Skip to main content

Tunnel Magnetoresistance Effect in Tunnel Junctions with Co2MnSi Heusler Alloy Electrode and MgO Barrier

  • Chapter
Spintronics

Abstract

We demonstrated that a large TMR ratio of 753 % has been observed at 2 K in a MTJ using a Co2MnSi Heusler alloy electrode and a crystalline MgO tunnel barrier. At room temperature (RT), we also have observed a large TMR ratio of 217 %, which value at RT is much larger than that of MTJs using an amorphous Al-oxide tunnel barrier. However, the temperature dependence of the TMR ratio was still large. In order to improve the interface, we investigated the TMR effect in Co2MnSi/CoFeB(0–2 nm)/MgO/CoFe MTJs. TMR ratio was enhanced by inserting a thin CoFeB layer at the Co2MnSi/MgO interface. The MTJ with CoFeB thickness of 0.5 nm exhibited the highest TMR ratio. From the conductance–voltage measurements for the fabricated MTJs, we inferred that the highly spin polarized electron created in Co2MnSi can conserve the polarization through the 0.5 nm thick FeB layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galanakis I (2002) J Phys Condens Matter 14:6329

    Article  CAS  Google Scholar 

  2. Picozzi S, Continenza A, Freeman AJ (2002) Phys Rev B 66:094421

    Article  Google Scholar 

  3. Wurmehl S, Fecher GH, Kroth K, Kronast F, Dürr H, Takeda Y, Saitoh Y, Kobayashi K, Lin HJ, Schönhense G, Felser C (2006) J Phys D, Appl Phys 39:803

    Article  CAS  Google Scholar 

  4. Tanaka CT, Nowak J, Moodera JS (1999) J Appl Phys 86:6239

    Article  CAS  Google Scholar 

  5. Inomata K, Okamura S, Goto R, Tezuka N (2003) Jpn J Appl Phys 42:L419

    Article  CAS  Google Scholar 

  6. Kubota H, Nakata J, Oogane M, Ando Y, Sakuma A, Miyazaki T (2004) Jpn J Appl Phys 43:L984

    Article  CAS  Google Scholar 

  7. Conca A, Falk S, Jakob G, Jourdan M, Adrian H (2004) J Magn Magn Mater 290–291:1127

    Google Scholar 

  8. Kämmerer S, Thomas A, Hütten A, Reiss G (2004) Appl Phys Lett 85:79

    Article  Google Scholar 

  9. Sakuraba Y, Nakata J, Oogane M, Kubota H, Ando Y, Sakuma A, Miyazaki T (2005) Jpn J Appl Phys 2(44):L1100

    Article  Google Scholar 

  10. Sakuraba Y, Hattori M, Oogane M, Kubota H, Ando Y, Sakuma A, Telling PKND, van der Laan G, Arenholz E, Hicken RJ, Miyazaki T (2007) J Magn Soc Jpn 31:209

    Article  Google Scholar 

  11. Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Appl Phys Lett 88:192508

    Article  Google Scholar 

  12. Julliere M (1975) Phys Lett 54A:225

    CAS  Google Scholar 

  13. Butler WH, Zhang XG, Schulthess TC, MacLaren JM (2001) Phys Rev B 63:054416

    Article  Google Scholar 

  14. Mathon J, Umerski A (2001) Phys Rev B 63:220403

    Article  Google Scholar 

  15. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Nat Mater 3:868

    Article  CAS  Google Scholar 

  16. Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Appl Phys Lett 93:082508

    Article  Google Scholar 

  17. Ishikawa T, Hakamata S, Matsuda K, Umemura T, Yamamoto M (2008) J Appl Phys 103:07919

    Article  Google Scholar 

  18. Tezuka N, Ikeda N, Sugimoto S, Inomata K (2007) Jpn J Appl Phys 2(46):L454

    Article  Google Scholar 

  19. Tezuka N, Ikeda N, Mitsuhashi F, Sugimoto S (2009) Appl Phys Lett 94:162504

    Article  Google Scholar 

  20. Miura Y, Uchida H, Oba Y, Nagao K, Shirai M (2007) J Phys Condens Matter 19:365228

    Article  Google Scholar 

  21. Tsunegi S, Sakuraba Y, Oogane M, Takanashi K, Ando Y (2008) Appl Phys Lett 93:112506

    Article  Google Scholar 

  22. Oogane M, Sakuraba Y, Nakata J, Kubota H, Ando Y, Sakuma A, Miyazaki T (2006) J Phys D 39:834

    CAS  Google Scholar 

  23. Hayakawa J, Ikeda S, Matsukura F, Takahashi H, Ohno H (2005) Jpn J Appl Phys 44:L587

    Article  CAS  Google Scholar 

  24. Hayakawa J, Ikeda S, Lee YM, Matsumura F, Ohno H (2006) Appl Phys Lett 89:232510

    Article  Google Scholar 

  25. Telling ND, Keatley PS, der Laan GV, Hicken RJ, Arenholz E, Sakuraba Y, Oogane M, Ando Y, Miyazaki T (2006) Phys Rev B 74:224439

    Article  Google Scholar 

  26. Matsumoto R, Nishioka S, Mizuguchi M, Shiraishi M, Maehara H, Tsunekawa K, Djayaprawira DD, Watanabe N, Otani Y, Nagahama T, Fukushima A, Kubota H, Yuasa S, Suzuki Y (2007) Solid State Commun 143:574

    Article  CAS  Google Scholar 

  27. Miao G, Chetry KB, Gupta A, Butler WH, Tsunekawa K, Djayaprawira DD, Xiao G (2006) J Appl Phys 99:08T305

    Article  Google Scholar 

  28. Ando Y, Miyakoshi T, Oogane M, Miyazaki T, Kubota H, Ando K, Yuasa S (2005) Appl Phys Lett 87:142502

    Article  Google Scholar 

  29. Sakuraba Y, Kubota H, Miyakoshi T, Oogane M, Ando Y, Sakuma A, Miyazaki T (2006) Appl Phys Lett 89:052508

    Article  Google Scholar 

  30. Zhang S, Levy PM, Marley AC, Parkin SS (1997) Phys Rev Lett 79:3744

    Article  CAS  Google Scholar 

  31. Takada I, Inoue J, Itoh H (2008) J Magn Soc Jpn 32:338

    Article  CAS  Google Scholar 

  32. Sakuma A, Toga Y, Tsuchiura H (2009) J Appl Phys 105:07C910

    Article  Google Scholar 

  33. Tsunegi S, Sakuraba Y, Oogane M, Naganuma H, Takanashi K, Ando Y (2009) Appl Phys Lett 94:252503

    Article  Google Scholar 

  34. Sakuraba Y, Hattori M, Oogane M, Kubota H, Ando Y, Sakuma A, Miyazaki T (2007) J Phys D, Appl Phys 40:1221

    Article  CAS  Google Scholar 

  35. Tsunegi S, Sakuraba Y, Oogane M, Takanashi K, Ando Y (2009) J Phys D, Appl Phys 42:195004

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all our collaborators in the DFG research unit FG 559. This work would be the result of efforts of all members. This study was supported by DFG FG 559 (project P12) and the Strategic Japanese–German Cooperative Program on Nanoelectronics by JST as the matching fund. Also, the part of this work was supported by the High-Performance Low-Power Consumption Spin Devices and Storage Systems program under Research and Development for Next-Generation Information Technology, and Grand-in-Aid for Scientific Research for Priority Area Creation and Control of Spin Current by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). This research was partly conducted at the Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ando, Y., Tsunegi, S., Sakuraba, Y., Oogane, M., Naganuma, H., Takanashi, K. (2013). Tunnel Magnetoresistance Effect in Tunnel Junctions with Co2MnSi Heusler Alloy Electrode and MgO Barrier. In: Felser, C., Fecher, G. (eds) Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3832-6_17

Download citation

Publish with us

Policies and ethics