Skip to main content

Recycling of the Seaweed Wakame Through Degradation by Halotolerant Bacteria

  • Chapter
  • First Online:
Seaweeds and their Role in Globally Changing Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 15))

Abstract

A review on the recycling of seaweed by halotolerant bacteria was conducted for the cleaning of the marine environment. Planting of seaweed is effective in dealing with organic pollutants, especially N and P. Thus, the composting through recycling of seaweeds is supposed to be suitable, although their salinity is awkward in the composting process. The activity of inoculated bacteria decreased with the increase of salinity in wakame composting with Bacillus sp. HR6. On the contrary, halotolerant bacterium AW4, isolated, showed better degradation of wakame during composting than others that were examined. Degradation of alginate, which is the central component in wakame, is a key point in the recycling of seaweed. Thus, alginate-degrading bacterium A7 was isolated from the compost, by which alginate was successfully decomposed to 14.3% after 72 h of composting. The decomposition product of wakame by A7 sufficiently enhanced the relative root length of Komatsuna to 263.2%, suggesting that the applications of A7 to produce special fertilizer using seaweeds might be a meaningful way for preserving the seashore environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernal, M.P., Paredes, C., Sanchez-Monedero, M.A. and Cegarra, J. (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technol. 63: 91–99.

    Article  CAS  Google Scholar 

  • Cao, L.X., Xie, L.J., Xue, X.L., Tan, H.M., Liu, Y.H. and Zhou, S.N. (2007) Purification and characterization of alginate lyase from Streptomyces species strain A5 isolated from Banana Rhizosphere. J. Agric. Food Chem. 55: 5113–5117.

    Article  PubMed  CAS  Google Scholar 

  • Castlehouse, H., Smith, C., Raab, A., Deacon, C., Meharg, A.A. and Feldmann, J. (2003) Biotransformation and accumulation of arsenic in soil amended with seaweed. Environ. Sci. Technol. 37: 951–957.

    Article  PubMed  CAS  Google Scholar 

  • Eyras, M.C., Rostagno, C.M. and Defosse, G.E. (1998) Biological evaluation of seaweed composting. Compost Sci. Util. 6: 74–81.

    Google Scholar 

  • Fei, X.G. (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512: 145–151.

    Article  Google Scholar 

  • Iwamoto, Y., Araki, R., Iriyama, K., Oda, T., Fukuda, H., Hayashida, S. and Muramatsu, T. (2001) Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain no. 272 and its action on saturated oligomeric substrates. Biosci. Biotechnol. Biochem. 65: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki, K. and Matsubara, Y. (2000) Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci. Biotechnol. Biochem. 64: 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova, E.P., Bakunina, I.Y., Sawabe, T., Hayashi, K., Alexeeva, Y.V., Zhukova, N.V., Nicolau, D.V., Zvaygintseva, T.N. and Mikhailov, V.V. (2002) Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens. Microb. Ecol. 43: 242–249.

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto, H., Horibe, A., Miki, Y., Kimura, T., Tanaka, K., Nakagawa, T., Kawamukai, M. and Matsuda, H. (2006) Cloning and sequencing analysis of alginate lyase genes from the marine bacterium Vibrio sp. O2. J. Mar. Biotechnol. 8: 481–490.

    Article  CAS  Google Scholar 

  • Matsushima, K., Minoshima. H., Kawanami, H., Ikushima, Y., Nishizawa, M., Kawamukai, A. and Hara, K. (2005) Decomposition reaction of alginic acid using subcritical and supercritical water. Ind. Eng. Chem. Res. 44: 9626–9630.

    Article  CAS  Google Scholar 

  • Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  • Mimura, H., Maeda, K. and Nagata, S. (1999) Chromatographic analysis of bean curd refuse decomposed by Bacillus sp. HR6. Biocontrol Sci. 4: 23–26.

    Article  CAS  Google Scholar 

  • Mimura, H. and Nagata, S. (1999) Physiological characteristics of Bacillus sp. HR6 in the process of decomposing bean curd refuse. Biocontrol Sci. 4: 105–108.

    Article  Google Scholar 

  • Moen, E., Horn, S. and Ostgaard, K. (1997) Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes. J. Appl. Phycol. 9: 157-166.

    Article  CAS  Google Scholar 

  • Moen, E. and Ostgaard, K. (1997) Aerobic digestion of Ca-alginate gels studied as a model system of seaweed tissue degradation. J. Appl. Phycol. 9: 261–267.

    Article  CAS  Google Scholar 

  • Mormile, M.R., Romine, M.F., Garcia, T., Ventosa, A., Bailey, T.J. and Peyton, B.M. (1999) Halomonas campisalis sp nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst. Appl. Microbiol. 22: 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa, N., Mitomo, H., Yoshii, F. and Kume, T. (2000) Radiation-induced degradation of sodium alginate. Polym. Degrad. Stab. 69: 279–285.

    Article  CAS  Google Scholar 

  • Nagata, S. and Zhou, X. (2006) Analyses of factors to affect the bioassay system using luminescent bacterium Vibrio fischeri. J. Health Sci. 52: 9–16.

    Article  CAS  Google Scholar 

  • Ntougias, S., Zervakis, G..I., Ehaliotis, C., Kavroulakis, N. and Papadopoulou, K.K. (2006) Ecophysiology and molecular phylogeny of bacteria isolated from alkaline two-phase olive mill wastes. Res. Microbiol. 157: 376–385.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, M. and Critchley, A.T. (1993) Seaweed Cultivation and Marine Ranching, Kanagawa International Fisheries Training Center, Japan International Cooperation Agency (JICA), Tokyo.

    Google Scholar 

  • Schaumann, K. and Weide, G. (1990) Enzymatic degradation of alginate by marine fungi. Hydrobiologia 204/205: 589–596.

    Article  Google Scholar 

  • Skriptsova, A., Khomenko, V. and Isakov, V. (2004) Seasonal changes in growth rate, morphology and alginate content in Undaria pinnatifida at the northern limit in the Sea of Japan (Russia). J. Appl. Phycol. 16: 17–21.

    Article  CAS  Google Scholar 

  • Tang, J.C., Inoue, Y., Yasuta, T., Yoshida, S. and Katayama, A. (2003) Chemical and microbial properties of various compost products. Soil. Sci. Plant Nutr. 49: 273–280.

    Article  CAS  Google Scholar 

  • Tang, J.C., Wei, J.H., Maeda, K., Kawai, H., Zhou, Q., Hosoi-Tanabe, S. and Nagata, S. (2007) Degradation of seaweed wakame (Undaria pinnatifida) by composting process with inoculation of Bacillus sp. HR6. Biocontrol Sci. 12: 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Tang, J.C., Xiao, Y., Oshima, A., Kawai, H. and Nagata, S. (2008) Disposal of seaweed wakame (Undaria pinnatifida) in composting process by marine bacterium Halomonas sp. AW4. Int. J. Biotechnol. 10: 73–85.

    Article  Google Scholar 

  • Tiquia, S.M. and Tam, N.F.Y. (1998) Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technol. 65: 43–49.

    Article  CAS  Google Scholar 

  • Vendrame, W. and Moore, K.K. (2005) Comparison of herbaceous perennial plant growth in seaweed compost and biosolids compost. Compost Sci. Util. 13: 122–126.

    Google Scholar 

  • Ventosa, A., Nieto, J.J. and Oren, A. (1998) Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544.

    PubMed  CAS  Google Scholar 

  • Waino, M., Tindall, B.J., Schumann, P. and Ingvorsen, K. (1999) Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int. J. Syst. Bacteriol. 49: 821–831.

    Article  PubMed  CAS  Google Scholar 

  • Wong, T.Y., Preston, L.A. and Schiller, N.L. (2000) Alginate lyase: review of major sources and enzyme characteristics, structure–function analysis, biological roles, and applications. Ann. Rev. Microbiol. 54: 289–340.

    Article  CAS  Google Scholar 

  • Xu, X., Iwamoto, Y., Kitamura, Y., Oda, T. and Muramatsu, T. (2003) Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants. Biosci. Biotechnol. Biochem. 67: 2022–2025.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, N. (2001) Science of Seaweed Utilization. Seizando Press, Tokyo, Japan.

    Google Scholar 

  • Zhou, X., Okamura, H. and Nagata, S. (2006) Applicability of luminescent assay using fresh cells of Vibrio fischeri for toxicity evaluation. J. Health Sci. 52: 811–816.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Chun Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tang, JC., Taniguchi, H., Zhou, Q., Nagata, S. (2010). Recycling of the Seaweed Wakame Through Degradation by Halotolerant Bacteria. In: Seckbach, J., Einav, R., Israel, A. (eds) Seaweeds and their Role in Globally Changing Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8569-6_16

Download citation

Publish with us

Policies and ethics