables of maximally equidistributed combined LFSR generators. Math Comp 68:261–269

    MATH  MathSciNet  Google Scholar 

  53. Zaremba SK (1968) The mathematical basis of Monte Carlo and quasi-Monte Carlo methods. SIAM Rev 10:304–314

    MathSciNet  Google Scholar 

  54. Keller A (1995) A Quasi-Monte Carlo Algorithm for the global illumination problem in the radiosity setting. In: Niederreiter H, Shiue PJ (eds) Monte Carlo and quasi-Monte Carlo methods in scientific computing, Lecture Notes in Statistics 106. Springer, New York, pp 239–251

    Google Scholar 

  55. Keller A (1998) The quasi-random walk. In: Niederreiter H, Hellekalek P, Larcher G, Zinterhof P (eds) Monte Carlo and Quasi-Monte Carlo methods 1996, Lecture Notes in Statistics 127. Springer, New York, pp 277–291

    Google Scholar 

  56. Morokoff WJ, Caflisch RE (1993) A Quasi-Monte Carlo approach to particle simulation of the heat equation. SIAM J Num Anal 30:1558–1573

    MATH  MathSciNet  Google Scholar 

  57. Spanier J, Maize EH (1994) Quasi-random methods for estimating integrals using relatively small samples. SIAM Rev 36:18–44

    MATH  MathSciNet  Google Scholar 

  58. Spanier J (1995) Quasi-Monte Carlo methods for particle transport problems. In: Niederreiter H, Shiue PJ (eds) Monte Carlo and quasi-Monte Carlo methods in scientific computing, Lecture Notes in Statistics 106. Springer, New York, pp 121–148

    Google Scholar 

  59. Boyle P (1977) Options: a Monte Carlo approach. J Fin Econ 4(4):323–338

    Google Scholar 

  60. Morokoff WJ, Caflisch RE (1997) Quasi-Monte Carlo simulation of random walks in finance. In: Niederreiter H, Hellekalek P, Larcher G, Zinterhof P (eds) Monte Carlo and quasi-Monte Carlo methods 1996, Lecture Notes in Statistics 127. Springer, New York, pp 340–352

    Google Scholar 

  61. Joy C, Boyle P, Tan KS (1996) Quasi-Monte Carlo methods in numerical finance. Manage Sci 42:926–938

    MATH  Google Scholar 

  62. Tezuka S (1998) Financial applications of Monte Carlo and Quasi-Monte Carlo methods. In: Hellekalek P, Larcher G (eds) Random and quasi-random point sets, Lecture Notes in Statistics 138. Springer, New York, 303–332

    Google Scholar 

  63. Cohen M, Wallace J (1993) Radiosity and realistic image synthesis. Academic Press Professional, Cambridge

    MATH  Google Scholar 

  64. Lafortune E (1996) Mathematical models and Monte Carlo algorithms for physically based rendering. Ph.D. dissertation, Katholieke Universitiet, Leuven, Belgium

    Google Scholar 

  65. Van der Corput JG (1935) Verteilungsfunktionen I, II, Nederl. Akad Wetensch Proc Ser B, 38:813–821, 1058–1066

    MATH  Google Scholar 

  66. Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Num Math 2:84–90

    MathSciNet  Google Scholar 

  67. Korobov NM (1959) The approximate computation of multiple integrals. Dokl Akad Nauk SSSR 124:1207–1210 (in Russian)

    MATH  MathSciNet  Google Scholar 

  68. Hlawka E (1962) Zur Angenäherten Berechnung Mehrfacher Integrale. Monatsch Math 66:140–151

    MATH  MathSciNet  Google Scholar 

  69. Hua K, Wang Y (1981) Applications of number theory to numerical analysis. Springer, Berlin

    MATH  Google Scholar 

  70. Sloan IH, Joe S (1994) Lattice methods for multiple integrals. Oxford University Press, Oxford

    Google Scholar 

  71. Owen A (1995) Randomly permuted (t, m, s)-nets and (t, m, s)-sequences. In: Niederreiter H, Shiue PJ (eds) Monte Carlo and quasi-Monte Carlo methods in scientific computing, Lecture Notes in Statistics 106. Springer, New York, pp 299–317

    Google Scholar 

  72. Faure H (1992) Good permutations for extreme discrepancy. J Num Theor 41:47–56

    MathSciNet  Google Scholar 

  73. Wang J, Hickernell FJ (2000) Randomized Halton sequences. Math Comp Model 32:887–899

    MATH  MathSciNet  Google Scholar 

  74. Moskowitz B (1995) Quasi-random diffusion Monte Carlo. In: Niederreiter H, Shiue PJ-S (eds) Monte Carlo and quasi-Monte Carlo methods in scientific computing, Lecture Notes in Statistics, 106. Springer, Berlin, pp 278–298

    Google Scholar 

  75. Coulibaly I, Lecot C (1998) Monte Carlo and quasi-Monte Carlo algorithms for a linear integro-differential equation. In: Niederreiter H, Hellekalek P, Larcher G, Zinterhof P (eds) Monte Carlo and quasi-Monte Carlo methods 1996, Lecture Notes in Statistics 127. Springer, New York, 176–188

    Google Scholar 

  76. Okten G (1999) High dimensional integration: a construction of mixed sequences using sensitivity of the integrand. Technical Report, Ball State University, Muncie, IN

    Google Scholar 

  77. Okten G (2000) Applications of a hybrid Monte Carlo sequence to option pricing. In: Niederreiter H, Spanier J (eds) Monte Carlo and quasi-Monte Carlo methods, 1998. Springer, New York, pp 391–406

    Google Scholar 

  78. Moskowitz BS (1993) Application of quasi-random sequences to Monte Carlo methods. Ph.D. dissertation, UCLA

    Google Scholar 

  79. Okten G (1999) Random sampling from low discrepancy sequences: applications to option pricing. Technical Report, Ball State University, Muncie, IN

    Google Scholar 

  80. Paskov SH (1997) New methodologies for valuing derivatives. In: Pliska S, Dempster M (eds) Mathematics of securities. Isaac Newton Institute, Cambridge University Press, Cambridge

    Google Scholar 

  81. Paskov SH, Traub JF (1995) Faster valuation of financial derivatives. J Portfolio Manage 22:113–120

    Google Scholar 

  82. Cukier RI, Levine HB, Shuler KE (1978) Nonlinear sensitivity analysis of multiparameter model systems. J Comp Phys 26:1–42

    MATH  MathSciNet  Google Scholar 

  83. Owen A (1992) Orthogonal arrays for computer experiments, integration and visualization. Statistica Sinica 2:439–452

    MATH  MathSciNet  Google Scholar 

  84. Radovic I, Sobol’ IM, Tichy RF (1996) Quasi-Monte Carlo methods for numerical integration: comparison of different low discrepancy sequences. Monte Carlo Meth Appl 2:1–14

    MATH  MathSciNet  Google Scholar 

  85. Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. MMCE 1:407–414

    MATH  MathSciNet  Google Scholar 

  86. Sloan IH, Wozniakowski H (1998) When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J Complexity 14:1–33

    MATH  MathSciNet  Google Scholar 

  87. Wozniakowski H (2000) Efficiency of quasi-Monte Carlo algorithms for high dimensional integrals. In: Niederreiter H, Spanier J (eds) Monte Carlo and quasi-Monte Carlo methods 1998. Springer, New York, pp 114–136

    Google Scholar 

  88. Chelson P (1976) Quasi-random techniques for Monte Carlo methods. Ph.D. dissertation, The Claremont Graduate School, Claremont

    Google Scholar 

  89. Spanier J, Li L (1998) Quasi-Monte Carlo methods for integral equations. In: Niederreiter H, Hellekalek P, Larcher G, Zinterhof P (eds) Monte Carlo and quasi-Monte Carlo methods 1996, Lecture Notes in Statistics 127. Springer, New York, pp 398–414

    Google Scholar 

  90. Koksma JF (1942–1943) Een Allgemeene Stelling uit de Theorie der Gelijkmatige Verdeeling Modulo 1. Mathematica B. (Zutphen) 11:7–11

    Google Scholar 

  91. Hlawka E (1961) Funktionen von Beschränkter Variation in der Theorie der Gleichverteilung. Ann Mat Pura Appl 54:325–333

    MATH  MathSciNet  Google Scholar 

  92. Hickernell FJ (2006) Koksma-Hlawka inequality. In: Kotz S, Johnson NL, Read CB, Balakrishnan N, Vidakovic B (eds) Encyclopedia of statistical sciences, vol 6, 2nd edn. Wiley, Hoboken, NJ, pp 3862–3867

    Google Scholar 

  93. Maize EH (1981) Contributions to the theory of error reduction in quasi-Monte Carlo methods. Ph.D. dissertation, The Claremont Graduate School, Claremont

    Google Scholar 

  94. Niederreiter H, Xing C (1998) The algebraic-geometry approach to low-discrepancy sequences. In: Niederreiter H, Hellekalek P, Larcher G, Zinterhof P (eds) Monte Carlo and quasi-Monte Carlo methods 1996, Lecture Notes in Statistics 127. Springer, New York, pp 139–160

    Google Scholar 

  95. Niederreiter H (2000) Construction of (t,m,s)-nets. In: Niederreiter H, Spanier J (eds) Monte Carlo and quasi-Monte Carlo methods, 1998. Springer, New York, pp 70–85

    Google Scholar 

  96. Sobol IM (1967) The distribution of points in a cube and the approximate evaluation of integrals. Zh Vychisl Mat i Mat Fiz 7:784–802 (in Russian)

    MathSciNet  Google Scholar 

  97. Faure H (1981) Discrépances de Suites Associées à un Système de Numération (en Dimension un). Bull Soc Math France 109:143–182

    MATH  MathSciNet  Google Scholar 

  98. Faure H (1982) Discrépances de Suites Associées à un Système de Numération (en Dimension S). Acta Arith 41:337–351

    MATH  MathSciNet  Google Scholar 

  99. Halton J (1998) Independence of quasi-random sequences and sets. Working Paper CB#3175, University of North Carolina, Chapel Hill, NC

    Google Scholar 

  100. Okten G (1998) Error estimation for Quasi-Monte Carlo methods. In: Niederreiter H, Hellekalek P, Larcher G, Zinterhof P (eds) Monte Carlo and quasi-Monte Carlo methods 1996, Lecture Notes in Statistics 127. Springer, New York

    Google Scholar 

  101. Goertzel G, Kalos MH (1958) Monte Carlo methods in transport problems. In: Hughes DJ, Sanders JE, Horowitz J (eds) Progress in nuclear energy, vol II, series I, Physics and Mathematics. Pergamon, New York, pp 315–369

    Google Scholar 

  102. Leimdorfer M (1964) On the transformation of the transport equation for solving deep penetration problems by the Monte Carlo methods. Trans Chalmers University of Tech, #286. Goteborg, Sweden

    Google Scholar 

  103. Leimdorfer M (1964) On the use of Monte Carlo methods for calculating the deep penetration of neutrons in shields. Trans Chalmers University of Tech, #287, Goteborg, Sweden

    Google Scholar 

  104. Coveyou RR, Cain VR, Yost KJ (1967) Adjoint and importance in Monte Carlo application. Oak Ridge National Laboratory Report ORNL-4093

    Google Scholar 

  105. Kalos MH (1963) Importance sampling in Monte Carlo shielding calculations – neutron penetration through thick hydrogen shields. Nucl Sci Eng 16:227

    Google Scholar 

  106. Goertzel G (1949) Quota sampling and importance functions in stochastic solution of particle problems. Oak Ridge National Laboratory Report ORNL-434

    Google Scholar 

  107. Halton JH (1970) A retrospective and prospective survey of the Monte Carlo method. SIAM Rev 12:1–63

    MATH  MathSciNet  Google Scholar 

  108. Gelbard EM, Spanier J (1964) Use of the superposition principle in Monte Carlo resonance escape calculations. Trans Am Nucl Soc 7:259–260

    Google Scholar 

  109. Halton J (1962) Sequential Monte Carlo. Proc Camb Phil Soc 58:57–73

    MATH  MathSciNet  Google Scholar 

  110. Halton J (1994) Sequential Monte Carlo techniques for the solution of linear systems. J Sci Comp 9:213–257

    MATH  MathSciNet  Google Scholar 

  111. Kong R (1999) Transport problems and Monte Carlo methods. Ph.D. dissertation, Claremont Graduate University, Claremont

    Google Scholar 

  112. Kong R, Spanier J (2000) Sequential correlated sampling methods for some transport problems. In: Niederreiter H, Spanier J (eds) Monte Carlo and quasi-Monte Carlo methods 1998. Springer, Berlin, pp 238–251

    Google Scholar 

  113. Kong R, Spanier J (2000) Error analysis of sequential Monte Carlo methods for transport problems. In: Niederreiter H, Spanier J (eds) Monte Carlo and quasi-Monte Carlo methods 1998. Springer, Berlin, pp 252–272

    Google Scholar 

  114. Spanier J (2000) Geometrically convergent learning algorithms for global solutions of transport problems. In: Niederreiter H, Spanier J (eds) Monte Carlo and quasi-Monte Carlo methods 1998. Springer, Berlin, pp 98–113

    Google Scholar 

  115. Hickernell FJ, Lemieux C, Owen AB (2005) Control variates for quasi-Monte Carlo, 2002. Stat Sci 20:1–31

    MATH  MathSciNet  Google Scholar 

  116. Maynard CW (1961) An application of the reciprocity theorem to the acceleration of Monte Carlo calculations. Nucl Sci Eng 10:97–101

    Google Scholar 

  117. Spanier J (1970) An analytic approach to variance reduction. SIAM J Appl Math 18:172–190

    MATH  MathSciNet  Google Scholar 

  118. Burn KW, Nava E (May 1997) Optimization of variance reduction parameters in Monte Carlo radiation transport calculations to a number of responses of interest. Proceedings of the international conference on nuclear data for science and technology. Italian Physical Society, Trieste, Italy

    Google Scholar 

  119. Burn KW, Gualdrini G, Nava E (2002) Variance reduction with multiple responses. In: Kling A, Barao F, Nakagawa M, Tavora L, Vaz P (eds) Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Proceedings of the MC2000 conference. Lisbon, Portugal, 23–26 October 2000, pp 687–695

    Google Scholar 

  120. Hendricks J (1982) A code – generated Monte Carlo importance function. Trans Am Nucl Soc 41:307

    Google Scholar 

  121. Cooper MA, Larsen EW (2001) Automated weight windows for global Monte Carlo particle transport calculations. Nucl Sci Eng 137:1–13

    Google Scholar 

  122. Booth TE (1986) A Monte Carlo learning/biasing experiment with intelligent random numbers. Nucl Sci Eng 92:465–481

    Google Scholar 

  123. Booth TE (1988) The intelligent random number technique in MCNP. Nucl Sci Eng 100:248–254

    Google Scholar 

  124. Booth T (1985) Exponential convergence for Monte Carlo particle transport. Trans Am Nucl Soc 50:267–268

    Google Scholar 

  125. Booth T (1997) Exponential convergence on a continuous Monte Carlo transport problem. Nucl Sci Eng 127:338–345

    Google Scholar 

  126. Kollman C (1993) Rare event simulation in radiation transport. Ph.D. dissertation, University of California, Berkeley, CA

    Google Scholar 

  127. Lai Y, Spanier J (2000) Adaptive importance sampling algorithms for transport problems. In: Niederreiter H, Spanier J (eds) Monte Carlo and quasi-Monte Carlo methods 1998. Springer, New York, pp 276–283

    Google Scholar 

  128. Hayakawa C, Spanier J (2000) Comparison of Monte Carlo algorithms for obtaining geometric convergence for model transport problems. In: Niederreiter H, Spanier J (eds) Monte Carlo and quasi-Monte Carlo methods 1998. Springer, New York, pp 214–226

    Google Scholar 

  129. Spanier J, Kong R (2004) A new adaptive method for geometric convergence. In: Niederreiter H (ed) Proceedings MCQMC 2002. 25–28 November 2002, Singapore, pp 439–449

    Google Scholar 

  130. Powell MJD, Swann J (1966) Weighted uniform sampling – a Monte Carlo technique for reducing variance. J Inst Math Appl 2:228–236

    MATH  MathSciNet  Google Scholar 

  131. Spanier J (1979) A new family of estimators for transport problems. J Inst Math Appl 23:1–31

    MATH  MathSciNet  Google Scholar 

  132. Booth TE (1990) A quasi-deterministic approximation of the Monte Carlo importance function. Nucl Sci Eng 104:374–384

    Google Scholar 

  133. Li L (1995) Quasi-Monte Carlo methods for transport equations. Ph.D. dissertation, The Claremont Graduate School, Claremont

    Google Scholar 

  134. Li L, Spanier J (1997) Approximation of transport equations by matrix equations and sequential sampling. Monte Carlo Meth Appl 3:171–198

    MATH  MathSciNet  Google Scholar 

  135. Mosher S, Maucec M, Spanier J, Badruzzaman A, Chedester C, Evans M, Gadeken L Expected-value techniques for Monte Carlo modeling of well logging problems. In review

    Google Scholar 

  136. Amster HJ, Kuehn H, Spanier J (February 1960) Euripus-3 and Daedalus – Monte Carlo Density Codes for the IBM-704. Westinghouse Atomic Power Laboratory report WAPD-TM-205

    Google Scholar 

  137. Rief H (1984) Generalized Monte Carlo perturbation theory for correlated sampling and a second order Taylor series approach. Ann Nucl Energy 11:455–476

    Google Scholar 

  138. Rief H, Gelbard EM, Schaefer RW, Smith KS (1986) Review of Monte Carlo techniques for analyzing reactor perturbations. Nucl Sci Eng 92:289–297

    Google Scholar 

  139. Rief H (1996) Stochastic perturbation analysis applied to neutral particle transport. Adv Nucl Sci Tech 23:69–140

    Google Scholar 

  140. Hayakawa C, Spanier J, Bevilacqua F, Dunn AK, You JS, Tromberg BJ, Venugopalan V (2001) Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. Optics Lett 26(17):1335–1337

    Google Scholar 

  141. Hayakawa CK, Spanier J Perturbation Monte Carlo methods for the solution of inverse problems. In: Niederreiter H (ed) Proceedings MCQMC 2002. 25–28 November 2002, Singapore, Springer, pp 227–241 (to appear)

    Google Scholar 

  142. Goudsmit S, Saunderson JL (1940) Multiple scattering of electrons. Phys Rev 57:24–29

    Google Scholar 

  143. Lewis HW (1950) Multiple scattering in an infinite medium. Phys Rev 78:526–529

    MATH  Google Scholar 

  144. Berger MJ (1963) Monte Carlo calculations of the penetration and diffusion of fast charged particles. In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics, vol I. Academic, New York, pp 135–215

    Google Scholar 

  145. Larsen EW (1992) A theoretical derivation of the condensed history algorithm. Ann Nucl Energy 19(10–12):701–714

    Google Scholar 

  146. Fernandez-Varea JM, Mayol R, Baro J, Salvat F (1993) On the theory and simulation of multiple elastic scattering of electrons. Nucl Inst Meth Phys Res B73:447–473

    Google Scholar 

  147. Kawrakow I, Bielajew AF (1998) On the condensed history technique for electron transport. Nucl Inst Meth Phys Res B142:253–280

    Google Scholar 

  148. Wyman DR, Patterson MS, Wilson BC (1989) Similarity relation for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles. J Comp Phys 81:137–150

    MATH  Google Scholar 

  149. Bielajew AF, Salvat F (2000) Improved electron transport mechanics in the PENELOPE Monte Carlo model. Nucl Inst Meth Phys Res B173:332–343

    Google Scholar 

  150. Tolar DR, Larsen EW (2001) A transport condensed history algorithms for electron Monte Carlo simulations. Nucl Sci Eng 139:47–65

    Google Scholar 

  151. SpanierJ, Li L (1998) General sequential sampling techniques for Monte Carlo simulations: Part I – matrix problems. In: Niederreiter H, Hellekalek P, Larcher G, Zinterhof P (eds) Monte Carlo and quasi-Monte Carlo methods 1996. Springer Lecture Notes in Statistics #127, Springer, New York, 382–397

    Google Scholar 

  152. Amster HJ, Djomehri MJ (1976) Prediction of statistical error in Monte Carlo transport calculations. Nucl Sci Eng 60:131–142

    Google Scholar 

  153. Booth TE, Amster HJ (1978) Prediction of Monte Carlo errors by a theory generalized to treat track-length estimators. Nucl Sci Eng 65:273–281

    Google Scholar 

  154. Booth TE, Cashwell ED (1979) Analysis of error in Monte Carlo transport calculations. Nucl Sci Eng 71:128–142

    Google Scholar 

  155. Amster HJ (1971) Determining collision variances from adjoints. Nucl Sci Eng 43:114–116

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support of the Laser Microbeam and Medical Program NIH P-41-RR-01192, and grants UCOP 41730 and NSF/DMS 0712853 during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Spanier .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Spanier, J. (2010). Monte Carlo Methods. In: Nuclear Computational Science. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3411-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3411-3_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3410-6

  • Online ISBN: 978-90-481-3411-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics