Skip to main content

Chapter 12 The Anionic Chloroplast Membrane Lipids: Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Four polar lipids provide the basic building blocks for the membranes of chloroplasts of all plants and cyanobacteria: the two galactolipids mono-and digalactosyldiacylglycerol, the sulfolipid sulfoquinovosyldiacylglycerol, and the phospholipid phosphatidylglycerol. All four lipids are glycerolipids with a diacylglycerol backbone, but only one is a phosphoglycerolipid. While the two galactolipids are not charged at biological pH, the sulfolipid and phospholipid carry a negative charge. The focus here is on the two chloroplast anionic lipids. Enzymes involved in their assembly are well described and are localized in the chloroplasts. Mutants affecting the biosynthesis of one or both anionic lipids of the model plant Arabidopsis thaliana, the unicellular algae Chlamydomonas reinhardtii or different cyanobacteria are available providing tools for the functional analysis of these lipids. This genetic analysis has shown that sulfolipid can substitute to some extent for phosphatidylglycerol under phosphate limiting growth conditions, when plants replace phospholipids with non-phosphorous glycolipids. However, phosphatidylglycerol mutants have a much more severe phenotype than sulfolipid mutants suggesting specific roles for phosphatidylglycerol in the photosynthetic membrane that cannot be filled by the sulfolipid. Double mutant analysis suggests that the net negative charge of the photosynthetic membrane is critical for proper function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

acyl carrier protein

Acyl-ACP:

acyl-acyl carrier protein

APR:

adenosylphosphosulfate reductase

APS:

adenosylphosphosulfate

ATP:

adenosine triphosphate

ATS:

ATP-sulfurylase

ATS1:

acyl-ACP:glycerol 3-phosphate acyltransferase

ATS2:

acyl-ACP:lysophosphatidic acid acyltransferase

CDP-DAG:

CDP-diacylglycerol

CDS:

CDP-DAG synthetase

DAG:

diacylglycerol

ER:

endoplasmic reticulum

FAS:

fatty acid synthase

Fd-GOGAT:

ferredoxin-dependent glutamate synthase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

iE:

inner envelope

oE:

outer envelope

pCDS:

plastid CDP-diacylglycerol synthetase

PGP1:

phosphatidylglycerol phosphate synthase

pGPAT:

plastid glycerolphosphate acyltransferase

PGPP:

phosphatidylglycerol phosphate phosphatase

pLPAAT:

plastid lysophosphatidic acid acyltransferase

PPi:

orthophosphate

PtdGro:

phosphatidylglycerol

PtdGroP:

phosphatidylglycerol phosphate

PtdOH:

phosphatidic acid

SQD1:

UDP-SQ synthase

SQD2:

SQDG synthase

SQDG:

sulfoquinovosyldiacylglycerol

SO 3 :

sulfite

Thy:

thylakoid membrane

TLC:

thin-layer chromatography

UDP-Glc:

UDP-glucose

UDP-SQ:

UDP-sulfoquinovose

References

  • Aoki M, Sato N, Meguro A and Tsuzuki M (2004) Differing involvement of sulfoquinovosyl diacylglycerol in photosystem II in two species of unicellular cyanobacteria. Eur J Biochem 271: 685–693

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Xu C, Lu B and Benning C (2006) Lipid trafficking between the endoplasmic reticulum and the chloroplast. Biochem Soc Trans 34: 395–398

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk E, Müller F, Eubel H, Braun HP, Frentzen M and Kushnir S (2003) Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33: 899–909

    Article  PubMed  CAS  Google Scholar 

  • Barber J and Gounaris K (1986) What role does sulfolipid play within the thylakoid membrane? Photosynth Res 9: 239–249

    Article  CAS  Google Scholar 

  • Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y and Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132: 681–697

    Article  PubMed  CAS  Google Scholar 

  • Benning C (2007) Questions remaining in sulfolipid biosynthesis: a historical perspective. Photosynth Res 92: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Benning C and Somerville CR (1992a) Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter sphaeroides. J Bacteriol 174: 6479–6487

    PubMed  CAS  Google Scholar 

  • Benning C and Somerville CR (1992b) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol 174: 2352–2360

    PubMed  CAS  Google Scholar 

  • Benning C, Beatty JT, Prince RC and Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90: 1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Huang ZH and Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Xu C and Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9: 241–247

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Garavito MR and Shimojima M (2008) Sulfolipid biosynthesis and function in plants. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur Metabolism in Phototrophic Organism, Series Govindjee, ed., Advances in Photosynthesis and Respiration, Chapter 10. Springer, Dordrecht, Netherlands, pp. 189–204

    Google Scholar 

  • Benson AA and Maruo B (1958) Plant phospholipids. Identification of the phosphatidyl glycerols. Bichim Biophys Acta 27: 189–195

    Article  CAS  Google Scholar 

  • Benson AA, Daniel H and Wiser R (1959) A sulfolipid in plants. Proc Natl Acad Sci USA 45: 1582–1587

    Article  PubMed  CAS  Google Scholar 

  • Browse J and Somerville CR (1994) Glycerolipids. In: Meyerowitz EM and Somerville CR (eds) Arabidopsis. Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 881–912

    Google Scholar 

  • Browse J, McCourt P and Somerville C (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227: 763–765

    Article  PubMed  CAS  Google Scholar 

  • Browse J, Warwick N, Somerville CR and Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the “16:3” plant Arabidopsis thaliana. Biochem J 235: 25–31

    PubMed  CAS  Google Scholar 

  • Cedergren RA and Hollingsworth RI (1994) Occurrence of sulfoquinovosyl diacylglycerol in some members of the family Rhizobiaceae. J Lipid Res 35: 1452–1461

    PubMed  CAS  Google Scholar 

  • Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T and Gombos Z (2004) Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134: 1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Droppa M, Horvath G, Hideg E and Frakas T (1995) The role of phospholipids in regulating photosynthetic electron transport activities: treatment of thylakoids with phospholipase C. Photosynthes Res 46: 287–293

    Article  CAS  Google Scholar 

  • Dubacq JP and Tremolieres A (1983) Occurrence and function of phosphatidylglycerol containing delta-3-trans-hexadecenoic acid in photosynthetic lamellae. Physiol Veg 21: 293–312

    CAS  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955

    Article  PubMed  CAS  Google Scholar 

  • Essigmann B, Hespenheide BM, Kuhn LA and Benning C (1999) Prediction of the active-site structure and NAD+ binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis. Arch Biochem Biophys 369: 30–41

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zahringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP and Heinz E (2007) Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282: 4613–4625

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Ajjawi I, Manoli III A, Sawin A, Xu C, Froehlich JE, Last RL and Benning C (2009) FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized desaturases. Plant J 60: 832–829

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Varkonyi Z, Hagio M, Iwaki M, Kovacs L, Masamoto K, Itoh S and Wada H (2002) Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone Q(B) in the photosystem II reaction center. Biochemistry 41: 3796–3802

    Article  PubMed  CAS  Google Scholar 

  • Gounaris K and Barber J (1985) Isolation and characterisation of a photosytem II reaction center lipoprotein complex. FEBS Lett 188: 68–72

    Article  CAS  Google Scholar 

  • Güler S, Seeliger A, Härtel H, Renger G and Benning C (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271: 7501–7507

    Article  PubMed  Google Scholar 

  • Güler S, Essigmann B and Benning C (2000) A cyanobacterial gene, sqdX, required for biosynthesis of the sulfolipid sulfoquinovosyldiacylglycerol. J Bacteriol 182: 543–545

    Article  PubMed  Google Scholar 

  • Hagio M, Gombos Z, Varkonyi Z, Masamoto K, Sato N, Tsuzuki M and Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124: 795–804

    Article  PubMed  CAS  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S and Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43: 1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Haines TH (1983) Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis. Proc Natl Acad Sci USA 80: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Heinz E and Roughan G (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Heinz E, Schmidt H, Hoch M, Jung KH, Binder H and Schmidt RR (1989) Synthesis of different nucleoside 5’-diphospho-sulfoquinovoses and their use for studies on sulfolipid biosynthesis in chloroplasts. Eur J Biochem 184: 445–453

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Prytulla S, Kuhlbrandt W and Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13: 3423–3429

    PubMed  CAS  Google Scholar 

  • Hobe S, Forster R, Klingler J and Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34: 10224–10228

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki O, Nishida I, Agata K, Eguchi G and Murata N (1988) Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Lett 238: 424–430

    Article  PubMed  CAS  Google Scholar 

  • Jordan B, Chow W-S and Baker A (1983) The role of phospholipids in the molecular organisation of pea chloroplasts: effect of phospholipid depletion on photosynthetic activities. Bichim Biophys Acta 725: 77–86

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt H, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosytem I at 2.5 A resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kim HU and Huang AH (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134: 1206–1216

    Article  PubMed  CAS  Google Scholar 

  • Kinney AJ (1993) Phospholipid head groups. In: Moore TS (ed) Lipid Metabolism in Plants. CRC Press, Boca Raton, FL, pp. 259–284

    Google Scholar 

  • Kopka J, Ludewig M and Muller-Rober B (1997) Complementary DNAs encoding eukaryotic-type cytidine-5’-diphosphate- diacylglycerol synthases of two plant species. Plant Physiol 113: 997–1002

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot (Lond) 97: 479−495

    Article  CAS  Google Scholar 

  • Kunst L, Browse J and Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol 3-phosphate acyltransferase activity. Proc Natl Acad Sci USA 85: 4143–4147

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J and Benson AA (1964) The plant sulfolipid. IX. Sulfosugar syntheses from methyl hexoseenides. J Am Chem Soc 86: 4469–4472

    Article  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA and Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51: 141–165

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438: 1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta 1767: 509–519

    Article  PubMed  CAS  Google Scholar 

  • Lykidis A (2007) Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog Lipid Res 46: 171–199

    Article  PubMed  CAS  Google Scholar 

  • McCourt P, Browse J, Watson J, Arntzen CJ and Somerville CR (1985) Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol 78: 853–858

    Article  PubMed  CAS  Google Scholar 

  • Menke W, Radunz A, Schmid GH, Koenig F and Hirtz RD (1976) Intermolecular interactions of polypeptides and lipids in the thylakoid membrane. Z Naturforsch [C] 31: 436–444

    Google Scholar 

  • Minoda A, Sato N, Nozaki H, Okada K, Takahashi H, Sonoike K and Tsuzuki M (2002) Role of sulfoquinovosyl diacylglycerol for the maintenance of photosystem II in Chlamydomonas reinhardtii. Eur J Biochem 269: 2353–2358

    Article  PubMed  CAS  Google Scholar 

  • Minoda A, Sonoike K, Okada K, Sato N and Tsuzuki M (2003) Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Lett 553: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Mongrand S, Besoule J-J, Cabantous F and Cassagne C (1998) The C16:3/C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49: 1049–1064

    Article  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z and Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Mulichak AM, Theisen MJ, Essigmann B, Benning C and Garavito RM (1999) Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc Natl Acad Sci USA 96: 13097–13102

    Article  PubMed  CAS  Google Scholar 

  • Müller F and Frentzen M (2001) Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. FEBS Lett 509: 298–302

    Article  PubMed  Google Scholar 

  • Murata N (1983) Molecular species composition of phosphatidyglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 24: 476–479

    Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y and Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713

    Article  CAS  Google Scholar 

  • Nishida I and Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of memrbane lipids. Ann Rev Plant Physiol 47: 568

    Google Scholar 

  • Nishida I, Tasaka Y, Shiraishi H and Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol 3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21: 267–277

    Article  PubMed  CAS  Google Scholar 

  • Nussberger S, Dorr K, Wang DN and Kuhlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K, Tanaka H, Matsuda F, Hirai A, Hirai MY, Ohta H and Saito K (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21: 892–909

    Google Scholar 

  • Pick U, Gounaris K, Weiss M and Barber J (1985) Tightly bound sulfolipids in chloroplast CF0-CF1. Biochim Biophys Acta 808: 415–420

    Article  CAS  Google Scholar 

  • Pick U, Weiss M, Gounaris K and Barber J (1987) The role of different thylakoid glycolipids in the function of reconstituted chloroplast ATP synthase. Biochim Biophys Acta 891: 28–39

    Article  CAS  Google Scholar 

  • Pineau B, Girard-Bascou J, Eberhard S, Choquet Y, Tremolieres A, Gerard-Hirne C, Bennardo-Connan A, Decottignies P, Gillet S and Wollman FA (2004) A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii. Eur J Biochem 271: 329–338

    Article  PubMed  CAS  Google Scholar 

  • Pugh CE, Roy AB, Hawkes T and Harwood JL (1995) A new pathway for the synthesis of the plant sulpholipid, sulphoquinovosyldiacylglycerol. Biochem J 309: 513–519

    PubMed  CAS  Google Scholar 

  • Radunz A and Schmid GH (1992) Binding of lipids onto polypeptides of the thylakoid membrane I. Galactolipids and sulpholipid as prosthetic groups of core peptides of the photosystem II complex. Z Naturforsch [C ] 47: 406–415

    Google Scholar 

  • Riekhof WR, Ruckle ME, Lydic TA, Sears BB and Benning C (2003) The sulfolipids 2’-O-acyl-sulfoquinovosyldiacylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. Plant Physiol 133: 864–874

    Article  PubMed  CAS  Google Scholar 

  • Rossak M, Tietje C, Heinz E and Benning C (1995) Accumulation of UDP-sulfoquinovose in a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Biol Chem 270: 25792–25797

    Article  PubMed  CAS  Google Scholar 

  • Rossak M, Schäfer A, Xu N, Gage DA and Benning C (1997) Accumulation of sulfoquinovosyl-1-O-dihydroxyacetone in a sulfolipid- deficient mutant of Rhodobacter sphaeroides inactivated in sqdC. Arch Biochem Biophys 340: 219–230

    Article  PubMed  CAS  Google Scholar 

  • Roughan PG and Slack CR (1982) Cellular organization of glycerolipid metabolism. Ann Rev Plant Physiol 33: 97–132

    Article  CAS  Google Scholar 

  • Roughan PG, Holland R and Slack CR (1980) The role of chloroplasts and microsomal fractions in polar-lipid synthesis from [1-14C]acetate by cell-free preparations from spinach (Spinacia oleracea) leaves. Biochem J 188: 17–24

    PubMed  CAS  Google Scholar 

  • Sakurai I, Hagio M, Gombos Z, Tyystjarvi T, Paakkarinen V, Aro EM and Wada H (2003) Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol 133: 1376–1384

    Article  PubMed  CAS  Google Scholar 

  • Sanda S, Leustek T, Theisen M, Garavito M and Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941–3946

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Tsuzuki M, Matsuda Y, Ehara T, Osafune T and Kawaguchi A (1995) Isolation and characterization of mutants affected in lipid metabolism of Chlamydomonas reinhardtii. Eur J Biochem 230: 987–993

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Hagio M, Wada H and Tsuzuki M (2000a) Environmental effects on acidic lipids of thylakoid membranes. Biochem Soc Trans 28: 912–914

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Hagio M, Wada H and Tsuzuki M (2000b) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97: 10655–10660

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Aoki M, Maru Y, Sonoike K, Minoda A and Tsuzuki M (2003) Involvement of sulfoquinovosyl diacylglycerol in the structural integrity and heat-tolerance of photosystem II. Planta 217: 245–251

    PubMed  CAS  Google Scholar 

  • Sato N, Suda K and Tsuzuki M (2004) Responsibility of phosphatidylglycerol for biogenesis of the PSI complex. Biochim Biophys Acta 1658: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Seifert U and Heinz E (1992) Enzymatic characteristics of UDP-sulfoquinovose:diacylglycerol sulfoquinovosyltranferase from chloroplast envelopes. Bot Acta 105: 197–205

    CAS  Google Scholar 

  • Seras M, Garnier J, Tremolieres A and Guyon D (1989) Lipid biosynthesis in cells of the wild-type and of 2 photosynthesis mutants of Chlamydomonas reinhardtii. Plant Physiol Biochem 27: 393–399

    CAS  Google Scholar 

  • Shimojima M and Benning C (2003) Native uridine 5’-diphosphate-sulfoquinovose synthase, SQD1, from spinach purifies as a 250-kDa complex. Arch Biochem Biophys 413: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Shimojima M, Hoffmann-Benning S, Garavito RM and Benning C (2005) Ferredoxin-dependent glutamate synthase moonlights in plant sulfolipid biosynthesis by forming a complex with SQD1. Arch Biochem Biophys 436: 206–214

    Article  PubMed  CAS  Google Scholar 

  • Sigrist M, Zwillenberg C, Giroud CH, Eicehnberger W and Boschetti A (1988) Sulfolipid associated with the light harvesting complex associated with photosytem II apoproteins of Chlamydomonas reinhardtii. Plant Sci 58: 15–23

    Article  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Szalontai B, Kota Z, Nonaka H and Murata N (2003) Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry 42: 4292–4299

    Article  PubMed  CAS  Google Scholar 

  • Van Mooy BA, Rocap G, Fredricks HF, Evans CT and Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103: 8607–8612

    Article  PubMed  Google Scholar 

  • Wada H and Murata N (2007) The essential role of phosphatidylglycerol in photosynthesis. Photosynth Res 92: 205–215

    Article  PubMed  CAS  Google Scholar 

  • Weissenmayer B, Geiger O and Benning C (2000) Disruption of a gene essential for sulfoquinovosyldiacylglycerol biosynthesis in Sinorhizobium meliloti has no detectable effect on root nodule symbiosis. Mol Plant Microbe Interact 13: 666–672

    Article  PubMed  CAS  Google Scholar 

  • Wolter FP, Schmidt R and Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11: 4685–4692

    PubMed  CAS  Google Scholar 

  • Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C and Benning C (2002) The pgp1 locus of Arabidopsis encodes a phosphatidylglycerol synthase with impaired activity. Plant Physiol 129: 594–604

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Cornish AJ, Froehlich JE and Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J 47: 296–309

    Article  PubMed  CAS  Google Scholar 

  • Yu B and Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36: 762–770

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Xu C and Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99: 5732–5737

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Wakao S, Fan J and Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45: 503–510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work on membrane lipid biosynthesis and the regulation of thylakoid lipid biosynthesis in the Benning lab has been supported in part by grants from the U.S. National Science Foundation and the U.S. Department of Energy.

Note: (1) The FAD4 gene of Arabidopsis encoding the missing fatty acid transdesaturase or a component thereof was recently isolated (Gao et al., 2009); and (2) The gene for a plastid UDP-glucose pyrophosphorylase, essential for sulfolipid biosynthesis, was recently identified in Arabidopsis (Okazaki et al., 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Benning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Benning, C. (2010). Chapter 12 The Anionic Chloroplast Membrane Lipids: Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_12

Download citation

Publish with us

Policies and ethics