Skip to main content

Nutrients Use Efficiency in Legume Crops to Climatic Changes

  • Chapter
  • First Online:
Climate Change and Management of Cool Season Grain Legume Crops

Abstract

Legumes, with the ability of 88% of the species examined to date to form nodules with rhizobia and fix nitrogen, are second only to the Gramineae in their importance to humans. Legume species are going to play a very important role in relationship to the nutrient use and efficiency in agriculture under climate changes resulting from human activity. Climate change associated with increased human caused CO2 pollution will affect weather patterns, resulting in increased global temperatures and rainfall, more extreme events, and regional changes in annual mean temperatures and precipitation. These changes will impact all inhabitants in the world, including through food production. The effects may be direct, for example via increased photosynthesis or indirect via changes in soil microclimate affecting rates of mineralization of nutrients. In this sense, climate change may have beneficial as well as detrimental consequences for agriculture and crop nutrient use efficiency. Some research indicates that warmer temperatures lengthen growing seasons and increased carbon dioxide in the air results in higher yields. Together these would increase nutrient demand from some crops and potentially may lead to either increased nutrient use efficiency or reduced efficiency for example via inability to supply adequate P resulting in reduced N fixation. While changes, will likely vary significantly by region a warming climate and decreasing soil moisture can also result in production patterns shifting northward and an increasing need for irrigation. These shifts in production system are also likely to lead to changes in nutrient use efficiency by legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.T. Abberton, J.H. MacDuff, A.H. Marshall, and M.W. Humphreys (2008). The genetic improvement of forage grasses and legumes to enhance adaptation of grasslands to climate change. Plant Breeding and Genetics Programme, Institute of Grassland and Environmental Research, Aberystwyth, United Kingdom. Plant Production and Protection Division Crop and Grassland Service.

    Google Scholar 

  • P.H. Abelson (1999). A potential phosphate crisis. Science 283, 2015.

    Article  CAS  PubMed  Google Scholar 

  • E.A. Ainsworth and S.P. Long (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis. New Phytol 165, 351–371.

    Article  PubMed  Google Scholar 

  • V.S. Baron and G. Bélanger (2007). Climate and forage adaptation. In: R.F. Barnes, C.J. Nelson, K.J. Moore, M. Collins (eds.), Forages Vol. II. The science of grassland agriculture, pp. 83–104. Blackwell, Oxon.

    Google Scholar 

  • T. Barszczak and Z. Barszczak (1994). Influencce of soil acidity and periodical drought on yield of winter oil seed rape seeds in relation to nitrogen rates. Zeszyty Problemowe Postepow Nauk Rolniczych 413, 27–32.

    Google Scholar 

  • J.S. Beaver, J.C. Rosas, J. Myers, J. Acosta, J.D. Kelly, S. Nchimbi-Msolla, R. Misangu, J. Bokosi, S. Temple, E. Arnaud-Santana, and D.P. Coyne (2003). Contributions of the bean/cowpea CRSP program to cultivar and germplasm development in common bean. Field Crops Res 82(2–3), 87–102.

    Article  Google Scholar 

  • F.A. Beltrán-Morales, J.L. García-Hernández, R.D. Valdez-Cepeda, B. Murillo-Amador, E. Troyo-Diéguez, J. Larrinaga, and L.F. Beltrán-Morales (2006). Efecto de sistemas de labranza e incorporación de abono verde (Lablab purpureus L.) sobre la respiración edáfica en un yermosol haplico. Interciencia 31(4), 226–230.

    Google Scholar 

  • J. Brockwell, P.J. Bottomley, and J.E. Thies (1995). Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment. Plant Soil 174, 143–180.

    Article  CAS  Google Scholar 

  • T.W. Bruulsema and W.K. Griffith (1997). Climate change and crop nutrients. Better Crops 81(4), 12–14.

    Google Scholar 

  • D. Campbell-Lendrum, C. Corvalan, and M. Neira (2007). Global climate change: Implications for international public health policy. Bull WHO 85, 235–237.

    PubMed  Google Scholar 

  • Z.G. Cardon, B.A. Hungate, C.A. Cambardella, F.S. Chapin, C.B. Field, E.A. Holland, and H.A. Mooney (2001). Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biol Biochem 33, 365–373.

    Article  CAS  Google Scholar 

  • S.R. Carpenter, N.F. Caraco, and V.H. Smith (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8, 559–568.

    Article  Google Scholar 

  • K.G. Cassman and P.L. Pingali (1995). Intensification of irrigated rice systems: Learning from the past to meet future challenges. GeoJournal 35, 299–305.

    Article  Google Scholar 

  • CIAT (Centro Internacional de Agricultura Tropical) (1992). Constraints to and opportunities for improving bean production. A planning document 1993–98. An achievement document 1987–92. Centre International de Agriculture Tropical (CIAT), Cali, Colombia.

    Google Scholar 

  • D.S. Ellsworth, P.B. Reich, E.S. Naumburg, G.W. Koch, M.E. Kubiske, and S.D. Smith (2004). Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob Change Biol 10, 2121–2138.

    Article  Google Scholar 

  • EPA (2008). Carbon Sequestration in Agriculture and Forestry. http://www.epa.gov/sequestration/index.html.

  • H.A. Esechie and A. Rodriguez (1999). Does salinity inhibit alfalfa leaf growth by reducing tissue concentration of essential mineral nutrients. J Agron Crop Sci 182, 173–178.

    Article  Google Scholar 

  • C.R. Frink, P.E. Waggoner, and S.H. Ausubel (1999). Nitrogen fertilizer: Retrospect and prospect. Proc Natl Acad Sci USA 96, 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  • J.N. Galloway, H. Levy, and P.S. Kashibhatla (1994). Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. AMBIO 23, 120–123.

    Google Scholar 

  • M.D. Galvez (2005). Metabolismo nodular en Pisum sativum L. en respuesta a estrés hídrico. Interacciones carbono/nitrógeno y posibles moléculas implicadas en la modulación de la respuesta. Ph.D. Thesis, Public University of Navarre, Spain. http://news.bio-medicine.org/biology-news-3/Drought-reduces-nitrogen-fixing-in-legumes-13118-1/.

  • R.M. Gifford (1994). The global carbon cycle: A viewpoint on the missing sink. Aust J Plant Physiol 21, 1–15.

    Article  Google Scholar 

  • P.H. Graham (1992). Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38, 475–484.

    Article  CAS  Google Scholar 

  • P.H. Graham and C.P. Vance (2000). Nitrogen fixation in perspective: An overview of research and extension needs. Field Crops Res 65, 93–106.

    Article  Google Scholar 

  • P.H. Graham and C.P. Vance (2003). Legumes: Importance and constraints to greater use. Plant Physiol 131, 872–877.

    Article  CAS  PubMed  Google Scholar 

  • T. Hebeisen, A. Lüscher, S. Zanetti, B.U. Fischer, U.A. Hartwig, M. Frehner, G.R. Hendrey, H. Blum, and J. Nösberger (1997). Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Glob Change Biol 3, 149–160.

    Article  Google Scholar 

  • P. Heffer and M. Prud’homme, 2009, Fertilizer Output: 2009–2013, Report from the International Fertilizer Association, Paris France. 10 pp.

    Google Scholar 

  • A. Hopkins and A. Del Prado (2006). Implications of climate change for grassland: Impacts, adaptations and mitigation options. Grassland Science in Europe 11. Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain, 3–6 April 2006. pp. 749–759.

    Google Scholar 

  • R.W. Howarth, G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J.A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendese, J. Freney, V. Kudeyarov, P. Murdoch, and Z. Zhao-Liang (1996). Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35, 75–139.

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007). Summary for policymakers. In: M.L. Parry, O.F. Canziani, J.P. Palutikot, P.J. van der Linden, C.E. Hanson, (eds.), Climate Change 2007: Impacts, Adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • IWGCC (Interdepartamental Working Group on Climatic Change) (2007). Adaptation to climate change in agriculture, forestry and fisheries: Perspective, framework and priorities. Food and Agriculture Organization, Rome.

    Google Scholar 

  • B.A. Kimball, K. Kobayashi, and M. Bindi (2002). Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77, 293–368.

    Article  Google Scholar 

  • P. Loiseau and J.-F. Soussana (1999). Elevated CO2, temperature increase and nitrogen supply effects on the turnover of below-ground carbon in a temperate grassland ecosystem. Plant Soil 210, 233–247.

    Article  CAS  Google Scholar 

  • Y. Luo, B. Su, W.S. Currie, J.S. Dukes, A. Finzi, U. Hartwig, B. Hungate, R.E. McMurtrie, R. Oren, W.J. Parton, D.E. Pataki, M.R. Shaw, D.R. Zak, and C.B. Field (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739.

    Article  Google Scholar 

  • A. Lüscher, G.R. Hendrey, and J. Nösberger (1998). Longterm responsiveness to free air CO2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland. Oecologia 113, 37–45.

    Google Scholar 

  • P.A. Matson, C. Billow, and S. Hall (1996). Fertilization practices and soil variations control nitrogen oxide emissions from tropical sugar cane. J Geophys Res 101, 18533–18545.

    Article  CAS  Google Scholar 

  • D.L. McNeil and M. Materne (2007). Chapter 8 Rhizobium management and nitrogen fixation. pp. 127–144. In: Yadav S.S., McNeil D.L., and Stevenson P.C. (eds.), Lentil: An Ancient Crop for Modern Times, 460 pp. Springer, Dordrecht.

    Google Scholar 

  • N. Muntean, M. Jermini, I. Small, D. Falzon, P. Fürst, G. Migliorati, G. Scortichini, A.F. Forti, E. Anklam, C. von Holst, B. Niyazmatov, S. Bahkridinov, R. Aertgeerts, R. Bertollini, C. Tirado, and A. Kolb (2003). Dietary exposure assessment to some persistent organic pollutants in the Republic of Karakalpakstan of Uzbekistan. Environ Health Perspect 111, 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  • K.J. Nadelhoffer, A.E. Giblin, G.R. Shaver, and J.A. Laundre (1991). Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72, 242–253.

    Article  Google Scholar 

  • P.C.D. Newton, H. Clark, C.C. Bell, and E.M. Glasgow (1996). Interaction of soil moisture and elevated CO2 on the above-ground growth rate, root length density and gas exchange of turves from temperate pasture. J Exp Bot 47, 771–779.

    Article  CAS  Google Scholar 

  • R.S. Nowak, D.S. Ellsworth, and S.D. Smith (2004). Functional responses of plants to elevated atmospheric CO2 – Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162, 253–280.

    Article  Google Scholar 

  • M. Olivera, N. Tejera, C. Iribarne, A. Ocaña, and C. Lluch (2004). Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): Effect of phosphorus. Physiol Plant 121, 498–505.

    Article  CAS  Google Scholar 

  • P.A.A. Pereira and F.A. Bliss (1987). Nitrogen fixation and plant growth of common bean (Phaseolus vulgaris L.) at different levels of phosphorus availability. Plant Soil 104, 79–84.

    Article  CAS  Google Scholar 

  • T.A. Peterson and M.P. Russelle (1991). Alfalfa and the nitrogen cycle in the corn belt. J Soil Water Conserv 46, 229–235.

    Google Scholar 

  • R.M. Polhill, P.H. Raven, and C.H. Stirton (1981). Evolution and systematics of the Leguminosae. In: R.M. Polhill, P.H. Raven (eds.), Advances in Legume Systematics, Part 1, pp. 1–26. Royal Botanic Gardens, Kew, Greater London.

    Google Scholar 

  • H.W. Polley, J.A. Morgan, B.D. Cambell, and M.S. Smith (2000). Crop ecosystem responses to climatic change: Rangelands. In: K. Raja Reddy, H.F. Hodges (eds.), Climate change and global productivity, pp. 293–314. CAB International, Wallingford.

    Chapter  Google Scholar 

  • H. Poorter (1998). Do slow-growing species and nutrientstressed plants respond relatively strongly to elevated CO2? Glob Change Biol 4, 693–697.

    Article  Google Scholar 

  • S.L. Postel (2000). Entering an era of water scarcity. Ecol Appl 10, 941–948.

    Article  Google Scholar 

  • S.C. Resh, D. Binkley, and J.A. Parrotta (2002). Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5, 217–231.

    Article  CAS  Google Scholar 

  • P.A. Sanchez (2002). Soil fertility and hunger in Africa. Science 295, 2019–2020.

    Article  CAS  PubMed  Google Scholar 

  • J. Sardans and J. Penuelas (2007). Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21, 191–201.

    Article  Google Scholar 

  • J. Schahczenski and H. Hill (2009). Agriculture, Climate Change and Carbon Sequestration. ATTRA—National Sustainable Agriculture Information Service.

    Google Scholar 

  • D. Schroter, W. Cramer, R. Leemans, C.L. Prentice, M.B. Araújo, N.W. Arnell, A. Bondeau, H. Bugmann, T.R. Carter, C.A. Gracia, A.C. de la Vega-Lienert, M. Erhard, F. Ewert, M. Glendining, J.L. House, S. Kanpkaanpää, R.J.T. Klein, S. Lavorel, M. Lindner, M.J. Metzger, J. Meyer, T.D. Mitchell, I. Reginster, M. Rounsevell, S. Sabaté, S. Sitch, B. Smith, J. Smith, P. Smith, P. Sykes, K. Thonicke, W. Thuiller, G. Tuck, S. Zaehle, and B. Zierl (2005). Ecosystem service supply and vulnerability to global change in Europe. Science 310, 1333–1337.

    Article  PubMed  Google Scholar 

  • V. Smil (1999). Nitrogen in crop production: An account of global flows. Global Biogeochem Cycles 13, 647–662.

    Article  CAS  Google Scholar 

  • V. Smil (2000). Phosphorus in the environment: Natural flows and human interferences. Annu Rev Energy Environ 25, 53–88.

    Article  Google Scholar 

  • J.-F. Soussana, E. Casella, and P. Loiseau (1996). Long-term effects of CO2 enrichment and temperature increase on a temperate grass sward. II. Plant nitrogen budgets and root fraction. Plant Soil 182, 101–114.

    Article  CAS  Google Scholar 

  • J.-F. Soussana and A. Lüscher (2007). Temperate grasslands and global atmospheric change: A review. Grass Forage Sci 62, 127–134.

    Article  CAS  Google Scholar 

  • D. Tilman, K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky (2002). Agricultural sustainability and intensive production practices. Nature 418, 671–677.

    Article  CAS  PubMed  Google Scholar 

  • D. Tilman, J. Fargione, W. Brian, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W.H. Schlesinger, D. Simberloff, and D. Swackhamer (2001). Forecasting agriculturally driven global environmental change. Science 292, 281–284.

    Article  CAS  PubMed  Google Scholar 

  • C.P. Vance, P.H. Graham, and D.L. Allan (2000). Biological nitrogen fixation. Phosphorus: A critical future need. In: F.O. Pedrosa, M. Hungria, M.G. Yates, W.E. Newton, (eds.), Nitrogen fixation: From molecules to crop productivity, pp. 506–514. Kluwer Academic, Dordrecht.

    Google Scholar 

  • P.M. Vitousek and P.A. Matson (1993). Agriculture, the global nitrogen cycle, and trace gas flux. In: Oremland, R. (ed.), Biogeochemistry of global change: Radiatively active trace gases, pp. 193–208. Chapman and Hall, New York.

    Google Scholar 

  • G.W. Yohe, R.D. Lasco, Q.K. Ahmad, N.W. Arnell, S.J. Cohen, C. Hope, A.C. Janetos, and R.T. Perez (2007). Perspectives on climate change and sustainability. In: M.L. Parry, O.F. Canziani, J.P. Palutikot, P.J. van der Linden, C.E. Hanson, (eds.), Climate change 2007: Impacts, adaptation and vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 811–841. Cambridge University Press, Cambridge.

    Google Scholar 

  • H.H. Zahran (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4), 968–989.

    CAS  PubMed  Google Scholar 

  • S. Zanetti, U.A. Hartwig, A. Lüscher, T. Hebeisen, M. Frehner, B.U. Fischer, G.R. Hendrey, H. Blum, and J. Nösberger (1996). Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112, 575–583.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. García-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

García-Hernández, J.L., Orona-Castillo, I., Preciado-Rangel, P., Flores-Hernández, A., Murillo-Amador, B., Troyo-Diéguez, E. (2010). Nutrients Use Efficiency in Legume Crops to Climatic Changes. In: Yadav, S., Redden, R. (eds) Climate Change and Management of Cool Season Grain Legume Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3709-1_11

Download citation

Publish with us

Policies and ethics