Skip to main content

The CCN Genes as the “Master” Regulators of Angiogenesis, Vasculogenesis, Fibrogenesis and Cell Differentiation/Fate Specification in Mechanical Force-Driven Developmental Processes and Pathological Events

  • Chapter
  • First Online:
CCN Proteins in Health and Disease
  • 448 Accesses

Abstract

Mechanical forces, whether internally generated or externally imposed, are an important determinant of tissue structure and function in physiological and pathological states and for engineering functional tissue constructs in vitro. Similarly, embryonic and fetal development of a variety of tissues is, at least in part, orchestrated by mechanical cues although such influence is seldom acknowledged because it is difficult to elaborate experimentally in vivo. How cells respond/adapt to variations in mechanical forces is critical in homeostasis and many diseases. Mechanical stimuli are sensed by mechanosensors at both the cell-extracellular matrix (ECM) interface and cell-cytoskeletal interface leading to the activation of signaling cascades that culminate into actin cytoskeletal remodeling and epigenetic modifications of chromatin. The ultimate targets are nuclear transcriptional elements that regulate the expression of numerous fetal genes including a subset of inducible ECM-associated proteins referred to as Cysteine-rich protein 61 (Cyr61 or CCN1) and connective tissue growth factor (CTGF or CCN2). CCN1 and CCN2 are structurally-related and functionally multifaceted multimodular proteins that appear in the extracellular environment particularly during development, pathological states and tissue repair and regeneration. CCN1 and CCN2 promote integrin-mediated adhesion, migration and/or chemotaxis and regulate the mitogenic and proapoptotic activities of cytokines and growth factors vis-à-vis the “mechanocytes” e.g., fibroblasts and endothelial, muscle and epithelial cells. Their apparently disparate activities, some mutually exclusive, are cell type-, cell signal- and cell context-dependent and re-enact developmental events such as angiogenesis, vasculogenesis, differentiation and fibrogenesis. This chapter discusses what has been learned lately about the role of mechanical forces in development and diseases of distensible organ systems and the role of CCN1 and CCN2 in the adaptive capabilities and maladaptive responses of tissues to mechanical overload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

extracellular matrix

MAP:

mitogen-activated protein

FA:

focal adhesion

Cyr61:

Cysteine-rich protein 61

CTGF:

connective tissue growth factor

VEGF:

vascular endothelial growth factor

GSK-3b:

Glycogen synthase kinase 3 beta

LRP:

low density lipoprotein receptor-related protein

MHC:

myosin heavy chain

CREB:

cyclic AMP responsive element binding

FZD:

Frizzled homolog

MMP:

matrix metalloproteinase

TIMP:

tissue inhibitor of metalloproteinases

EPC:

endothelial progenitor cell

SRF:

serum response factor

MRTF:

myocardin-related transcription factor

PKC:

protein kinase C

PI 3-K:

phosphatidyl inositol 3-kinase.

References

  • Aitsebaomo J., Portbury A.L., Schisler J.C., Patterson C. (2008). Brothers and sisters: molecular insights into arterial-venous heterogeneity. Circ Res 103: 929–939.

    Article  PubMed  CAS  Google Scholar 

  • Ando H., Fukuda N., Kotani M., Yokoyama S., Kunimoto S., Matsumoto K., Saito S., Kanmatsuse K., Mugishima H. (2004). Chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury. Eur J Pharmacol 483: 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Babic A.M., Chen C.C., Lau L.F. (1999). Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19: 2958–2966.

    PubMed  CAS  Google Scholar 

  • Baskin L.S., Hayward S.W., Sutherland R.A., DiSandro M.J., Thomson A.A., Goodman J., Cunha G.R. (1996). Mesenchymal-epithelial interactions in the bladder. World J Urol 14: 301–309.

    Article  PubMed  CAS  Google Scholar 

  • Beamon C.R., Mazar C., Salkini M.W., Phull H.S., Comiter C.V. (2009). The effect of sildenafil citrate on bladder outlet obstruction: a mouse model. BJU Int 104: 252–256.

    Google Scholar 

  • Bourillot P.Y., Aksoy I., Schreiber V., Wianny F., Schulz H., Hummel O., Hubner N., Savatier P. (2009). Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells 27: 1760–1771.

    Google Scholar 

  • Brading A., Pessina F., Esposito L., Symes S. (2004). Effects of metabolic stress and ischaemia on the bladder, and the relationship with bladder overactivity. Scand J Urol Nephrol 215(Suppl): 84–92.

    Google Scholar 

  • Capolicchio G., Aitken K.J., Gu J.X., Reddy P., Bagli D.J. (2001). Extracellular matrix gene responses in a novel ex vivo model of bladder stretch injury. J Urol 165: 2235–2240.

    Article  PubMed  CAS  Google Scholar 

  • Carabello B.A. (2002). Concentric versus eccentric remodeling. J Card Fail 8: S258–S263.

    Article  PubMed  Google Scholar 

  • Cen B., Selvaraj A., Prywes R. (2004). Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93: 74–82.

    Article  PubMed  CAS  Google Scholar 

  • Chang K.H., Chan-Ling T., McFarland E.L., Afzal A., Pan H., Baxter L.C., Shaw L.C., Caballero S., Sengupta N., Li C.S., Sullivan S.M., Grant M.B. (2007). IGF binding protein-3 regulates hematopoietic stem cell and endothelial precursor cell function during vascular development. Proc Natl Acad Sci U S A 104: 10595–10600.

    Article  PubMed  CAS  Google Scholar 

  • Chaqour B., Goppelt-Struebe M. (2006). Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J 273: 3639–3649.

    Article  PubMed  CAS  Google Scholar 

  • Chaqour B., Yang R., Sha Q. (2006). Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-kappaB activation. J Biol Chem 281: 20608–20622.

    Article  PubMed  CAS  Google Scholar 

  • Chatzizisis Y.S., Coskun A.U., Jonas M., Edelman E.R., Feldman C.L., Stone P.H. (2007). Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49: 2379–2393.

    Article  PubMed  CAS  Google Scholar 

  • Chen C.C., Chen N., Lau L.F. (2001a). The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276: 10443–10452.

    Article  PubMed  CAS  Google Scholar 

  • Chen C.C., Lau L.F. (2009). Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41: 771–783.

    Google Scholar 

  • Chen C.C., Mo F.E., Lau L.F. (2001b). The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem 276: 47329–47337.

    Article  PubMed  CAS  Google Scholar 

  • Chen N., Leu S.J., Todorovic V., Lam S.C., Lau L.F. (2004). Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem 279: 44166–44176.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y., Du X.Y. (2007). Functional properties and intracellular signaling of CCN1/Cyr61. J Cell Biochem 100: 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  • Chien S. (2008). Effects of disturbed flow on endothelial cells. Ann Biomed Eng 36: 554–562.

    Article  PubMed  Google Scholar 

  • Chiou M.J., Chao T.T., Wu J.L., Kuo C.M., Chen J.Y. (2006). The physiological role of CTGF/CCN2 in zebrafish notochond development and biological analysis of the proximal promoter region. Biochem. Biophys Res Commun 349: 750–758.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury I., Chaqour B. (2004). Regulation of connective tissue growth factor (CTGF/CCN2) gene transcription and mRNA stability in smooth muscle cells. Involvement of RhoA GTPase and p38 MAP kinase and sensitivity to actin dynamics. Eur J Biochem 271: 4436–4450.

    Article  PubMed  CAS  Google Scholar 

  • Dahl K.N., Ribeiro A.J., Lammerding J. (2008). Nuclear shape, mechanics, and mechanotransduction. Circ Res 102: 1307–1318.

    Article  PubMed  CAS  Google Scholar 

  • Dolan V., Hensey C., Brady H.R. (2003). Diabetic nephropathy: renal development gone awry? Pediatr Nephrol 18: 75–84.

    PubMed  Google Scholar 

  • Ehrlich H.P. (1995). Is collagen remodeling associated with bladder obstruction? Adv Exp Med Biol 385: 143–149.

    PubMed  CAS  Google Scholar 

  • Erwin W.M. (2008). The notochord, notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation. J Cell Commun Signal 2: 59–65.

    Google Scholar 

  • Espinoza-Derout J., Wagner M., Shahmiri K., Mascareno E., Chaqour B., Siddiqui M.A. (2007). Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res 75: 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Estrada R., Li N., Sarojini H., An J., Lee M.J., Wang E. (2009). Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol 219: 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Fataccioli V., Abergel V., Wingertsmann L., Neuville P., Spitz E., Adnot S., Calenda V., Teiger E. (2002). Stimulation of angiogenesis by Cyr61 gene: a new therapeutic candidate. Hum Gene Ther 13: 1461–1470.

    Article  PubMed  CAS  Google Scholar 

  • Frazier K.S., Paredes A., Dube P., Styer E. (2000). Connective tissue growth factor expression in the rat remnant kidney model and association with tubular epithelial cells undergoing transdifferentiation. Vet Pathol 37: 328–335.

    Article  PubMed  CAS  Google Scholar 

  • Friedrichsen S., Heuer H., Christ S., Winckler M., Brauer D., Bauer K., Raivich G. (2003). CTGF expression during mouse embryonic development. Cell Tissue Res 312: 175–188.

    PubMed  CAS  Google Scholar 

  • Game B.A., He L., Jarido V., Nareika A., Jaffa A.A., Lopes-Virella M.F., Huang Y. (2007). Pioglitazone inhibits connective tissue growth factor expression in advanced atherosclerotic plaques in low-density lipoprotein receptor-deficient mice. Atherosclerosis 192: 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Gattinoni L., Caironi P., Carlesso E. (2005). How to ventilate patients with acute lung injury and acute respiratory distress syndrome. Curr Opin Crit Care 11: 69–76.

    Article  PubMed  Google Scholar 

  • Geiger B., Bershadsky A. (2002). Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110: 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Gerthoffer W.T., Gunst S.J. (2001). Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol 91: 963–972.

    PubMed  CAS  Google Scholar 

  • Girard H. (1973). Arterial pressure in the chick embryo. Am J Physiol 224: 454–460.

    PubMed  CAS  Google Scholar 

  • Gnudi L., Thomas S.M., Viberti G. (2007). Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism. J Am Soc Nephrol 18: 2226–2232.

    Article  PubMed  CAS  Google Scholar 

  • Guettler S., Vartiainen M.K., Miralles F., Larijani B., Treisman R. (2008). RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding. Mol Cell Biol 28: 732–742.

    Article  PubMed  CAS  Google Scholar 

  • Gunst S.J., Tang D.D. (2000). The contractile apparatus and mechanical properties of airway smooth muscle. Eur Respir J 15: 600–616.

    Article  PubMed  CAS  Google Scholar 

  • Gunst S.J., Zhang W. (2008). Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 295: C576–C587.

    Article  PubMed  CAS  Google Scholar 

  • Habas R., He X. (2006). Activation of Rho and Rac by Wnt/frizzled signaling. Methods Enzymol 406: 500–511.

    Article  PubMed  CAS  Google Scholar 

  • Haga J.H., Li Y.S., Chien S. (2007). Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40: 947–960.

    Article  PubMed  Google Scholar 

  • Hahn C., Schwartz M.A. (2008). The role of cellular adaptation to mechanical forces in atherosclerosis. Arterioscler Thromb Vasc Biol 28: 2101–2107.

    Article  PubMed  CAS  Google Scholar 

  • Han J.S., Macarak E., Rosenbloom J., Chung K.C., Chaqour B. (2003). Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. Eur J Biochem. 270: 3408–3421.

    Article  PubMed  CAS  Google Scholar 

  • Hanna M., Liu H., Amir J., Sun Y., Morris S.W., Siddiqui M., Lau L.F., Chaqour B. (2009). Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of the myocardin-related transcription factor (MRTF)-A and CREB binding protein (CBP) histone acetyl transferase. J Biol Chem 284: 23125–23136.

    Google Scholar 

  • Heinemeier K.M., Olesen J.L., Haddad F., Schjerling P., Baldwin K.M., Kjaer M. (2009). Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle. J Appl Physiol 106: 178–186.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker-Kleiner D., Kaminski K., Kaminska A., Fuchs M., Klein G., Podewski E., Grote K., Kiian I., Wollert K.C., Hilfiker A., Drexler H. (2004). Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation 109: 2227–2233.

    Article  PubMed  CAS  Google Scholar 

  • Hirata H., Tatsumi H., Sokabe M. (2008). Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 121: 2795–2804.

    Article  PubMed  CAS  Google Scholar 

  • Holbourn K.P., Acharya K.R., Perbal B. (2008). The CCN family of proteins: structure-function relationships. Trends Biochem Sci 33: 461–473.

    Article  PubMed  CAS  Google Scholar 

  • Hong Y., Ho K.S., Eu K.W., Cheah P.Y. (2007). A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clin Cancer Res 13: 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  • Hove J.R., Koster R.W., Forouhar A.S., Acevedo-Bolton G., Fraser S.E., Gharib M. (2003). Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421: 172–177.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi A., Nashiro K., Kikuchi K., Sato S., Ihn H., Fujimoto M., Grotendorst G.R., Takehara K. (1996). Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106: 729–733.

    Article  PubMed  CAS  Google Scholar 

  • Inoki I., Shiomi T., Hashimoto G., Enomoto H., Nakamura H., Makino K., Ikeda E., Takata S., Kobayashi K., Okada Y. (2002). Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16: 219–221.

    PubMed  CAS  Google Scholar 

  • Inoue R., Hai L., Honda A. (2008). Pathophysiological implications of transient receptor potential channels in vascular function. Curr Opin Nephrol Hypertens 17: 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Ivkovic S., Yoon B.S., Popoff S.N., Safadi F.F., Libuda D.E., Stephenson R.C., Daluiski A., Lyons K.M. (2003). Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130: 2779–2791.

    Article  PubMed  CAS  Google Scholar 

  • Janmey P.A. (1998). The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78: 763–781.

    PubMed  CAS  Google Scholar 

  • Janmey P.A., Kinnunen P.K. (2006). Biophysical properties of lipids and dynamic membranes. Trends Cell Biol 16: 538–546.

    Article  PubMed  CAS  Google Scholar 

  • Jin D.K., Shido K., Kopp H.G., Petit I., Shmelkov S.V., Young L.M., Hooper A.T., Amano H., Avecilla S.T., Heissig B., Hattori K., Zhang F., Hicklin D.J., Wu Y., Zhu Z., Dunn A., Salari H., Werb Z., Hackett N.R., Crystal R.G., Lyden D., Rafii S. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12: 557–567.

    Article  PubMed  CAS  Google Scholar 

  • Jones J.A., Gray M.R., Oliveira B.E., Koch M., Castellot J.J., Jr. (2007). CCN5 expression in mammals: I. Embryonic and fetal tissues of mouse and human. J Cell Commun Signal 1: 127–143.

    Article  PubMed  Google Scholar 

  • Kawaki H., Kubota S., Suzuki A., Yamada T., Matsumura T., Mandai T., Yao M., Maeda T., Lyons K.M., Takigawa M. (2008). Functional requirement of CCN2 for intramembranous bone formation in embryonic mice. Biochem Biophys Res Commun 366: 450–456.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch A.J., Macarak E.J., Chaqour B., Quinn T., Zderic S., Flake A., Crombleholme T., Adzick N.S., Canning D., Hubbard A.M., Rosenbloom J., Snyder H.M., Howard P.S. (2003). Molecular response of the bladder to obstruction. Adv Exp Med Biol 539: 195–216.

    PubMed  Google Scholar 

  • Korossis S., Bolland F., Ingham E., Fisher J., Kearney J., Southgate J. (2006). Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. Tissue Eng 12: 635–644.

    Article  PubMed  Google Scholar 

  • Kubota S., Takigawa M. (2007). Role of CCN2/CTGF/Hcs24 in bone growth. Int Rev Cytol 257: 1–41.

    Article  PubMed  CAS  Google Scholar 

  • Langille B.L. (1993). Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J Cardiovasc Pharmacol 21(Suppl 1): S11–S17.

    PubMed  Google Scholar 

  • Latinkic B.V., Mercurio S., Bennett B., Hirst E.M., Xu Q., Lau L.F., Mohun T.J., Smith J.C. (2003). Xenopus Cyr61 regulates gastrulation movements and modulates Wnt signalling. Development 130: 2429–2441.

    Article  PubMed  CAS  Google Scholar 

  • Latinkic B.V., Mo F.E., Greenspan J.A., Copeland N.G., Gilbert D.J., Jenkins N.A., Ross S.R., Lau L.F. (2001). Promoter function of the angiogenic inducer Cyr61gene in transgenic mice: tissue specificity, inducibility during wound healing, and role of the serum response element. Endocrinology 142: 2549–2557.

    Article  PubMed  CAS  Google Scholar 

  • Leask A., Abraham D.J. (2006). All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119: 4803–4810.

    Article  PubMed  CAS  Google Scholar 

  • Lee H.Y., Chung J.W., Youn S.W., Kim J.Y., Park K.W., Koo B.K., Oh B.H., Park Y.B., Chaqour B., Walsh K., Kim H.S. (2007). Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 100: 372–380.

    Article  PubMed  CAS  Google Scholar 

  • Levin R., Chichester P., Levin S., Buttyan R. (2004). Role of angiogenesis in bladder response to partial outlet obstruction. Scand J Urol Nephrol 215(Suppl): 37–47.

    Google Scholar 

  • Levin R.M., Longhurst P.A., Monson F.C., Kato K., Wein A.J. (1990). Effect of bladder outlet obstruction on the morphology, physiology, and pharmacology of the bladder. Prostate Suppl 3: 9–26.

    Article  PubMed  CAS  Google Scholar 

  • Li S., Chang S., Qi X., Richardson J.A., Olson E.N. (2006). Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Mol Cell Biol 26: 5797–5808.

    Article  PubMed  CAS  Google Scholar 

  • Lim C.T., Zhou E.H., Quek S.T. (2006). Mechanical models for living cells–a review. J Biomech 39: 195–216.

    Article  PubMed  CAS  Google Scholar 

  • Liu H., Yang R., Tinner B., Choudhry A., Schutze N., Chaqour B. (2008). Cysteine-rich protein 61 and connective tissue growth factor induce de-adhesion and anoikis of retinal pericytes. Endocrinology 149: 1666–1677.

    Google Scholar 

  • Luo Q., Kang Q., Si W., Jiang W., Park J.K., Peng Y., Li X., Luu H.H., Luo J., Montag A.G., Haydon R.C., He T.C. (2004). Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem 279: 55958–55968.

    Article  PubMed  CAS  Google Scholar 

  • MacKenna D., Summerour S.R., Villarreal F.J. (2000). Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Matsumae H., Yoshida Y., Ono K., Togi K., Inoue K., Furukawa Y., Nakashima Y., Kojima Y., Nobuyoshi M., Kita T., Tanaka M. (2008). CCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model. Arterioscler Thromb Vasc Biol 28: 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  • Mercurio S., Latinkic B., Itasaki N., Krumlauf R., Smith J.C. (2004). Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development 131: 2137–2147.

    Article  PubMed  CAS  Google Scholar 

  • Miralles F., Posern G., Zaromytidou A.I., Treisman R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Mo F.E., Muntean A.G., Chen C.C., Stolz D.B., Watkins S.C., Lau L.F. (2002). CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22: 8709–8720.

    Article  PubMed  CAS  Google Scholar 

  • Murai K., Treisman R. (2002). Interaction of serum response factor (SRF) with the Elk-1 B box inhibits RhoA-actin signaling to SRF and potentiates transcriptional activation by Elk-1. Mol Cell Biol 22: 7083–7092.

    Article  PubMed  CAS  Google Scholar 

  • Murphy M., Crean J., Brazil D.P., Sadlier D., Martin F., Godson C. (2008). Regulation and consequences of differential gene expression in diabetic kidney disease. Biochem Soc Trans 36: 941–945.

    Article  PubMed  CAS  Google Scholar 

  • Nakama L.H., King K.B., Abrahamsson S., Rempel D.M. (2006). VEGF, VEGFR-1, and CTGF cell densities in tendon are increased with cyclical loading: an in vivo tendinopathy model. J Orthop Res 24: 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Oemar B.S., Werner A., Garnier J.M., Do D.D., Godoy N., Nauck M., Marz W., Rupp J., Pech M., Luscher T.F. (1997). Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 95: 831–839.

    PubMed  CAS  Google Scholar 

  • Olson M.F. (2004). Contraction reaction: mechanical regulation of Rho GTPase. Trends Cell Biol 14: 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Parmacek M.S. (2007). Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100: 633–644.

    Article  PubMed  CAS  Google Scholar 

  • Patwari P., Lee R.T. (2008). Mechanical control of tissue morphogenesis. Circ Res 103: 234–243.

    Article  PubMed  CAS  Google Scholar 

  • Perbal B. (2004). CCN proteins: multifunctional signalling regulators. Lancet 363: 62–64.

    Article  PubMed  CAS  Google Scholar 

  • Posern G., Miralles F., Guettler S., Treisman R. (2004). Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J 23: 3973–3983.

    Article  PubMed  CAS  Google Scholar 

  • Ridger V., Krams R., Carpi A., Evans P.C. (2008). Hemodynamic parameters regulating vascular inflammation and atherosclerosis: a brief update. Biomed Pharmacother 62: 536–540.

    Article  PubMed  CAS  Google Scholar 

  • Russell B., Motlagh D., Ashley W.W. (2000). Form follows function: how muscle shape is regulated by work. J Appl Physiol 88: 1127–1132.

    PubMed  CAS  Google Scholar 

  • Schild C., Trueb B. (2004). Three members of the connective tissue growth factor family CCN are differentially regulated by mechanical stress. Biochim Biophys Acta 1691: 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Schmelter M., Ateghang B., Helmig S., Wartenberg M., Sauer H. (2006). Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20: 1182–1184.

    Article  PubMed  CAS  Google Scholar 

  • Schutze N., Kunzi-Rapp K., Wagemanns R., Noth U., Jatzke S., Jakob F. (2005). Expression, purification, and functional testing of recombinant CYR61/CCN1. Protein Expr Purif 42: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Sharif-Naeini R., Dedman A., Folgering J.H., Duprat F., Patel A., Nilius B., Honore E. (2008). TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 456: 529–540.

    Article  PubMed  CAS  Google Scholar 

  • Shimo T., Kanyama M., Wu C., Sugito H., Billings P.C., Abrams W.R., Rosenbloom J., Iwamoto M., Pacifici M., Koyama E. (2004). Expression and roles of connective tissue growth factor in Meckel’s cartilage development. Dev Dyn 231: 136–147.

    Article  PubMed  CAS  Google Scholar 

  • Si W., Kang Q., Luu H.H., Park J.K., Luo Q., Song W.X., Jiang W., Luo X., Li X., Yin H., Montag A.G., Haydon R.C., He T.C. (2006). CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 26: 2955–2964.

    Article  PubMed  CAS  Google Scholar 

  • Stark K., Vainio S., Vassileva G., McMahon A.P. (1994). Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372: 679–683.

    Article  PubMed  CAS  Google Scholar 

  • Sugden P.H. (2003). Ras, Akt, and mechanotransduction in the cardiac myocyte. Circ Res 93: 1179–1192.

    Article  PubMed  CAS  Google Scholar 

  • Surveyor G.A., Brigstock D.R. (1999). Immunohistochemical localization of connective tissue growth factor (CTGF) in the mouse embryo between days 7.5 and 14.5 of gestation. Growth Factors 17: 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Swynghedauw B. (2006). Phenotypic plasticity of adult myocardium: molecular mechanisms. J Exp Biol 209: 2320–2327.

    Article  PubMed  CAS  Google Scholar 

  • Tamura I., Rosenbloom J., Macarak E., Chaqour B. (2001). Regulation of Cyr61 gene expression by mechanical stretch through multiple signaling pathways. Am. J Physiol Cell Physiol 281, C1524–C1532.

    PubMed  CAS  Google Scholar 

  • Tomanek R.J., Zheng W., Christensen L.P. (2008). Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol Heart Circ Physiol 295: 794–800.

    Google Scholar 

  • Tomanek R.J., Zheng W., Yue X. (2004). Growth factor activation in myocardial vascularization: therapeutic implications. Mol Cell Biochem 264: 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Torres M., Gomez-Pardo E., Dressler G.R., Gruss P. (1995). Pax-2 controls multiple steps of urogenital development. Development 121: 4057–4065.

    PubMed  CAS  Google Scholar 

  • Vandenburgh H.H. (1992). Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol 262, R350–R355.

    PubMed  CAS  Google Scholar 

  • Wang J., Zohar R., McCulloch C.A. (2006). Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp Cell Res 312: 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Wang J.H., Thampatty B.P. (2006). An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Wei K., Che N., Chen F. (2007). Myocardin-related transcription factor B is required for normal mouse vascular development and smooth muscle gene expression. Dev Dyn 236: 416–425.

    Article  PubMed  CAS  Google Scholar 

  • Wu K.J., Yee A., Zhu N.L., Gordon E.M., Hall F.L. (2000). Characterization of differential gene expression in monkey arterial neointima following balloon catheter injury. Int J Mol Med 6: 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Wu X., Tu X., Joeng K.S., Hilton M.J., Williams D.A., Long F. (2008). Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133: 340–353.

    Article  PubMed  CAS  Google Scholar 

  • Xia W., Kong W., Wang Z., Phan T.T., Lim I.J., Longaker M.T., Yang G.P. (2007). Increased CCN2 transcription in keloid fibroblasts requires cooperativity between AP-1 and SMAD binding sites. Ann Surg 246: 886–895.

    Article  PubMed  Google Scholar 

  • Yamaguchi O. (2004). Response of bladder smooth muscle cells to obstruction: signal transduction and the role of mechanosensors. Urology 63: 11–16.

    Article  PubMed  Google Scholar 

  • Yang R., Amir J., Liu H., Chaqour B. (2008). Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 36: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y., Togi K., Matsumae H., Nakashima Y., Kojima Y., Yamamoto H., Ono K., Nakamura T., Kita T., Tanaka M. (2007). CCN1 protects cardiac myocytes from oxidative stress via beta1 integrin-Akt pathway. Biochem Biophys Res Commun 355: 611–618.

    Article  PubMed  CAS  Google Scholar 

  • Young K.G., Copeland J.W. (2008). Formins in cell signaling. Biochim Biophys Acta 1016: 4–12.

    Google Scholar 

  • Zerlin M., Julius M.A., Kitajewski J. (2008). Wnt/Frizzled signaling in angiogenesis. Angiogenesis 11: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Zhou D., Herrick D.J., Rosenbloom J., Chaqour B. (2005). Cyr61 mediates the expression of VEGF, alphav-integrin, and alpha-actin genes through cytoskeletally based mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol 98: 2344–2354.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH/National Institute of Diabetes Digestive and Kidney Diseases, R01DK060572, 1R21EY019387-01A1, R56DK60572 (to B. C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Chaqour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hanna, M., Chaqour, B. (2010). The CCN Genes as the “Master” Regulators of Angiogenesis, Vasculogenesis, Fibrogenesis and Cell Differentiation/Fate Specification in Mechanical Force-Driven Developmental Processes and Pathological Events. In: Perbal, A., Takigawa, M., Perbal, B. (eds) CCN Proteins in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3779-4_5

Download citation

Publish with us

Policies and ethics