Skip to main content

Recent Advances in the Pathogenesis of Pancreatic Endocrine Neoplasms

  • Chapter
  • First Online:
Mechanisms of Oncogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 12))

  • 897 Accesses

Abstract

Evidence is rapidly accumulating to allow construction of a working hypothesis of the pathogenesis of PENs. Many studies have contributed significantly to our current understanding of PEN tumorigenesis and progression. We have learned, mainly through the study of β-cell regulation, that neogenesis and transdifferentiation, replication, hypertrophy, and apoptosis work together to control endocrine cell mass. However, the pluripotent stem cells thought to play a role in the neogenesis and transdifferentiation aree yet to be discovered. Studies have found many of the same mechanisms that operate during pancreatic development in the embryo, also regulate β-cell mass in adults. One could imagine how deregulation of these processes could lead to oncogenesis. All of these processes are steered by cell regulators such as glucose, c-Myc, P13K-AKT/PKB, PDX-1, Ngn-3, and others. Many of the members of these complex molecular pathways have been implicated in the pathogenesis of PENs. Genetic syndromes, which include PENs as one of their components, allow for the identification of genes associated with the genesis of PENs, including the MEN1 gene, vHL gene, NF-1 gene, TSC1 and TSC2 genes. Advanced molecular testing, is currently making it more feasible to pursue newer lines of genetic studies to unravel an increasing number of chromosomal aberrations associated with PENs. Multiple molecular alterations, involving migratory, cell cycle, and angiogenic functions, have been found to promote PEN development, growth, invasion, and metastases. As a result of these studies, phase III trials of novel therapies targeting cell regulators such as mTOR, VEGF and other targets are in progress. Focused investigation of various mediators/mechanisms implicated in the tumorigenesis of PENs will contribute to novel diagnostic, therapeutic, and preventive stratagies, as well as facilitate the development of prognostic and predictive markers, while continuing to advance our understanding of the pathogenesis of PENs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballian N, Hu M, Liu SH, Brunicardi FC. Proliferation, hyperplasia, neogenesis, and neoplasia in the islets of Langerhans. Pancreas 2007;35(3);199–206.

    Article  PubMed  Google Scholar 

  2. Hennig R, Ding XZ, Adrian TE. On the role of the islets of Langerhans in pancreatic cancer. Histol Histopathol 2004;19(3);999–1011.

    PubMed  CAS  Google Scholar 

  3. Hruban R, Wilentz R. The pancreas. In: Kumar V, Abbas A, Fausto N, editors. Robbins and Cotran Pathologic Basis of Disease. 7th ed. Philadelphia, PA: Elsevier Saunders; 2005. 939–53.

    Google Scholar 

  4. Pour PM, Pandey KK, Batra SK. What is the origin of pancreatic adenocarcinoma? Mol Cancer 2003;2:13.

    Article  PubMed  Google Scholar 

  5. Schmied BM, Ulrich AB, Friess H, Buchler MW, Pour PM. The patterns of extrainsular endocrine cells in pancreatic cancer. Teratog Carcinog Mutagen 2001;21(1); 69–81.

    Article  PubMed  CAS  Google Scholar 

  6. Grube D, Bohn R. The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells. Arch Histol Jpn 1983;46(3);327–53.

    Article  PubMed  CAS  Google Scholar 

  7. Buchanan KD, Johnston CF, O’Hare MM, Ardill JE, Shaw C, Collins JS, et al. Neuroendocrine tumors. A European view. Am J Med 1986;81(6B):14–22.

    Article  PubMed  CAS  Google Scholar 

  8. Mittendorf EA, Shifrin AL, Inabnet WB, Libutti SK, McHenry CR, Demeure MJ. Islet cell tumors. Curr Probl Surg 2006;43(10);685–765.

    Article  PubMed  Google Scholar 

  9. Rindi G, Capella C, Solcia E. Introduction to a revised clinicopathological classification of neuroendocrine tumors of the gastroenteropancreatic tract. Q J Nucl Med 2000;44(1);13–21.

    PubMed  CAS  Google Scholar 

  10. Goldin SB, Aston J, Wahi MM. Sporadically occurring functional pancreatic endocrine tumors: review of recent literature. Curr Opin Oncol 2008;20(1);25–33.

    Article  PubMed  Google Scholar 

  11. Halfdanarson TR, Rubin J, Farnell MB, Grant CS, Petersen GM. Pancreatic endocrine neoplasms: epidemiology and prognosis of pancreatic endocrine tumors. Endocr Relat Cancer 2008;15(2);409–27.

    Article  PubMed  Google Scholar 

  12. Tomassetti P, Campana D, Piscitelli L, Casadei R, Santini D, Nori F, et al. Endocrine pancreatic tumors: factors correlated with survival. Ann Oncol 2005;16(11); 1806–10.

    Article  PubMed  CAS  Google Scholar 

  13. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer 2002;2(12);897–909.

    Article  PubMed  CAS  Google Scholar 

  14. Heitz P, Komminoth P, Perren A, Klimstra D, Dayal Y, Bordi C, et al. Tumours of the endocrine pancreas. In: DeLellis R, Lloyd R, Heitz P, Eng C, editors. Pathology and Genetics: Tumours of the Endocrine System. Lyon, France: IARC Press; 2004. 177–208.

    Google Scholar 

  15. Heymann MF, Joubert M, Nemeth J, Franc B, Visset J, Hamy A, et al. Prognostic and immunohistochemical validation of the capella classification of pancreatic neuroendocrine tumours: an analysis of 82 sporadic cases. Histopathology 2000;36(5);421–32.

    Article  PubMed  CAS  Google Scholar 

  16. Zikusoka MN, Kidd M, Eick G, Latich I, Modlin IM. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer 2005;104(11);2292–309.

    Article  PubMed  CAS  Google Scholar 

  17. Calender A. Molecular genetics of neuroendocrine tumors. Digestion 2000;62 Suppl 1:3–18.

    Article  PubMed  CAS  Google Scholar 

  18. Chetty R. An overview of practical issues in the diagnosis of gastroenteropancreatic neuroendocrine pathology. Arch Pathol Lab Med 2008;132(8);1285–9.

    PubMed  Google Scholar 

  19. Thompson L, Heffess C. Pancreas. In: Mills S, Carter D, Greenson J, Oberman H, Reuter V, Stoler M, editors. Sternberg’s Diagnostic Surgical Pathology. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2004. 1603–54.

    Google Scholar 

  20. Bonner-Weir S. Islet growth and development in the adult. J Mol Endocrinol 2000;24(3);297–302.

    Article  PubMed  CAS  Google Scholar 

  21. Del Zotto H, Borelli MI, Flores L, Garcia ME, Gomez Dumm CL, Chicco A, et al. Islet neogenesis: an apparent key component of long-term pancreas adaptation to increased insulin demand. J Endocrinol 2004;183(2);321–30.

    Article  PubMed  CAS  Google Scholar 

  22. Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA. Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 2001;108(11);1631–8.

    PubMed  CAS  Google Scholar 

  23. Swenne I. Pancreatic beta-cell growth and diabetes mellitus. Diabetologia 1992;35(3);193–201.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang YQ, Sarvetnick N. Development of cell markers for the identification and expansion of islet progenitor cells. Diabetes Metab Res Rev 2003;19(5);363–74.

    Article  PubMed  CAS  Google Scholar 

  25. Madsen OD, Jensen J, Blume N, Petersen HV, Lund K, Karlsen C, et al. Pancreatic development and maturation of the islet B cell. Studies of pluripotent islet cultures. Eur J Biochem 1996;242(3);435–45.

    Article  PubMed  CAS  Google Scholar 

  26. Rosenberg L. Induction of islet cell neogenesis in the adult pancreas: the partial duct obstruction model. Microsc Res Tech 1998;43(4);337–46.

    Article  PubMed  CAS  Google Scholar 

  27. Bouwens L, Pipeleers DG. Extra-insular beta cells associated with ductules are frequent in adult human pancreas. Diabetologia 1998;41(6);629–33.

    Article  PubMed  CAS  Google Scholar 

  28. Gu D, Sarvetnick N. A transgenic model for studying islet development. Recent Prog Horm Res 1994;49:161–5.

    PubMed  CAS  Google Scholar 

  29. Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 2001;142(11);4956–68.

    Article  PubMed  CAS  Google Scholar 

  30. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001;50(3);521–33.

    Article  PubMed  CAS  Google Scholar 

  31. Gagliardino JJ, Del Zotto H, Massa L, Flores LE, Borelli MI. Pancreatic duodenal homeobox-1 and islet neogenesis-associated protein: a possible combined marker of activateable pancreatic cell precursors. J Endocrinol 2003;177(2);249–59.

    Article  PubMed  CAS  Google Scholar 

  32. Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA 2002;99(12);8078–83.

    Article  PubMed  CAS  Google Scholar 

  33. Horb ME, Shen CN, Tosh D, Slack JM. Experimental conversion of liver to pancreas. Curr Biol 2003;13(2);105–15.

    Article  PubMed  CAS  Google Scholar 

  34. Tuch BE, Szymanska B, Yao M, Tabiin MT, Gross DJ, Holman S, et al. Function of a genetically modified human liver cell line that stores, processes and secretes insulin. Gene Ther 2003;10(6);490–503.

    Article  PubMed  CAS  Google Scholar 

  35. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 2003;9(5);596–603.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshida S, Kajimoto Y, Yasuda T, Watada H, Fujitani Y, Kosaka H, et al. PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes 2002;51(8);2505–13.

    Article  PubMed  CAS  Google Scholar 

  37. Wang X, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am J Pathol 2001;158(2);571–9.

    PubMed  CAS  Google Scholar 

  38. Scarpelli DG, Rao MS. Differentiation of regenerating pancreatic cells into hepatocyte-like cells. Proc Natl Acad Sci USA 1981;78(4);2577–81.

    Article  PubMed  CAS  Google Scholar 

  39. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000;6(5);568–72.

    Article  PubMed  CAS  Google Scholar 

  40. Schmied B, Liu G, Moyer MP, Hernberg IS, Sanger W, Batra S, et al. Induction of adenocarcinoma from hamster pancreatic islet cells treated with N-nitrosobis(2-oxopropyl)amine in vitro. Carcinogenesis 1999;20(2);317–24.

    Article  PubMed  CAS  Google Scholar 

  41. Tyrberg B, Eizirik DL, Hellerstrom C, Pipeleers DG, Andersson A. Human pancreatic beta-cell deoxyribonucleic acid-synthesis in islet grafts decreases with increasing organ donor age but increases in response to glucose stimulation in vitro. Endocrinology 1996;137(12);5694–9.

    Article  PubMed  CAS  Google Scholar 

  42. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003;52(1);102–10.

    Article  PubMed  CAS  Google Scholar 

  43. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004;429(6987);41–6.

    Article  PubMed  CAS  Google Scholar 

  44. Laybutt DR, Glandt M, Xu G, Ahn YB, Trivedi N, Bonner-Weir S, et al. Critical reduction in beta-cell mass results in two distinct outcomes over time. Adaptation with impaired glucose tolerance or decompensated diabetes. J Biol Chem 2003;278(5);2997–3005.

    Article  PubMed  CAS  Google Scholar 

  45. Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 2004;53 Suppl 3:S16–21.

    Article  PubMed  CAS  Google Scholar 

  46. Jamal AM, Lipsett M, Sladek R, Laganiere S, Hanley S, Rosenberg L. Morphogenetic plasticity of adult human pancreatic islets of Langerhans. Cell Death Differ 2005;12(7);702–12.

    Article  PubMed  CAS  Google Scholar 

  47. Steil GM, Trivedi N, Jonas JC, Hasenkamp WM, Sharma A, Bonner-Weir S, et al. Adaptation of beta-cell mass to substrate oversupply: enhanced function with normal gene expression. Am J Physiol Endocrinol Metab 2001;280(5):E788–96.

    PubMed  CAS  Google Scholar 

  48. Swenne I. The role of glucose in the in vitro regulation of cell cycle kinetics and proliferation of fetal pancreatic B-cells. Diabetes 1982;31(9);754–60.

    PubMed  CAS  Google Scholar 

  49. Al-Quobaili F, Montenarh M. Pancreatic duodenal homeobox factor-1 and diabetes mellitus type 2 (review). Int J Mol Med 2008;21(4);399–404.

    PubMed  CAS  Google Scholar 

  50. Deng S, Vatamaniuk M, Huang X, Doliba N, Lian MM, Frank A, et al. Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 2004;53(3);624–32.

    Article  PubMed  CAS  Google Scholar 

  51. Maedler K, Spinas GA, Lehmann R, Sergeev P, Weber M, Fontana A, et al. Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 2001;50(8);1683–90.

    Article  PubMed  CAS  Google Scholar 

  52. Leahy J. Impaired beta-cell function with chronic hyperglycemia: “overworked beta-cell” hypothesis. Diabetes Rev 1996;4:298–319.

    Google Scholar 

  53. Bernard C, Thibault C, Berthault MF, Magnan C, Saulnier C, Portha B, et al. Pancreatic beta-cell regeneration after 48-h glucose infusion in mildly diabetic rats is not correlated with functional improvement. Diabetes 1998;47(7);1058–65.

    Article  PubMed  CAS  Google Scholar 

  54. Andersson A. The influence of hyperglycaemia, hyperinsulinaemia and genetic background on the fate of intrasplenically implanted mouse islets. Diabetologia 1983;25(3);269–72.

    Article  PubMed  CAS  Google Scholar 

  55. Guillen C, Navarro P, Robledo M, Valverde AM, Benito M. Differential mitogenic signaling in insulin receptor-deficient fetal pancreatic beta-cells. Endocrinology 2006;147(4);1959–68.

    Article  PubMed  CAS  Google Scholar 

  56. Koiter TR, Wijkstra S, van Der Schaaf-Verdonk CJ, Moes H, Schuiling GA. Pancreatic beta-cell function and islet-cell proliferation: effect of hyperinsulinaemia. Physiol Behav 1995;57(4);717–21.

    Article  PubMed  CAS  Google Scholar 

  57. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999;19(1);1–11.

    PubMed  CAS  Google Scholar 

  58. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science 1998;281(5382);1509–12.

    Article  PubMed  CAS  Google Scholar 

  59. Dessimoz J, Bonnard C, Huelsken J, Grapin-Botton A. Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol 2005;15(18);1677–83.

    Article  PubMed  CAS  Google Scholar 

  60. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997;15(1);106–10.

    Article  PubMed  CAS  Google Scholar 

  61. Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. Embo J 1993;12(11);4251–9.

    PubMed  CAS  Google Scholar 

  62. Watada H, Kajimoto Y, Umayahara Y, Matsuoka T, Kaneto H, Fujitani Y, et al. The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes 1996;45(11);1478–88.

    Article  PubMed  CAS  Google Scholar 

  63. Waeber G, Thompson N, Nicod P, Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol 1996;10(11);1327–34.

    Article  PubMed  CAS  Google Scholar 

  64. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002;129(10);2447–57.

    PubMed  CAS  Google Scholar 

  65. Fernandes A, King LC, Guz Y, Stein R, Wright CV, Teitelman G. Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology 1997;138(4);1750–62.

    Article  PubMed  CAS  Google Scholar 

  66. Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000;97(4);1607–11.

    Article  PubMed  CAS  Google Scholar 

  67. Heremans Y, Van De Casteele M, in’t Veld P, Gradwohl G, Serup P, Madsen O, et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 2002;159(2);303–12.

    Article  PubMed  CAS  Google Scholar 

  68. Krakowski M, Yeung B, Abdelmalik R, Good A, Mocnik L, Sosa-Pineda B, et al. IFN-gamma overexpression within the pancreas is not sufficient to rescue Pax4, Pax6, and Pdx-1 mutant mice from death. Pancreas 2000;21(4);399–406.

    Article  PubMed  CAS  Google Scholar 

  69. Arnush M, Gu D, Baugh C, Sawyer SP, Mroczkowski B, Krahl T, et al. Growth factors in the regenerating pancreas of gamma-interferon transgenic mice. Lab Invest 1996;74(6);985–90.

    PubMed  CAS  Google Scholar 

  70. O’Reilly LA, Gu D, Sarvetnick N, Edlund H, Phillips JM, Fulford T, et al. alpha-Cell neogenesis in an animal model of IDDM. Diabetes 1997;46(4);599–606.

    Article  PubMed  Google Scholar 

  71. Jensen RT. Pancreatic endocrine tumors: recent advances. Ann Oncol 1999;10 Suppl 4:170–6.

    Article  PubMed  Google Scholar 

  72. Moldawer MP, Nardi GL, Raker JW. Concomitance of multiple adenomas of the parathyroids and pancreatic islets with tumor of the pituitary: a syndrome with a familial incidence. Am J Med Sci 1954;228(2);190–206.

    Article  PubMed  CAS  Google Scholar 

  73. Wermer P. Genetic aspects of adenomatosis of endocrine glands. Am J Med 1954;16(3);363–71.

    Article  PubMed  CAS  Google Scholar 

  74. Kronenberg H, Melmeds S, Polonsky K, Larsen P, editors. Williams Textbook of Endocrinology. 11th ed. Philadelphia, PA: Saunders Elsevier; 2008.

    Google Scholar 

  75. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 2001;86(12);5658–71.

    Article  PubMed  CAS  Google Scholar 

  76. Marx SJ, Agarwal SK, Kester MB, Heppner C, Kim YS, Skarulis MC, et al. Multiple endocrine neoplasia type 1: clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog Horm Res 1999;54:397–438; discussion 438–9.

    PubMed  CAS  Google Scholar 

  77. Pipeleers-Marichal M, Somers G, Willems G, Foulis A, Imrie C, Bishop AE, et al. Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger-Ellison syndrome. N Engl J Med 1990;322(11);723–7.

    Article  PubMed  CAS  Google Scholar 

  78. Skogseid B, Eriksson B, Lundqvist G, Lorelius LE, Rastad J, Wide L, et al. Multiple endocrine neoplasia type 1: a 10-year prospective screening study in four kindreds. J Clin Endocrinol Metab 1991;73(2);281–7.

    Article  PubMed  CAS  Google Scholar 

  79. Gaitan D, Loosen PT, Orth DN. Two patients with Cushing’s disease in a kindred with multiple endocrine neoplasia type I. J Clin Endocrinol Metab 1993;76(6);1580–2.

    Article  PubMed  CAS  Google Scholar 

  80. Burgess JR, Greenaway TM, Parameswaran V, Challis DR, David R, Shepherd JJ. Enteropancreatic malignancy associated with multiple endocrine neoplasia type 1: risk factors and pathogenesis. Cancer 1998;83(3);428–34.

    Article  PubMed  CAS  Google Scholar 

  81. Norton JA, Fraker DL, Alexander HR, Venzon DJ, Doppman JL, Serrano J, et al. Surgery to cure the Zollinger-Ellison syndrome. N Engl J Med 1999;341(9);635–44.

    Article  PubMed  CAS  Google Scholar 

  82. Thompson NW. Current concepts in the surgical management of multiple endocrine neoplasia type 1 pancreatic-duodenal disease. Results in the treatment of 40 patients with Zollinger-Ellison syndrome, hypoglycaemia or both. J Intern Med 1998;243(6);495–500.

    Article  PubMed  CAS  Google Scholar 

  83. Majewski JT, Wilson SD. The MEA-I syndrome: an all or none phenomenon? Surgery 1979;86(3);475–84.

    PubMed  CAS  Google Scholar 

  84. Agarwal SK, Lee Burns A, Sukhodolets KE, Kennedy PA, Obungu VH, Hickman AB, et al. Molecular pathology of the MEN1 gene. Ann NY Acad Sci 2004;1014:189–98.

    Article  PubMed  CAS  Google Scholar 

  85. Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 1988;332(6159);85–7.

    Article  PubMed  CAS  Google Scholar 

  86. Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68(4);820–3.

    Article  PubMed  Google Scholar 

  87. Knudson AG. Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 1996;122(3);135–40.

    Article  PubMed  CAS  Google Scholar 

  88. Thepot D, Weitzman JB, Barra J, Segretain D, Stinnakre MG, Babinet C, et al. Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development 2000;127(1);143–53.

    PubMed  CAS  Google Scholar 

  89. Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 1999;96(1);143–52.

    Article  PubMed  CAS  Google Scholar 

  90. Hendy GN, Kaji H, Sowa H, Lebrun JJ, Canaff L. Menin and TGF-beta superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast. Horm Metab Res 2005;37(6);375–9.

    Article  PubMed  CAS  Google Scholar 

  91. Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci USA 2001;98(7);3837–42.

    Article  PubMed  CAS  Google Scholar 

  92. Lemmens IH, Forsberg L, Pannett AA, Meyen E, Piehl F, Turner JJ, et al. Menin interacts directly with the homeobox-containing protein Pem. Biochem Biophys Res Commun 2001;286(2);426–31.

    Article  PubMed  CAS  Google Scholar 

  93. Heppner C, Bilimoria KY, Agarwal SK, Kester M, Whitty LJ, Guru SC, et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 2001;20(36);4917–25.

    Article  PubMed  CAS  Google Scholar 

  94. Agarwal S, Scacheri P, Rice T, Kennedy P, Ozawa A, Burgess-Hickman A, et al. MEN1 gene: mutation and pathyphysiology. Ann Endocrinol (Paris) 2006;67(suppl 4):1S12–3.

    Google Scholar 

  95. Agarwal SK, Impey S, McWeeney S, Scacheri PC, Collins FS, Goodman RH, et al. Distribution of menin-occupied regions in chromatin specifies a broad role of menin in transcriptional regulation. Neoplasia 2007;9(2);101–7.

    Article  PubMed  CAS  Google Scholar 

  96. Thakker RV, Bouloux P, Wooding C, Chotai K, Broad PM, Spurr NK, et al. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N Engl J Med 1989;321(4);218–24.

    Article  PubMed  CAS  Google Scholar 

  97. Agarwal SK, Debelenko LV, Kester MB, Guru SC, Manickam P, Olufemi SE, et al. Analysis of recurrent germline mutations in the MEN1 gene encountered in apparently unrelated families. Hum Mutat 1998;12(2);75–82.

    Article  PubMed  CAS  Google Scholar 

  98. Kishi M, Tsukada T, Shimizu S, Futami H, Ito Y, Kanbe M, et al. A large germline deletion of the MEN1 gene in a family with multiple endocrine neoplasia type 1. Jpn J Cancer Res 1998;89(1);1–5.

    PubMed  CAS  Google Scholar 

  99. Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC, et al. Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet 1997;6(7);1169–75.

    Article  PubMed  CAS  Google Scholar 

  100. Kumar V, Fausto N, editors. Robbins and Cotran Pathologic Basis of Disease. 7th ed. Philadeplphia, PA: Elsevier Saunders; 2005.

    Google Scholar 

  101. Lubensky IA, Pack S, Ault D, Vortmeyer AO, Libutti SK, Choyke PL, et al. Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease patients: histopathological and molecular genetic analysis. Am J Pathol 1998;153(1);223–31.

    PubMed  CAS  Google Scholar 

  102. Debelenko LV, Zhuang Z, Emmert-Buck MR, Chandrasekharappa SC, Manickam P, Guru SC, et al. Allelic deletions on chromosome 11q13 in multiple endocrine neoplasia type 1-associated and sporadic gastrinomas and pancreatic endocrine tumors. Cancer Res 1997;57(11);2238–43.

    PubMed  CAS  Google Scholar 

  103. Eubanks PJ, Sawicki MP, Samara GJ, Gatti R, Nakamura Y, Tsao D, et al. Putative tumor-suppressor gene on chromosome 11 is important in sporadic endocrine tumor formation. Am J Surg 1994;167(1);180–5.

    Article  PubMed  CAS  Google Scholar 

  104. Zhuang Z, Vortmeyer AO, Pack S, Huang S, Pham TA, Wang C, et al. Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res 1997;57(21);4682–6.

    PubMed  CAS  Google Scholar 

  105. Wang EH, Ebrahimi SA, Wu AY, Kashefi C, Passaro E, Jr., Sawicki MP. Mutation of the MENIN gene in sporadic pancreatic endocrine tumors. Cancer Res 1998;58(19);4417–20.

    PubMed  CAS  Google Scholar 

  106. Goebel SU, Heppner C, Burns AL, Marx SJ, Spiegel AM, Zhuang Z, et al. Genotype/phenotype correlation of multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas. J Clin Endocrinol Metab 2000;85(1);116–23.

    Article  PubMed  CAS  Google Scholar 

  107. Gortz B, Roth J, Krahenmann A, de Krijger RR, Muletta-Feurer S, Rutimann K, et al. Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol 1999;154(2);429–36.

    PubMed  CAS  Google Scholar 

  108. Williamson C, Pannett AA, Pang JT, Wooding C, McCarthy M, Sheppard MN, et al. Localisation of a gene causing endocrine neoplasia to a 4 cM region on chromosome 1p35–p36. J Med Genet 1997;34(8);617–9.

    Article  PubMed  CAS  Google Scholar 

  109. Kytola S, Makinen MJ, Kahkonen M, Teh BT, Leisti J, Salmela P. Comparative genomic hybridization studies in tumours from a patient with multiple endocrine neoplasia type 1. Eur J Endocrinol 1998;139(2);202–6.

    Article  PubMed  CAS  Google Scholar 

  110. Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000;20(16);6147–58.

    Article  PubMed  CAS  Google Scholar 

  111. Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 1999;20(4);501–34.

    Article  PubMed  CAS  Google Scholar 

  112. Perren A, Anlauf M, Henopp T, Rudolph T, Schmitt A, Raffel A, et al. Multiple endocrine neoplasia type 1 (MEN1): loss of one MEN1 allele in tumors and monohormonal endocrine cell clusters but not in islet hyperplasia of the pancreas. J Clin Endocrinol Metab 2007;92(3);1118–28.

    Article  PubMed  CAS  Google Scholar 

  113. Anlauf M, Perren A, Meyer CL, Schmid S, Saremaslani P, Kruse ML, et al. Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology 2005;128(5);1187–98.

    Article  PubMed  CAS  Google Scholar 

  114. Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 2001;98(3);1118–23.

    Article  PubMed  CAS  Google Scholar 

  115. Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C, et al. Of mice and MEN1: Insulinomas in a conditional mouse knockout. Mol Cell Biol 2003;23(17);6075–85.

    Article  PubMed  CAS  Google Scholar 

  116. Frosch M, Anthony D, Girolami U. In: Kumar V, Abbas A, Fausto N, editors. Robbin’s & Cotran’s Pathologic Basis of Disease. 7th ed. Philadelphia, PA.: Elsevier Saunders; 2005. p. 939–53.

    Google Scholar 

  117. Binkovitz LA, Johnson CD, Stephens DH. Islet cell tumors in von Hippel-Lindau disease: increased prevalence and relationship to the multiple endocrine neoplasias. AJR Am J Roentgenol 1990;155(3);501–5.

    PubMed  CAS  Google Scholar 

  118. Hough DM, Stephens DH, Johnson CD, Binkovitz LA. Pancreatic lesions in von Hippel-Lindau disease: prevalence, clinical significance, and CT findings. AJR Am J Roentgenol 1994;162(5);1091–4.

    PubMed  CAS  Google Scholar 

  119. Neumann HP, Dinkel E, Brambs H, Wimmer B, Friedburg H, Volk B, et al. Pancreatic lesions in the von Hippel-Lindau syndrome. Gastroenterology 1991;101(2);465–71.

    PubMed  CAS  Google Scholar 

  120. LaForgia S, Lasota J, Latif F, Boghosian-Sell L, Kastury K, Ohta M, et al. Detailed genetic and physical map of the 3p chromosome region surrounding the familial renal cell carcinoma chromosome translocation, t(3;8)(p14.2;q24.1). Cancer Res 1993;53(13);3118–24.

    PubMed  CAS  Google Scholar 

  121. Richards FM, Maher ER, Latif F, Phipps ME, Tory K, Lush M, et al. Detailed genetic mapping of the von Hippel-Lindau disease tumour suppressor gene. J Med Genet 1993;30(2);104–7.

    Article  PubMed  CAS  Google Scholar 

  122. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003;9(6);677–84.

    Article  PubMed  CAS  Google Scholar 

  123. Maxwell PH, Pugh CW, Ratcliffe PJ. The pVHL-hIF-1 system. A key mediator of oxygen homeostasis. Adv Exp Med Biol 2001;502:365–76.

    PubMed  CAS  Google Scholar 

  124. Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 1998;201(Pt 8):1153–62.

    PubMed  CAS  Google Scholar 

  125. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol 2004;22(24);4991–5004.

    Article  PubMed  CAS  Google Scholar 

  126. Lamberts SW, Krenning EP, Reubi JC. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 1991;12(4);450–82.

    Article  PubMed  CAS  Google Scholar 

  127. Na X, Wu G, Ryan CK, Schoen SR, di’Santagnese PA, Messing EM. Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol 2003;170(2 Pt 1):588–92.

    Article  PubMed  CAS  Google Scholar 

  128. Wang XC, Xu SY, Wu XY, Song HD, Mao YF, Fan HY, et al. Gene expression profiling in human insulinoma tissue: genes involved in the insulin secretion pathway and cloning of novel full-length cDNAs. Endocr Relat Cancer 2004;11(2);295–303.

    Article  PubMed  CAS  Google Scholar 

  129. Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene 2005;24(6);1043–52.

    Article  PubMed  CAS  Google Scholar 

  130. Petrella BL, Brinckerhoff CE. Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase. Mol Cancer 2006;5:66.

    Article  PubMed  CAS  Google Scholar 

  131. Konno H, Arai T, Tanaka T, Baba M, Matsumoto K, Kanai T, et al. Antitumor effect of a neutralizing antibody to vascular endothelial growth factor on liver metastasis of endocrine neoplasm. Jpn J Cancer Res 1998;89(9);933–9.

    PubMed  CAS  Google Scholar 

  132. Yao JC, Hoff PM. Molecular targeted therapy for neuroendocrine tumors. Hematol Oncol Clin North Am 2007;21(3);575–81; x.

    Article  PubMed  Google Scholar 

  133. Hammel PR, Vilgrain V, Terris B, Penfornis A, Sauvanet A, Correas JM, et al. Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d’Etude de la Maladie de von Hippel-Lindau. Gastroenterology 2000;119(4);1087–95.

    Article  PubMed  CAS  Google Scholar 

  134. Hoang MP, Hruban RH, Albores-Saavedra J. Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: a distinctive neoplasm of von Hippel-Lindau disease. Am J Surg Pathol 2001;25(5);602–9.

    Article  PubMed  CAS  Google Scholar 

  135. Chung DC, Smith AP, Louis DN, Graeme-Cook F, Warshaw AL, Arnold A. A novel pancreatic endocrine tumor suppressor gene locus on chromosome 3p with clinical prognostic implications. J Clin Invest 1997;100(2);404–10.

    Article  PubMed  CAS  Google Scholar 

  136. Tan CC, Hall RI, Semeraro D, Irons RP, Freeman JG. Ampullary somatostatinoma associated with von Recklinghausen’s neurofibromatosis presenting as obstructive jaundice. Eur J Surg Oncol 1996;22(3);298–301.

    PubMed  CAS  Google Scholar 

  137. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997;277(5327);805–8.

    Article  PubMed  Google Scholar 

  138. European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993;75(7);1305–15.

    Google Scholar 

  139. Sandsmark DK, Pelletier C, Weber JD, Gutmann DH. Mammalian target of rapamycin: master regulator of cell growth in the nervous system. Histol Histopathol 2007;22(8);895–903.

    PubMed  CAS  Google Scholar 

  140. Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 2003;278(35);32493–6.

    Article  PubMed  CAS  Google Scholar 

  141. Mak BC, Takemaru K, Kenerson HL, Moon RT, Yeung RS. The tuberin-hamartin complex negatively regulates beta-catenin signaling activity. J Biol Chem 2003;278(8);5947–51.

    Article  PubMed  CAS  Google Scholar 

  142. Verhoef S, van Diemen-Steenvoorde R, Akkersdijk WL, Bax NM, Ariyurek Y, Hermans CJ, et al. Malignant pancreatic tumour within the spectrum of tuberous sclerosis complex in childhood. Eur J Pediatr 1999;158(4);284–7.

    Article  PubMed  CAS  Google Scholar 

  143. Bonner-Weir S, Deery D, Leahy JL, Weir GC. Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes 1989;38(1);49–53.

    Article  PubMed  CAS  Google Scholar 

  144. Paris M, Bernard-Kargar C, Berthault MF, Bouwens L, Ktorza A. Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 2003;144(6);2717–27.

    Article  PubMed  CAS  Google Scholar 

  145. Jonkers YM, Ramaekers FC, Speel EJ. Molecular alterations during insulinoma tumorigenesis. Biochim Biophys Acta 2007;1775(2);313–32.

    PubMed  CAS  Google Scholar 

  146. Speel EJ, Richter J, Moch H, Egenter C, Saremaslani P, Rutimann K, et al. Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am J Pathol 1999;155(6);1787–94.

    PubMed  CAS  Google Scholar 

  147. Stumpf E, Aalto Y, Hoog A, Kjellman M, Otonkoski T, Knuutila S, et al. Chromosomal alterations in human pancreatic endocrine tumors. Genes Chromosomes Cancer 2000;29(1);83–7.

    Article  PubMed  CAS  Google Scholar 

  148. Zhao J, Moch H, Scheidweiler AF, Baer A, Schaffer AA, Speel EJ, et al. Genomic imbalances in the progression of endocrine pancreatic tumors. Genes Chromosomes Cancer 2001;32(4);364–72.

    Article  PubMed  CAS  Google Scholar 

  149. Tonnies H, Toliat MR, Ramel C, Pape UF, Neitzel H, Berger W, et al. Analysis of sporadic neuroendocrine tumours of the enteropancreatic system by comparative genomic hybridisation. Gut 2001;48(4);536–41.

    Article  PubMed  CAS  Google Scholar 

  150. Terris B, Meddeb M, Marchio A, Danglot G, Flejou JF, Belghiti J, et al. Comparative genomic hybridization analysis of sporadic neuroendocrine tumors of the digestive system. Genes Chromosomes Cancer 1998;22(1);50–6.

    Article  PubMed  CAS  Google Scholar 

  151. Kytola S, Hoog A, Nord B, Cedermark B, Frisk T, Larsson C, et al. Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. Am J Pathol 2001;158(5);1803–8.

    PubMed  CAS  Google Scholar 

  152. Pizzi S, D’Adda T, Azzoni C, Rindi G, Grigolato P, Pasquali C, et al. Malignancy-associated allelic losses on the X-chromosome in foregut but not in midgut endocrine tumours. J Pathol 2002;196(4);401–7.

    Article  PubMed  Google Scholar 

  153. Brown MR, Kohn EC, Hutter RV. The new millennium: applying novel technology to the study of the cancer cell in situ. Cancer 2000;88(1);2–5.

    Article  PubMed  CAS  Google Scholar 

  154. Ebrahimi SA, Wang EH, Wu A, Schreck RR, Passaro E, Jr., Sawicki MP. Deletion of chromosome 1 predicts prognosis in pancreatic endocrine tumors. Cancer Res 1999;59(2);311–5.

    PubMed  CAS  Google Scholar 

  155. Guo SS, Arora C, Shimoide AT, Sawicki MP. Frequent deletion of chromosome 3 in malignant sporadic pancreatic endocrine tumors. Mol Cell Endocrinol 2002;190(1–2):109–14.

    Article  PubMed  CAS  Google Scholar 

  156. Schwab M, Praml C, Amler LC. Genomic instability in 1p and human malignancies. Genes Chromosomes Cancer 1996;16(4);211–29.

    Article  PubMed  CAS  Google Scholar 

  157. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997;90(4);809–19.

    Article  PubMed  CAS  Google Scholar 

  158. Chen YJ, Vortmeyer A, Zhuang Z, Huang S, Jensen RT. Loss of heterozygosity of chromosome 1q in gastrinomas: occurrence and prognostic significance. Cancer Res 2003;63(4);817–23.

    PubMed  CAS  Google Scholar 

  159. Lott ST, Chandler DS, Curley SA, Foster CJ, El-Naggar A, Frazier M, et al. High frequency loss of heterozygosity in von Hippel-Lindau (VHL)-associated and sporadic pancreatic islet cell tumors: evidence for a stepwise mechanism for malignant conversion in VHL tumorigenesis. Cancer Res 2002;62(7);1952–5.

    PubMed  CAS  Google Scholar 

  160. Nikiforova MN, Nikiforov YE, Biddinger P, Gnepp DR, Grosembacher LA, Wajchenberg BL, et al. Frequent loss of heterozygosity at chromosome 3p14.2–3p21 in human pancreatic islet cell tumours. Clin Endocrinol (Oxf) 1999;51(1);27–33.

    Article  CAS  Google Scholar 

  161. Barghorn A, Komminoth P, Bachmann D, Rutimann K, Saremaslani P, Muletta-Feurer S, et al. Deletion at 3p25.3–p23 is frequently encountered in endocrine pancreatic tumours and is associated with metastatic progression. J Pathol 2001;194(4);451–8.

    Article  PubMed  CAS  Google Scholar 

  162. Guo SS, Wu AY, Sawicki MP. Deletion of chromosome 1, but not mutation of MEN-1, predicts prognosis in sporadic pancreatic endocrine tumors. World J Surg 2002;26(7);843–7.

    Article  PubMed  Google Scholar 

  163. Ikawa S, Nakagawara A, Ikawa Y. p53 family genes: structural comparison, expression and mutation. Cell Death Differ 1999;6(12);1154–61.

    Article  PubMed  CAS  Google Scholar 

  164. Barghorn A, Speel EJ, Farspour B, Saremaslani P, Schmid S, Perren A, et al. Putative tumor suppressor loci at 6q22 and 6q23–q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors. Am J Pathol 2001;158(6);1903–11.

    PubMed  CAS  Google Scholar 

  165. Moore PS, Orlandini S, Zamboni G, Capelli P, Rigaud G, Falconi M, et al. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer 2001;84(2);253–62.

    Article  PubMed  CAS  Google Scholar 

  166. Muscarella P, Melvin WS, Fisher WE, Foor J, Ellison EC, Herman JG, et al. Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res 1998;58(2);237–40.

    PubMed  CAS  Google Scholar 

  167. Speel EJ, Scheidweiler AF, Zhao J, Matter C, Saremaslani P, Roth J, et al. Genetic evidence for early divergence of small functioning and nonfunctioning endocrine pancreatic tumors: gain of 9Q34 is an early event in insulinomas. Cancer Res 2001;61(13);5186–92.

    PubMed  CAS  Google Scholar 

  168. Perren A, Komminoth P, Saremaslani P, Matter C, Feurer S, Lees JA, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 2000;157(4);1097–103.

    PubMed  CAS  Google Scholar 

  169. Hirawake H, Taniwaki M, Tamura A, Amino H, Tomitsuka E, Kita K. Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial succinate-ubiquinone oxidoreductase. Biochim Biophys Acta 1999;1412(3);295–300.

    Article  PubMed  CAS  Google Scholar 

  170. Scheffler IE. Molecular genetics of succinate:quinone oxidoreductase in eukaryotes. Prog Nucleic Acid Res Mol Biol 1998;60:267–315.

    Article  PubMed  CAS  Google Scholar 

  171. Rigaud G, Missiaglia E, Moore PS, Zamboni G, Falconi M, Talamini G, et al. High resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res 2001;61(1);285–92.

    PubMed  CAS  Google Scholar 

  172. Perren A, Barghorn A, Schmid S, Saremaslani P, Roth J, Heitz PU, et al. Absence of somatic SDHD mutations in sporadic neuroendocrine tumors and detection of two germline variants in paraganglioma patients. Oncogene 2002;21(49);7605–8.

    Article  PubMed  CAS  Google Scholar 

  173. Badenhop RF, Cherian S, Lord RS, Baysal BE, Taschner PE, Schofield PR. Novel mutations in the SDHD gene in pedigrees with familial carotid body paraganglioma and sensorineural hearing loss. Genes Chromosomes Cancer 2001;31(3);255–63.

    Article  PubMed  CAS  Google Scholar 

  174. van der Mey AG, Maaswinkel-Mooy PD, Cornelisse CJ, Schmidt PH, van de Kamp JJ. Genomic imprinting in hereditary glomus tumours: evidence for new genetic theory. Lancet 1989;2(8675);1291–4.

    PubMed  Google Scholar 

  175. Shattuck TM, Costa J, Bernstein M, Jensen RT, Chung DC, Arnold A. Mutational analysis of Smad3, a candidate tumor suppressor implicated in TGF-beta and menin pathways, in parathyroid adenomas and enteropancreatic endocrine tumors. J Clin Endocrinol Metab 2002;87(8);3911–4.

    Article  PubMed  CAS  Google Scholar 

  176. Moore PS, Missiaglia E, Antonello D, Zamo A, Zamboni G, Corleto V, et al. Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosomes Cancer 2001;32(2);177–81.

    Article  PubMed  CAS  Google Scholar 

  177. Bartsch D, Hahn SA, Danichevski KD, Ramaswamy A, Bastian D, Galehdari H, et al. Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene 1999;18(14);2367–71.

    Article  PubMed  CAS  Google Scholar 

  178. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271(5247);350–3.

    Article  PubMed  CAS  Google Scholar 

  179. Perren A, Saremaslani P, Schmid S, Bonvin C, Locher T, Roth J, et al. DPC4/Smad4: no mutations, rare allelic imbalances, and retained protein expression in pancreatic endocrine tumors. Diagn Mol Pathol 2003;12(4);181–6.

    Article  PubMed  CAS  Google Scholar 

  180. Wild A, Langer P, Celik I, Chaloupka B, Bartsch DK. Chromosome 22q in pancreatic endocrine tumors: identification of a homozygous deletion and potential prognostic associations of allelic deletions. Eur J Endocrinol 2002;147(4);507–13.

    Article  PubMed  CAS  Google Scholar 

  181. Wild A, Langer P, Ramaswamy A, Chaloupka B, Bartsch DK. A novel insulinoma tumor suppressor gene locus on chromosome 22q with potential prognostic implications. J Clin Endocrinol Metab 2001;86(12);5782–7.

    Article  PubMed  CAS  Google Scholar 

  182. Biegel JA, Fogelgren B, Zhou JY, James CD, Janss AJ, Allen JC, et al. Mutations of the INI1 rhabdoid tumor suppressor gene in medulloblastomas and primitive neuroectodermal tumors of the central nervous system. Clin Cancer Res 2000;6(7);2759–63.

    PubMed  CAS  Google Scholar 

  183. Chen YJ, Vortmeyer A, Zhuang Z, Gibril F, Jensen RT. X-chromosome loss of heterozygosity frequently occurs in gastrinomas and is correlated with aggressive tumor growth. Cancer 2004;100(7);1379–87.

    Article  PubMed  Google Scholar 

  184. Missiaglia E, Moore PS, Williamson J, Lemoine NR, Falconi M, Zamboni G, et al. Sex chromosome anomalies in pancreatic endocrine tumors. Int J Cancer 2002;98(4);532–8.

    Article  PubMed  CAS  Google Scholar 

  185. Ponce-Castaneda MV, Lee MH, Latres E, Polyak K, Lacombe L, Montgomery K, et al. p27Kip1: chromosomal mapping to 12p12–12p13.1 and absence of mutations in human tumors. Cancer Res 1995;55(6);1211–4.

    PubMed  CAS  Google Scholar 

  186. Guo SS, Wu X, Shimoide AT, Wong J, Sawicki MP. Anomalous overexpression of p27(Kip1) in sporadic pancreatic endocrine tumors. J Surg Res 2001;96(2);284–8.

    Article  PubMed  CAS  Google Scholar 

  187. Canavese G, Azzoni C, Pizzi S, Corleto VD, Pasquali C, Davoli C, et al. p27: a potential main inhibitor of cell proliferation in digestive endocrine tumors but not a marker of benign behavior. Hum Pathol 2001;32(10);1094–101.

    Article  PubMed  CAS  Google Scholar 

  188. Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, et al. A novel p16INK4A transcript. Cancer Res 1995;55(14);2995–7.

    PubMed  CAS  Google Scholar 

  189. Liggett WH, Jr., Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 1998;16(3);1197–206.

    PubMed  CAS  Google Scholar 

  190. Lubomierski N, Kersting M, Bert T, Muench K, Wulbrand U, Schuermann M, et al. Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors. Cancer Res 2001;61(15);5905–10.

    PubMed  CAS  Google Scholar 

  191. Schuuring E, Verhoeven E, Mooi WJ, Michalides RJ. Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 1992;7(2);355–61.

    PubMed  CAS  Google Scholar 

  192. Arnold A, Motokura T, Bloom T, Rosenberg C, Bale A, Kronenberg H, et al. PRAD1 (cyclin D1): a parathyroid neoplasia gene on 11q13. Henry Ford Hosp Med J 1992;40(3–4):177–80.

    PubMed  CAS  Google Scholar 

  193. Chung DC, Brown SB, Graeme-Cook F, Seto M, Warshaw AL, Jensen RT, et al. Overexpression of cyclin D1 occurs frequently in human pancreatic endocrine tumors. J Clin Endocrinol Metab 2000;85(11);4373–8.

    Article  PubMed  CAS  Google Scholar 

  194. Guo SS, Wu X, Shimoide AT, Wong J, Moatamed F, Sawicki MP. Frequent overexpression of cyclin D1 in sporadic pancreatic endocrine tumours. J Endocrinol 2003;179(1);73–9.

    Article  PubMed  CAS  Google Scholar 

  195. Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996;271(34);20608–16.

    Article  PubMed  CAS  Google Scholar 

  196. Gille H, Downward J. Multiple ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem 1999;274(31);22033–40.

    Article  PubMed  CAS  Google Scholar 

  197. Weber JD, Raben DM, Phillips PJ, Baldassare JJ. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J 1997;326 (Pt 1):61–8.

    PubMed  CAS  Google Scholar 

  198. McBride OW, Swan DC, Tronick SR, Gol R, Klimanis D, Moore DE, et al. Regional chromosomal localization of N-ras, K-ras-1, K-ras-2 and myb oncogenes in human cells. Nucleic Acids Res 1983;11(23);8221–36.

    Article  PubMed  CAS  Google Scholar 

  199. McCormick F. Ras-related proteins in signal transduction and growth control. Mol Reprod Dev 1995;42(4);500–6.

    Article  PubMed  CAS  Google Scholar 

  200. Yashiro T, Fulton N, Hara H, Yasuda K, Montag A, Yashiro N, et al. Comparison of mutations of ras oncogene in human pancreatic exocrine and endocrine tumors. Surgery 1993;114(4);758–63; discussion 763–4.

    PubMed  CAS  Google Scholar 

  201. Pavelic K, Hrascan R, Kapitanovic S, Karapandza N, Vranes Z, Belicza M, et al. Multiple genetic alterations in malignant metastatic insulinomas. J Pathol 1995;177(4);395–400.

    Article  PubMed  CAS  Google Scholar 

  202. Hugl SR, White MF, Rhodes CJ. Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem 1998;273(28);17771–9.

    Article  PubMed  CAS  Google Scholar 

  203. Jetton TL, Lausier J, LaRock K, Trotman WE, Larmie B, Habibovic A, et al. Mechanisms of compensatory beta-cell growth in insulin-resistant rats: roles of Akt kinase. Diabetes 2005;54(8);2294–304.

    Article  PubMed  CAS  Google Scholar 

  204. Dilley WG, Kalyanaraman S, Verma S, Cobb JP, Laramie JM, Lairmore TC. Global gene expression in neuroendocrine tumors from patients with the MEN1 syndrome. Mol Cancer 2005;4(1);9.

    Article  PubMed  CAS  Google Scholar 

  205. Pelengaris S, Khan M. Oncogenic co-operation in beta-cell tumorigenesis. Endocr Relat Cancer 2001;8(4);307–14.

    Article  PubMed  CAS  Google Scholar 

  206. Hager JH, Hanahan D. Tumor cells utilize multiple pathways to down-modulate apoptosis. Lessons from a mouse model of islet cell carcinogenesis. Ann NY Acad Sci 1999;887:150–63.

    Article  PubMed  CAS  Google Scholar 

  207. Muleris M, Almeida A, Malfoy B, Dutrillaux B. Assignment of v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) to human chromosome band 17q21.1 by in situ hybridization. Cytogenet Cell Genet 1997;76(1–2):34–5.

    Article  PubMed  CAS  Google Scholar 

  208. Bacus SS, Zelnick CR, Plowman G, Yarden Y. Expression of the erbB-2 family of growth factor receptors and their ligands in breast cancers. Implication for tumor biology and clinical behavior. Am J Clin Pathol 1994;102(4 Suppl 1):S13–24.

    PubMed  CAS  Google Scholar 

  209. Goebel SU, Iwamoto M, Raffeld M, Gibril F, Hou W, Serrano J, et al. Her-2/neu expression and gene amplification in gastrinomas: correlations with tumor biology, growth, and aggressiveness. Cancer Res 2002;62(13);3702–10.

    PubMed  CAS  Google Scholar 

  210. Gosden JR, Middleton PG, Rout D. Localization of the human oestrogen receptor gene to chromosome 6q24–q27 by in situ hybridization. Cytogenet Cell Genet 1986;43(3–4):218–20.

    Article  PubMed  CAS  Google Scholar 

  211. Altundag O, Altundag K, Gunduz M. DNA methylation inhibitor, procainamide, may decrease the tamoxifen resistance by inducing overexpression of the estrogen receptor beta in breast cancer patients. Med Hypotheses 2004;63(4);684–7.

    Article  PubMed  CAS  Google Scholar 

  212. Chan AO, Kim SG, Bedeir A, Issa JP, Hamilton SR, Rashid A. CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene 2003;22(6);924–34.

    Article  PubMed  CAS  Google Scholar 

  213. Iwamura Y, Futagawa T, Kaneko M, Nakagawa K, Kawai K, Yamashita K, et al. Co-deletions of the retinoblastoma gene and Wilms’ tumor gene and rearrangement of the Krev-1 gene in a human insulinoma. Jpn J Clin Oncol 1992;22(1);6–9.

    PubMed  CAS  Google Scholar 

  214. Nakamura T, Iwamura Y, Kaneko M, Nakagawa K, Kawai K, Mitamura K, et al. Deletions and rearrangements of the retinoblastoma gene in hepatocellular carcinoma, insulinoma and some neurogenic tumors as found in a study of 121 tumors. Jpn J Clin Oncol 1991;21(5);325–9.

    PubMed  CAS  Google Scholar 

  215. Kawahara M, Kammori M, Kanauchi H, Noguchi C, Kuramoto S, Kaminishi M, et al. Immunohistochemical prognostic indicators of gastrointestinal carcinoid tumours. Eur J Surg Oncol 2002;28(2);140–6.

    Article  PubMed  CAS  Google Scholar 

  216. Chung DC, Smith AP, Louis DN, Graeme-Cook F, Warshaw AL, Arnold A. Analysis of the retinoblastoma tumour suppressor gene in pancreatic endocrine tumours. Clin Endocrinol (Oxf) 1997;47(5);523–8.

    Article  CAS  Google Scholar 

  217. Nishikura K, Watanabe H, Iwafuchi M, Fujiwara T, Kojima K, Ajioka Y. Carcinogenesis of gastric endocrine cell carcinoma: analysis of histopathology and p53 gene alteration. Gastric Cancer 2003;6(4);203–9.

    Article  PubMed  CAS  Google Scholar 

  218. Weckstrom P, Hedrum A, Makridis C, Akerstrom G, Rastad J, Scheibenpflug L, et al. Midgut Carcinoids and Solid Carcinomas of the Intestine: Differences in Endocrine Markers and p53 Mutations. Endocr Pathol 1996;7(4);273–9.

    Article  PubMed  Google Scholar 

  219. Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol 2005;19(5);753–81.

    Article  PubMed  CAS  Google Scholar 

  220. Kraus C, Liehr T, Hulsken J, Behrens J, Birchmeier W, Grzeschik KH, et al. Localization of the human beta-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 1994;23(1);272–4.

    Article  PubMed  CAS  Google Scholar 

  221. Gerdes B, Ramaswamy A, Simon B, Pietsch T, Bastian D, Kersting M, et al. Analysis of beta-catenin gene mutations in pancreatic tumors. Digestion 1999;60(6);544–8.

    Article  PubMed  CAS  Google Scholar 

  222. Sinke RJ, Geurts van Kessel AG. Localization of the human phosphatidylinositol-specific phospholipase c beta 3 gene (PLCB3) within chromosome band 11q13. Genomics 1995;25(2);568–9.

    Article  PubMed  CAS  Google Scholar 

  223. Mattei MG, de The H, Mattei JF, Marchio A, Tiollais P, Dejean A. Assignment of the human hap retinoic acid receptor RAR beta gene to the p24 band of chromosome 3. Hum Genet 1988;80(2);189–90.

    Article  PubMed  CAS  Google Scholar 

  224. Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 2008;135(5);1469–92.

    Article  PubMed  CAS  Google Scholar 

  225. Capurso G, Lattimore S, Crnogorac-Jurcevic T, Panzuto F, Milione M, Bhakta V, et al. Gene expression profiles of progressive pancreatic endocrine tumours and their liver metastases reveal potential novel markers and therapeutic targets. Endocr Relat Cancer 2006;13(2);541–58.

    Article  PubMed  CAS  Google Scholar 

  226. Hansel DE, Rahman A, House M, Ashfaq R, Berg K, Yeo CJ, et al. Met proto-oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic ability in well-differentiated pancreatic endocrine neoplasms. Clin Cancer Res 2004;10(18 Pt 1):6152–8.

    Article  PubMed  CAS  Google Scholar 

  227. Maitra A, Hansel DE, Argani P, Ashfaq R, Rahman A, Naji A, et al. Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin Cancer Res 2003;9(16 Pt 1):5988–95.

    PubMed  CAS  Google Scholar 

  228. Nasir A, McCarthy S, Agrawal D, Bloom G, Zeringer E, Chen D, et al. Novel progression-associated genes in pancreatic endocrine neoplasms. In: American Society of Clinical Oncology Annual Meeting; Chicago, IL; 2008.

    Google Scholar 

  229. Nasir A, McCarthy S, Zeringer E, Bloom G, Eschrich S, Chen D, et al. Discovery and Validation of Progression-associated Genes in Primary Pancreatic Endocrine Tumors. In: North American NeuroEndocrine Tumor Society; 2008.

    Google Scholar 

  230. Nasir A, Helm J, Strosberg J, Henderson-Jackson E, Turner L, Hafez N, et al. Molecular markers outclass pathologic criteria of malignancy in predicting liver metastases in primary pancreatic endocrine neoplasms. In: European Neuroendocrine Tumor Society; Granada, Spain; 2009.

    Google Scholar 

  231. Gannon G, Mandriota SJ, Cui L, Baetens D, Pepper MS, Christofori G. Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res 2002;62(2);603–8.

    PubMed  CAS  Google Scholar 

  232. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 2006;20(5);543–56.

    Article  PubMed  CAS  Google Scholar 

  233. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY, et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 2004;5(5);443–53.

    Article  PubMed  CAS  Google Scholar 

  234. Huet S, Groux H, Caillou B, Valentin H, Prieur AM, Bernard A. CD44 contributes to T cell activation. J Immunol 1989;143(3);798–801.

    PubMed  CAS  Google Scholar 

  235. Marhaba R, Zoller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 2004;35(3);211–31.

    Article  PubMed  CAS  Google Scholar 

  236. Imam H, Eriksson B, Oberg K. Expression of CD44 variant isoforms and association to the benign form of endocrine pancreatic tumours. Ann Oncol 2000;11(3);295–300.

    Article  PubMed  CAS  Google Scholar 

  237. Ischia R, Lovisetti-Scamihorn P, Hogue-Angeletti R, Wolkersdorfer M, Winkler H, Fischer-Colbrie R. Molecular cloning and characterization of NESP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. J Biol Chem 1997;272(17);11657–62.

    Article  PubMed  CAS  Google Scholar 

  238. Srivastava A, Padilla O, Fischer-Colbrie R, Tischler AS, Dayal Y. Neuroendocrine secretory protein-55 (NESP-55) expression discriminates pancreatic endocrine tumors and pheochromocytomas from gastrointestinal and pulmonary carcinoids. Am J Surg Pathol 2004;28(10);1371–8.

    Article  PubMed  Google Scholar 

  239. Kolodner RD, Hall NR, Lipford J, Kane MF, Morrison PT, Finan PJ, et al. Structure of the human MLH1 locus and analysis of a large hereditary nonpolyposis colorectal carcinoma kindred for mlh1 mutations. Cancer Res 1995;55(2);242–8.

    PubMed  CAS  Google Scholar 

  240. House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Cameron JL, et al. Prognostic value of hMLH1 methylation and microsatellite instability in pancreatic endocrine neoplasms. Surgery 2003;134(6);902–8; discussion 909.

    Article  PubMed  Google Scholar 

  241. Wick M, Zubov D, Hagen G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 1999;232(1);97–106.

    Article  PubMed  CAS  Google Scholar 

  242. Vezzosi D, Bouisson M, Escourrou G, Laurell H, Selves J, Seguin P, et al. Clinical utility of telomerase for the diagnosis of malignant well-differentiated endocrine tumours. Clin Endocrinol (Oxf) 2006;64(1);63–7.

    Article  CAS  Google Scholar 

  243. House MG, Schulick RD. Endocrine tumors of the pancreas. Curr Opin Oncol 2006;18(1);23–9.

    Article  PubMed  Google Scholar 

  244. Iino S, Abeyama K, Kawahara K, Yamakuchi M, Hashiguchi T, Matsukita S, et al. The antimetastatic role of thrombomodulin expression in islet cell-derived tumors and its diagnostic value. Clin Cancer Res 2004;10(18 Pt 1):6179–88.

    Article  PubMed  CAS  Google Scholar 

  245. von Wichert G, Jehle PM, Hoeflich A, Koschnick S, Dralle H, Wolf E, et al. Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res 2000;60(16);4573–81.

    Google Scholar 

  246. Terris B, Scoazec JY, Rubbia L, Bregeaud L, Pepper MS, Ruszniewski P, et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 1998;32(2);133–8.

    Article  PubMed  CAS  Google Scholar 

  247. La Rosa S, Uccella S, Finzi G, Albarello L, Sessa F, Capella C. Localization of vascular endothelial growth factor and its receptors in digestive endocrine tumors: correlation with microvessel density and clinicopathologic features. Hum Pathol 2003;34(1);18–27.

    Article  PubMed  CAS  Google Scholar 

  248. Hansel DE, Rahman A, Hermans J, de Krijger RR, Ashfaq R, Yeo CJ, et al. Liver metastases arising from well-differentiated pancreatic endocrine neoplasms demonstrate increased VEGF-C expression. Mod Pathol 2003;16(7);652–9.

    Article  PubMed  Google Scholar 

  249. Garcia-Ocaña A, Takane KK, Syed MA, et al. Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem 2000;275:1226–32.

    Google Scholar 

  250. Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Hor Metab Res 1997;29:301–7.

    Google Scholar 

  251. Vasavada RC, Garcia-Ocaña A, Zawalich WS, et al. Targeted expression of placental lactogen in the beta cells of transgenic mice results in beta cell proliferation, islet mass augmentation, and hypoglycemia. J Biol Chem 2000;275:15399–406.

    Google Scholar 

  252. Porter SE, Sorenson RL, Dann P, et al. Progressive pancreatic islet hyperplasia in the islet-targeted, parathyroid, hormone-related protein-overexpressing mouse. Endocrinology 1998;139:3743–51.

    Google Scholar 

  253. Devedjian JC, George M, Casellas A, et al. Transgenic mice overexpressing insulin-like growth factor-II in beta cells develop type 2 diabetes. J Clin Invest 2000;105:731–40.

    Google Scholar 

  254. Okamoto H. The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic beta-cells. J Hepatobiliary Pancreat Surg 1999;6:254–62.

    Google Scholar 

  255. Bouwens L, Rooman I. Regulation of pancreatic beta-cell mass. Physiol Rev 2005;85:1255–70.

    Google Scholar 

  256. Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003;17:161–71.

    Google Scholar 

  257. Schnepp RW, Hou Z, Wang H, Petersen C, Silva A, Masai H, Hua X. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res 2004;64:6791–6.

    Google Scholar 

  258. Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y, Meyerson M, Kim SK. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27KIP1 and p18INK4C. Proc Natl Acad Sci 2005;102:14659–64.

    Google Scholar 

  259. Schnepp RW, Chen YX, Wang H, Cash T, Silva A, Diehl JA, Brown E, Hua X. Mutation of tumor suppressor gene MEN1 acutely enhances proliferation of pancreatic islet cells. Cancer Res 2006;66:5707–l5.

    Google Scholar 

  260. Tomita T. Cyclin-dependent kinase (cdk6) and p16 in pancreatic endocrine neoplasms. Pathology 2004;36:566–70.

    Google Scholar 

  261. Bartch DK, Kersting M, Wild A, Ramaswamy A, Gerdes B, Schuermann M, Simon B, Rothmund M. Low frequency of p16 (INK4a) alterations in insulinomas. Digestion 2000;62:171–7.

    Google Scholar 

  262. Stalberg P, Grimfjard P, Santesson M, Zhou Y, Lindberg D, Gobl A, Oberg K, Westin G, Rastad J, Wang S, Skogseid B. Transfection of multiple endocrine neoplasia type 1 gene to a human endocrine pancreatic tumor cell line inhibits cell growth and affects expression of JunD, (-like protein 1/preadipocyte factor-1), proliferating cell nuclear antigen, and QM/Jif-1. J Clin Endocrinol Metab 2004;89:2326–37.

    Google Scholar 

  263. Fatrai S, Elghazi L, Balcazar N, Cras-Meneur C, Krits I, Kiyokawa H, Bernal-Mizrachi E. Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 2006;55:318–25.

    Google Scholar 

  264. Hsieh ET, Shepherd FA, Tsao MS. Co-expression of epidermal growth factor and transforming growth factor-alpha is independent of ras mutations in lung adenocacinoma. Lung Cancer 2000;29:151–7.

    Google Scholar 

  265. Jonkers YMH, Claessen SMH, Perren A, Schmid S, Komminoth P, Verhofstad AA, Hofland U, de Krijger RR, Slootweg PJ, Ramaekers FCS, Speel EJM. Chromosomal instability predicts metastatic disease in patients with insulinomas. Endocr Relat Cancer 2005;12:435–47.

    Google Scholar 

  266. DeAizpurua HJ, Cram DS, Naselli G, Devereux L, Dorow DS. Expression of mixed lineage kinase-1 in pancreatic β-cell lines at different stages of maturation and during embryonic pancreas development. J Biol Chem 1997;272:16364–73.

    Google Scholar 

  267. Davoren PM, Epstein MT. Insulinoma complicating tuberous sclerosis. J Neurol Neurosurg Psychiatry 1992;55:1209.

    Google Scholar 

  268. Balogh K, Racz K, Patocs A, Hunyadi L. Menin and its interacting proteins: elucidation of menin function. Trends Endocrinol Metab 2006;17:357–64.

    Google Scholar 

  269. Harvey M, Vogel H, Lee EYHP, Bradley A, Donehower LA. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Concer Res 1995;55:1146–51.

    Google Scholar 

  270. Nguyen KTT, Tajmir P, Lin CH, Liadis N, Zhu XD, Eweida M, Tolasa-Karaman G, Cai F, Wang R, Kitamura T, Belsham DD, Wheeler MB, Suzuki A, Mak TW, Woo M. Essential role of PTEN in body size determination and pancreatic β-cell homeostasis in vivo. Mol Cell Biol 2006;26:4511–18.

    Google Scholar 

  271. Zhang L, Fu Z, Binkley C, Giordano T, Burant CF, Logsdon CD, Simeone DM. Raf kinase inhibitory protein inhibits β-cell proliferation. Surgery 2004;136:708–l5.

    Google Scholar 

  272. Moore PS, Beghelli S, Zamboni G, Scarpa A. Genetic abnormalities in pancreatic cancer. Mol Cancer 2003;2:7–12.

    Google Scholar 

  273. Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ. Pancreatic β-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 2003;63:4836–41.

    Google Scholar 

  274. Jonkers YMH, Claessen SMH, Feuth T, Geurts van Kessel A, Ramaekers FCS, Veltman JA, Speel EJM. Novel candidate tumor suppressor gene loci on chromosomes 11q23-24 and 22ql3 involved in human insulinoma tumorigenesis. J Pathol 2006;210:450–8.

    Google Scholar 

  275. Lee CS. Lack of p53 immunoreactivity in pancreatic endocrine tumors. Pathology 1996;28:139–41.

    Google Scholar 

  276. Jin S, Mao H, Schnepp RW, Sykes SM, Silva AC, D’Andrea AD, Hua X. Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 2003;63:4204–l0.

    Google Scholar 

  277. Wang DG, Johnston CF, Buchanan KD. Oncogene expression in gastroenteropancreatic neuroendocrine tumors. Implications for pathogenesis. Cancer 1997;80:668–75.

    Google Scholar 

  278. Jonkers YMH, Claessen SMH, Feuth T, Geurts van Kessel A, Ramaekers FCS, Veltman JA, Speel EJM. Novel candidate tumor suppressor gene loci on chromosomes 11q23-24 and 22ql3 involved in human insulinoma tumorigenesis. J Pathol 2006;210:450–58.

    Article  CAS  Google Scholar 

  279. Broustas CG, Gokhale PC, Rahman A, Dritschilo A, Ahmad I, Kasid U. BRCC2, a novel BH3-like domain-containing protein, induces apoptosis in a caspase-dependent manner. JBiol Chem 2004;279:26780–8.

    Google Scholar 

  280. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990;348:334–6.

    Google Scholar 

  281. Grabowski P, Griss S, Arnold CN, Horsch D, Goke R, Arnold R, Heine B, Stein H, Zeitz M, Scherubl H. Nuclear survivin is a powerful novel prognostic marker in gastroenteropancreatic neuroendocrine tumor disease. Neuroendocrinology 2005;81:1–9.

    Google Scholar 

  282. Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 2006;5:483–93.

    Google Scholar 

  283. Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003;113:881–9.

    Google Scholar 

  284. Hessman O, Lindberg D, Einarsson A, Lilllhager P, Carling T, Grimelius L, Eriksson B, Akerstrom G, Westin G, Skogseid B. Genetic alterations on 3p, 11ql3, and 18q in nonfamilial and MEN1-associated pancreatic endocrine tumors. Genes Chromosomes Cancer 1999;26:258–64.

    Google Scholar 

  285. Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT. Alterations in the p161NK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 2000;85:4146–56.

    Google Scholar 

  286. Cupisti K, Hoppner W, Dotzenrath C, Simon D, Berndt I, Roher HD, Goretzki PE. Lack of MEN1 gene mutations in 27 sporadic insulinomas. Eur J Clin lnvest 2000;30:325–29.

    Google Scholar 

  287. Hessman O, Lindberg D, Skogseid B, Carling T, Hellman P, Rastad J, Akerstrom G, Westin G. Mutation of the multiple endocrine neoplasia type 1 gene in nonfamilial, malignant tumors of the endocrine pancreas. Cancer Res 1998;58:377–9.

    Google Scholar 

  288. Perren A, Hurlimann S, Saremaslani P, Schmid S, Bonvin C, Roth J, Heitz PU, Komminoth P. DPC4/Smad4 expression is lost in a subset of ductal adenocarcinomas of the pancreas but not in endocrine pancreatic tumors and chronic pancreatitis. Mod Pathol 2002;15:199A.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the excellent assistance of Jean Stern, Mary Willis, LuAnn Ellsperman, and Rasa Hamilton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aejaz Nasir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mills, O., Nasir, N.A., Strosberg, J.R., Kvols, L.K., Coppola, D., Nasir, A. (2010). Recent Advances in the Pathogenesis of Pancreatic Endocrine Neoplasms. In: Coppola, D. (eds) Mechanisms of Oncogenesis. Cancer Growth and Progression, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3725-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3725-1_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3724-4

  • Online ISBN: 978-90-481-3725-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics