Skip to main content

Local Structure of Highly Spin Polarised Heusler Compounds Revealed by Nuclear Magnetic Resonance Spectroscopy

  • Chapter
Spintronics

Abstract

A key tool in the rational design of spin polarised materials is the precise control of the relationships between structure and physical properties, such as between structure and magnetism or transport properties. Thus, a sophisticated and comprehensive characterisation is required in order to understand, tune and control the macroscopic properties of spin polarised materials towards optimised performance in spintronics devices. Nuclear magnetic resonance spectroscopy (NMR) probes the local environments of the active nuclei and is based on the interaction of the spin of a nucleus with the effective field present at the nucleus. The local character of NMR arises from local contributions to the hyperfine field, namely the transferred field which depends on the nearest neighbour atoms and their magnetic moments. This enables NMR to study structural properties of bulk samples as well as of thin films of spin polarised materials. Recent results confirmed that NMR is a very suitable tool to reveal structural contributions and foreign phases in spin polarised materials which are very difficult to detect with other methods like, e.g., conventional X-ray diffraction. In this chapter, recent NMR studies of the local structure of various Heusler compounds will be presented and the impact of the NMR results on their potential for spintronics will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in ferromagnetic materials, these energy levels are not degenerated even without application of a magnetic field due to the exchange interaction.

References

  1. Baibich MN, Brote JM, Fert A, Nyugen van Dau N, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J (1988) Phys Rev Lett 61:2472

    Article  CAS  Google Scholar 

  2. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Phys Rev B 39:4828

    Article  CAS  Google Scholar 

  3. Coey JMD, Venkatesan M, Bari MA (2002). In: Berthier C, Levy LP, Martinez G (eds) Lecture notes in physics, vol 595. Springer, Heidelberg, p 377

    Google Scholar 

  4. Prinz GA (1998) Science 282:1660

    Article  CAS  Google Scholar 

  5. Parkin LTSSP, Hayashi M (2008) Science 320:190

    Article  CAS  Google Scholar 

  6. Groot RAd, Müller FM, Engen PGv, Buschow KHJ (1983) Phys Rev Lett 50:2024

    Article  Google Scholar 

  7. Felser C, Fecher GH, Balke B (2007) Angew Chem, Int Ed Engl 46:668

    Article  CAS  Google Scholar 

  8. Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ, Morais J (2005) Phys Rev B 72:1844341

    Article  Google Scholar 

  9. Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ (2006) Appl Phys Lett 88:032503

    Article  Google Scholar 

  10. Orgassa D, Fujiwara H, Schulthess TC, Butler WH (1999) Phys Rev B 60:13237

    Article  CAS  Google Scholar 

  11. Block T, Carey MJ, Gurney BA, Jepsen O (2004) Phys Rev B 70:205114/1

    Article  CAS  Google Scholar 

  12. Miura Y, Nagao K, Shirai M (2004) Phys Rev B 69:144413

    Article  Google Scholar 

  13. Miura Y, Nagao K, Shirai M (2004) J Appl Phys 95:7225

    Article  CAS  Google Scholar 

  14. Fecher GH, Kandpal HC, Wurmehl S, Morais J, Lin HJ, Elmers HJ, Schönhense G (2005) J Phys Condens Matter 17:7237

    Article  CAS  Google Scholar 

  15. Balke B, Wurmehl S, Fecher GH, Felser C, Alves MCM, Bernardi F, Morais J (2007) Appl Phys Lett 90:172501

    Article  Google Scholar 

  16. Abragam A (1996) Principles of nuclear magnetism. Oxford University Press, Oxford

    Google Scholar 

  17. Schlichter CP (1963) Principles of magnetic resonance. Springer, Berlin

    Google Scholar 

  18. Panissod P (1986) In: Gonser U (ed) Nuclear magnetic resonance in topics in current physics: microscopic models in physics. Springer, Berlin

    Google Scholar 

  19. Panissod P (1997) In: Baryakhtar VG, Wigen PE, Lesnik NA (eds) NATO ASI series high tech, vol 48. Kluwer Academic, Dordrecht, p 225

    Google Scholar 

  20. Riedi PC, Thomson T, Tomka GJ (1999) In: Buschow KHJ (ed) Handbook of magnetic materials, vol 12. North-Holland, Amsterdam, p 97

    Google Scholar 

  21. Gladden LF (1994) Chem Eng Sci 49:3339

    Article  CAS  Google Scholar 

  22. Veeman WS (1997) Geoderma 80:225

    Article  CAS  Google Scholar 

  23. Wurmehl S, Kohlhepp J (2008) J Phys D, Appl Phys 41:173002 (Topical review)

    Article  Google Scholar 

  24. Wurmehl S, Kohlhepp J, Swagten H, Koopmans B, Wojcik M, Balke B, Blum C, Ksenofontov V, Fecher G, Felser C (2008) J Appl Phys 103:07D706

    Article  Google Scholar 

  25. Wurmehl S, Kohlhepp J, Swagten H, Koopmans B (2008) J Phys D, Appl Phys 41:115007

    Article  Google Scholar 

  26. Wojcik M, van Roy W, Jedryka E, Nadolski S, Borghs G, De Boeck J (2002) J Magn Magn Mater 240:414

    Article  CAS  Google Scholar 

  27. van Roy W, Wojcik M, Jedryka E, Nadolski S, Jalabert D, Brijs B, Borghs G, De Boeck J (2003) Appl Phys Lett 83:4214

    Article  Google Scholar 

  28. Wojcik M, Jedryka E, Nadolski S, Navarro J, Rubi D, Fontcuberta J (2004) Phys Rev B 69:100407

    Article  Google Scholar 

  29. Wojcik M, Jedryka E, Nadolski S, Rubi D, Frontera C, Fontcuberta J, Jurca B, Dragoe N, Berthet P (2005) Phys Rev B 71:104410

    Article  Google Scholar 

  30. Wieldraaijer H, de Jonge WJM, Kohlhepp JT (2005) Phys Rev B 72:155409

    Article  Google Scholar 

  31. Wieldraaijer H, de Jonge WJM, Kohlhepp JT (2005) J Magn Magn Mater 286:390

    Article  CAS  Google Scholar 

  32. Wojcik M, Jedryka E, Skorvanek I, Svec P (2005) J Magn Magn Mater 290–291:1431

    Article  Google Scholar 

  33. Wojcik M, Jedryka E, Skorvanek I, Marcin J, Svec P (2006) J Magn Magn Mater 304:e712

    Article  CAS  Google Scholar 

  34. Gossard AC, Portis AM (1959) Phys Rev Lett 3:164

    Article  CAS  Google Scholar 

  35. Portis AM, Gossard AC (1960) J Appl Phys 31:205

    Article  Google Scholar 

  36. Niculescu VA, Budnick JI, Hines W, Raj K, Pickart S, Skalski S (1979) Phys Rev B 19:452

    Article  CAS  Google Scholar 

  37. Niculescu VA, Burch TJ, Budnick JI (1983) J Magn Magn Mater 39:223

    Article  CAS  Google Scholar 

  38. Khoi LD, Veillet P, Campell IA (1978) J Phys F, Met Phys 8:1811

    Article  Google Scholar 

  39. Kandpal HC, Ksenofontov V, Wojcik M, Seshadri R, Felser C (2006) J Phys D, Appl Phys 40:1587

    Article  Google Scholar 

  40. Wolter AUB, Bosse A, Baabe D, Maksimov I, Mienert D, Klauß HH, Litterst FJ, Niemeier D, Michalak R, Geibel C, Feyerherm R, Hendrikx R, Mydosh JA, Süllow S (2002) Phys Rev B 66:174428

    Article  Google Scholar 

  41. Nishihara H, Kanomata T, Furutani Y, Igarashi T, Koyama K, Goto T (2006) Phys Status Solidi 3:2779

    Article  CAS  Google Scholar 

  42. Ksenofontov V, Melnyk G, Wojcik M, Wurmehl S, Kroth K, Reimann S, Blaha P, Felser C (2006) Phys Rev B 74:134426

    Article  Google Scholar 

  43. Inomata K, Okamura S, Miyazaki A, Tezuka N, Wojcik M, Jedryka E (2006) J Phys D, Appl Phys 39:816

    Article  CAS  Google Scholar 

  44. Wurmehl S, Kohlhepp J, Swagten H, Koopmans B, Wojcik M, Balke B, Blum C, Ksenofontov V, Fecher G, Felser C (2007) Appl Phys Lett 91:052506

    Article  Google Scholar 

  45. Inomata K, Wojcik M, Jedryka E, Ikeda N, Tezuka N (2008) Phys Rev B 77:214425

    Article  Google Scholar 

  46. Wurmehl S, Kohlhepp J, Swagten H, Koopmans B, Blum C, Ksenofontov V, Schneider H, Jakob G, Ebke D, Reiss G (2009) J Phys D, Appl Phys 42:084017

    Article  Google Scholar 

  47. Lue CS, Ross JHR Jr. (2001) Phys Rev B 63:054420

    Article  Google Scholar 

  48. Lue CS, Ross JH Jr., Rathnayaka KDD, Naugle DG, Wu SY, Li WH (2001) J Phys Condens Matter 13:17968

    Article  Google Scholar 

  49. Kuhns P, Hoch MJR, Reyes AP, Moulton WG, Wang L, Leighton C (2006) Phys Rev Lett 96:167208

    Article  CAS  Google Scholar 

  50. Lue CS, Chen CF, Chiang FK, Chu MW (2009) Phys Rev B 80:174202

    Article  Google Scholar 

  51. Balke B, Fecher GH, Kandpal HC, Felser C, Kobayashi K, Ikenaga E, Kim JJ, Ueda S (2006) Phys Rev B 74:104405

    Article  Google Scholar 

  52. Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Appl Phys Lett 69:1966

    Article  CAS  Google Scholar 

  53. Ooiwa K, Endo K, Shinogi A (1992) J Magn Magn Mater 104–107:2011

    Article  Google Scholar 

  54. Balke B, Fecher GH, Felser C (2007) Appl Phys Lett 90:242503

    Article  Google Scholar 

  55. Maat S, Carey MJ, Childress JR (2007) J Appl Phys 101:093905

    Article  Google Scholar 

  56. Wurmehl S, Jacobs PJ, Kohlhepp JT, Swagten HJM, Koopmans B, Maat S, Carey MJ, Childress JR (2011) Appl Phys Lett 98:012506

    Article  Google Scholar 

  57. Blum CGF, Jenkins C, Barth J, Felser C, Wurmehl S, Friemel G, Hess C, Behr G, Büchner B, Reller A, Riegg S, Ebbinghaus SG, Ellis T, Jacobs PJ, Kohlhepp JT, Swagten HJM (2009) Appl Phys Lett 95:161903

    Article  Google Scholar 

  58. Sakuraba Y, Miyakoshi T, Oogane M, Ando Y, Sakuma A, Miyazaki T, Kubota H (2006) Appl Phys Lett 89:052508

    Article  Google Scholar 

  59. Galanakis I (2002) J Phys Condens Matter 14:6329

    Article  CAS  Google Scholar 

  60. Tobola J, Piere J (2000) J Alloys Compd 296:243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W. de Jonge, B. Koopmans, H.J.M. Swagten, T. Ellis, P.J. Jacobs, M. Wojcik, V. Ksenofontov, G.H. Fecher, C. Felser, C.G.F. Blum, G. Jakob, H. Schneider, D. Ebke, G. Reiss, B. Balke, S. Maat, M.J. Carey and J.R. Childress for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Wurmehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wurmehl, S., Kohlhepp, J.T. (2013). Local Structure of Highly Spin Polarised Heusler Compounds Revealed by Nuclear Magnetic Resonance Spectroscopy. In: Felser, C., Fecher, G. (eds) Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3832-6_9

Download citation

Publish with us

Policies and ethics