Skip to main content

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 4))

Abstract

Organic farming is a sustainable agricultural system that respects and relies on natural ecological systems. Its principles exclude the use of synthetic pesticides and fertilizers. Instead it is based on management practices that sustain soil quality and health. Composting of organic residues and the use of compost in agriculture bring back plant nutrients and organic matter to the soil that otherwise would be lost. Nevertheless, there are some potential risks associated with compost use, such as the accumulation of heavy metals or organic pollutants, which must not be neglected. Some types of organic farms, such as stockless farms or vegetable farms, have difficulties sustaining soil humus using only organic farming sources. For such farms, using biowaste compost from separately collected organic household waste might be a solution, which in addition helps to close nutrient and organic matter loops of the whole society. Here we compile information on beneficial effects and potential risks associated with compost use and on crop yields and quality, with compost under an organic farming perspective. The most important benefit of using compost is the increase in soil organic matter (SOM). Under temperate climate conditions, 6–7 t ha−1 year−1 (dry wt.) compost is sufficient to maintain the soil humus level of medium-textured soils; higher rates increase the soil humus content. Regular compost addition enhances soil fauna and soil microbial biomass and stimulates enzyme activity, leading to increased mineralization of organic matter and improved resistance against pests and diseases, both features essential for organic farming. Through the significant increase in the soil’s content of organic carbon, compost fertilization may make agricultural soil a carbon sink and thus contribute to the mitigation of the greenhouse effect. Phosphorus and potassium in compost become nearly completely plant-available within a few years after compost application. The nitrogen-fertilizer value of compost is lower. In the first years of compost application, N mineralization may vary from −15% to +15%. Nitrogen recovery in the following years depends on the site- and cultivation-specific mineralization characteristics and will roughly be the same as that of soil organic matter (SOM). Soil cation exchange capacity (CEC) increases with compost use, improving nutrient availability. Moderate rates of compost of 6–7 t ha−1 year−1 dry wt. are sufficient to substitute regular soil liming. In the available micronutrient status of the soil, only minor changes are to be expected with high-quality composts. Increasing soil organic matter exerts a substantial influence on soil structure, improving soil physical characteristics such as aggregate stability, bulk density, porosity, available water capacity, and infiltration. Increased available water capacity may protect crops against drought stress. Plant-disease suppression through compost is well established in container systems. In field systems, the same processes involving the suppression of pathogens by a highly active microflora supported by the supply of appropriate organic matter are likely at work. When using high-quality composts, such as specified by the EU regulation 2092/91, the risk of heavy metal accumulation in the soil is very low. Nitrogen mineralization from compost takes place relatively slowly and there are virtually no reports of uncontrollable N-leaching. Concentrations of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), or polychlorinated dibenzodioxins and dibenzofurans (PCDD/F) in high-quality composts usually approach the usual soil background values. Also the overall hygiene and hygiene concerning plant diseases and weeds are not a problem if quality composts produced in a monitored system are used. Most studies found positive yield effects of biowaste compost. However, the effect of biowaste compost applied at moderate rates usually takes some years to develop. It depends on the factors determining nutrient mineralization from soil and compost and also on crop-related factors such as the nutrient requirements and uptake dynamics of the respective crop rotation. Crops with longer growth periods can make better use of compost. Many vegetable crops respond favorably to compost fertilization, often immediately after the first application. Crop quality is usually not affected by compost fertilization in cereals and slightly positively influenced in vegetable crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Google Scholar 

  • Alföldi T, Mäder P, Oberson A, Spiess E, Niggli U, Besson J-M (1993) DOK-Versuch: vergleichende Langzeit-Untersuchungen in den drei Anbausystemen biologisch-Dynamisch, Organisch-biologisch und Konventionell. III. Boden: Chemische Untersuchungen, 1. und 2. Fruchtfolge­periode. Schweizer Landwirtschaftl. Forschung 32(4):479–507

    Google Scholar 

  • Alin S, Xueyuan L, Kanamori T, Arao T (1996) Effect of long-term application of compost on some chemical properties of wheat rhizosphere and non-rhizosphere soils. Pedosphere 6:355–363

    Google Scholar 

  • Amlinger F, Götz B, Dreher P, Geszti J, Weissteiner C (2003a) Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability – a review. Eur J Soil Biol 39:107–116

    CAS  Google Scholar 

  • Amlinger F, Peyr S, Dreher P (2003b) Kenntnisstand zur Frage des Stickstoffaustrags in Kompost-Düngungssystemen. Endbericht. Bundesministerium für Land- u. Forstwirtschaft, Umwelt- und Wasserwirtschaft (Hrsg.)., Wien

    Google Scholar 

  • Amlinger F, Favoino E, Pollak M, Peyr S, Centemero M, Caima V (2004) Heavy metals and organic compounds from wastes used as organic fertilisers. Study on behalf of the European Commission, Directorate-General Environment, ENV.A.2

    Google Scholar 

  • Amlinger F, Peyr S, Geszti J, Dreher P, Weinfurtner K, Nortcliff S (2006) Evaluierung der nachhaltig positiven Wirkung von Kompost auf die Fruchtbarkeit und Produktivität von Böden. Literaturstudie. Bundesministerium für Land- u. Forstwirtschaft, Umwelt- und Wasserwirtschaft (Hrsg.)., Wien

    Google Scholar 

  • Asche E, Steffens D, Mengel K (1994) Düngewirkung und Bodenstruktureffekte durch den Einsatz von Bioabfallkompost auf landwirtschaftlichen Kulturflächen. VDLUFA-Schriftreihe Nr. 38. Kongreßband 1994:321–324

    Google Scholar 

  • Avnimelech Y, Cohen A (1993) Can we expect a consistent efficiency of municipal waste compost application? Compost Sci Utiliz 4(2):7–14

    Google Scholar 

  • Bartl B, Hartl W, Horak O (1999) Auswirkungen langjähriger Biotonnekompostdüngung und mineralischer NPK-Düngung auf den Spurenelementgehalt von Hafer, Dinkel und Kartoffel. In: Pfannhauser W., Sima A. (Hrsg.): Tagungsband der 15. Jahrestagung der Gesellschaft für Spurenelemente und Mineralstoffe. Graz, 1.-2. 10. 1999

    Google Scholar 

  • Bartl B, Hartl W, Horak O (2002) Long-term application of biowaste compost versus mineral fertilization: effects on the nutrient and heavy metal contents of soil and plants. J Plant Nutr Soil Sci 165:161–165

    CAS  Google Scholar 

  • Baziramakenga R, Simard R (2001) Effect of deinking paper sludge compost on nutrient uptake and yields of snap bean and potatoes grown in rotation. Compost Sci Utiliz 9:115–126

    Google Scholar 

  • Berner A, Scherrer D, Niggli U (1995) Effect of different organic manures and garden waste compost on the nitrate dynamics in soil, N uptake and yield of winter wheat. Biol Agric Hortic 11:289–300

    Google Scholar 

  • Boisch A (1997) Auswirkung der Biokompostanwendung auf Boden, Pflanzen und Sickerwasser an sechs Ackerstandorten in Norddeutschland. Hamburger Bodenkundliche Arbeiten Bd. 36

    Google Scholar 

  • Boisch A, Rubbert M, Goetz D (1993) Stickstoffhaushalt verschiedener Bodentypen bei der Anwendung von Biokompost. VDLUFA-Kongreßband 1993. VDLUFA-Schriftenr 37:621–624

    Google Scholar 

  • Brändli R, Bucheli T, Kupper T, Furrer R, Stahel W, Stadelmann F, Tarradellas J (2007a) Organic pollutants in compost and digestate. Part 1. Polychlorinated biphenyls, polycyclic aromatic hydrocarbons and molecular markers. J Environ Monit 9:456–464

    PubMed  Google Scholar 

  • Brändli R, Kupper T, Bucheli T, Zennegg M, Huber S, Ortelli D, Müller J, Schaffner C, Iozza S, Schmid P, Berger U, Edder P, Oehme M, Stadelmann F, Tarradellas J (2007b) Organic pollutants in compost and digestate. Part 2. Polychlorinated dibenzo-p-dioxins, and –furans, polychlorinated biphenyls, brominated flame retardants, perfluorinated alkyl substances, pesticides, and other compounds. J Environ Monit 9:465–472

    PubMed  Google Scholar 

  • Brandt M, Wildhagen H (1999) Netto-N-Mineralisation nach mehrjähriger ackerbaulicher Verwertung von Bioabfallkompost und Grünguthäcksel. Mitt Dt Bodenk Gesellsch 91:743–746

    Google Scholar 

  • Bruns C, Schüler C (2002) Suppressive effects of composted yard wastes against soil borne plant diseases in organic horticulture. In: Michel F, Rynk R, Hoitink H (eds) Composting and compost utilization, Proc. 2002 International Symposium, May 6–8, Columbus, OH

    Google Scholar 

  • Businelli M, Gigliotti G, Giusquiani P (1996) Trace element fate in soil profile and corn plant after massive applications of urban waste compost: a six-year study. Agrochimica 40:145–152

    CAS  Google Scholar 

  • Büyüksönmez F, Rynk R, Hess T, Bechinski E (2000) Occurrence, degradation and fate of pesticides during composting. Part II: Occurrence and fate of pesticides in compost and composting systems. Compost Sci Utiliz 8:61–81

    Google Scholar 

  • Cabrera F, Diaz E, Madrid L (1989) Effect of using urban compost as manure on soil contents of some nutrients and heavy metals. J Sci Food Agric 47:159–169

    CAS  Google Scholar 

  • Canali S, Trinchera A, Intrigliolo F, Pompili L, Nisini L, Mocali S, Alianello A, Torrisi B (2003) Effect of long term compost utilisation on soil quality of citrus orchards in southern Italy. In: Pullammanappallil P, McComb A, Diaz L, Bidlingmaier W (eds): ORBIT 2003 Organic Recovery and Biological Treatment, Proceedings of the 4th International Conference ORBIT Association on Biological Processing. Organics: Advances for a Sustainable Society, Perth, Australia, Murdoch University, Perth, Australia, 30 April–2 May 2003, pp 505–514

    Google Scholar 

  • Cegarra J, Paredes C, Roig A, Bernal M, Garcia D (1996) Use of olive mill wastewater compost for crop production. Int Biodeterior Biodegrad 38:193–203

    Google Scholar 

  • Chaney K, Swift RS (1986) Studies on aggregate stability. II. The effect of humic substances on the stability of re-formed soil aggregates. J Soil Sci 37:337–343

    CAS  Google Scholar 

  • Chodak M, Borken W, Ludwig B, Beese F (2001) Effect of temperature on the mineralization of C and N of fresh and mature compost in sandy material. J Plant Nutr Soil Sci 164:289–294

    CAS  Google Scholar 

  • Clark MS, Horwath WR, Shennan C, Scow KM (1998) Changes in soil chemical properties resulting from organic and low-input farming practices. Agron J 90:662–671

    Google Scholar 

  • Cook J, Keeling A, Bloxham P (1998) Effect of green waste compost on yield parameters in spring barley (Hordeum vulgare) v. Hart. Acta Hortic 469:283–286

    Google Scholar 

  • Cortellini L, Toderi G, Baldoni G, Nassisi A (1996) Effects on the content of organic matter, nitrogen, phosphorus and heavy metals in soil and plants after application of compost and sewage sludge. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 457–467

    Google Scholar 

  • Daamen R, Wijnands F, van der Vliet G (1989) Epidemics of diseases and pests of winter wheat at different levels of agrochemical input. J Phytopathol 125:305–319

    Google Scholar 

  • Darby H, Stone A, Dick R (2006) Compost and manure mediated impacts on soilborne pathogens and soil quality. Soil Sci Soc Am J 70:347–358

    CAS  Google Scholar 

  • De Toledo V, Lee H, Watt T, Lopez-Real J (1996) The use of dairy manure compost for maize production and its effect on soil nutrients, maize maturity and maize nutrition. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 1126–1129

    Google Scholar 

  • Diez T, Krauss M (1997) Wirkung langjähriger Kompostdüngung auf Pflanzenertrag und Bodenfruchtbarkeit. Agribiol Res 50:78–84

    CAS  Google Scholar 

  • Drinkwater L, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    CAS  Google Scholar 

  • Ebertseder T (1997) Qualitätskriterien und Einsatzstrategien für Komposte aus Bioabfall auf landwirtschaftlich genutzten Flächen. Dissertation TU München. Shaker Verlag, Aachen

    Google Scholar 

  • Ebertseder T, Gutser R, Claassen N (1997) Bioabfallkompost – Qualität und Anwendung in der Landwirtschaft. In: Gronauer A, Claassen N, Ebertseder T, Fischer P, Gutser R, Helm M, Popp L, Schön H (eds) Bioabfallkompostierung – Verfahren und Verwertung. Bayerisches Landesamt für Umweltschutz, Schriftenreihe Heft 139, pp 133–256

    Google Scholar 

  • Erhart E, Burian K (1997) Quality and suppressiveness of Austrian biowaste composts. Compost Sci Utiliz 5(3):15–24

    Google Scholar 

  • Erhart E, Feichtinger F, Hartl W (2007) Nitrogen leaching losses under crops fertilized with biowaste compost compared with mineral fertilization. J Plant Nutr Soil Sci 170:608–614

    CAS  Google Scholar 

  • Erhart E, Hartl W, Bartl B (2003) Auswirkungen von Kompostdüngung unter den Bedingungen des Biologischen Landbaus auf die Kaliumversorgung der Kulturpflanzen und den Kaliumgehalt des Bodens. In: Freyer B (Hrsg.): Ökologischer Landbau der Zukunft: Beiträge zur 7. Wissenschaftstagung zum Ökologischen Landbau, 24. - 26. 2. 2003 in Wien. Verlag Univ. f. Bodenkultur, Wien, pp 509–510

    Google Scholar 

  • Erhart E, Hartl W, Feichtinger F (2002) Nutrient contents in the soil profile after five years of compost fertilization versus mineral fertilization. In: Michel F, Rynk R, Hoitink H (eds) Composting and compost utilization. Proceedings of the 2002 International Symposium, Columbus, OH, May 6–8

    Google Scholar 

  • Erhart E, Hartl W, Putz B (2005) Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. Eur J Agron 23:305–314

    Google Scholar 

  • Erhart E, Hartl W, Putz B (2008) Total soil heavy metal contents and mobile fractions after 10 years of biowaste compost fertilization. J Plant Nutr Soil Sci 171:378–383

    CAS  Google Scholar 

  • EU Council Regulation No 2092/91 of 24 June 1991 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. Official Journal L 198, 22. 7. 1991, p. 1 ff

    Google Scholar 

  • Evanylo G, Sherony C (2002) Agronomic and environmental effects of compost use for sustainable vegetable production. Composting and compost utilization. In: International symposium, Columbus, OH, 6–8 May 2002

    Google Scholar 

  • Fischer M, Raupp J, Mäder P, Dubois D, Römheld V (2005) Micronutrient status in two long-term trials with fertilisation treatments and different cropping systems. In: Poster presented at the international conference on organic agriculture‚‘Researching Sustainable Systems’, Adelaide, Australia, 21–23 Sept 2005

    Google Scholar 

  • Fliessbach A, Hany R, Rentsch D, Frei R, Eyhorn F (2000) DOC trial: soil organic matter quality and soil aggregate stability in organic and conventional soils. In: Alföldi T, Lockeretz W, Niggli U (Hrsg.) Proceedings of the 13th international IFOAM scientific conference. vdf Hochschulverlag, Zürich, Switzerland

    Google Scholar 

  • Fliessbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768

    CAS  Google Scholar 

  • Fliessbach A, Oberholzer H-R, Gunst L, Mäder P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284

    Google Scholar 

  • von Fragstein P, Schmidt H (1999) External N sources in an organic stockless crop rotation – useful or useless additives? In: Olesen J, Eltun R, Gooding M, Jensen E, Köpke U (eds) Designing and testing of crop rotations for organic farming. Proceedings from an international workshop. Danish Research Centre for Organic Farming, Denmark, pp 203–212

    Google Scholar 

  • Frohne R (1990) Kompostdüngung als Meliorationsmaßnahme auf verdichteten Böden. In: Dott W, Fricke K, Oetjen R (eds) Biologische Verfahren der Abfallbehandlung. EF-Verlag für Energie und Umwelttechnik, Berlin

    Google Scholar 

  • Fuchs J (2002) Practical use of quality compost for plant health and vitality improvement. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer Berlin, pp 435–444

    Google Scholar 

  • Gagnon B, Simard R (1999) Nitrogen and phosphorus release from on-farm and industrial composts. Can J Soil Sci 79:481–489

    Google Scholar 

  • Gagnon B, Simard R, Robitaille R, Goulet M, Rioux R (1997) Effect of composts and inorganic fertilizers on spring wheat growth and N uptake. Can J Soil Sci 77:487–495

    Google Scholar 

  • Gagnon B, Simard R, Goulet M, Robitaille R, Rioux R (1998) Soil nitrogen and moisture as influenced by composts and inorganic fertilizer rate. Can J Soil Sci 78:207–215

    Google Scholar 

  • Giusquiani P, Pagliai M, Gigliotti G, Businelli D, Benetti A (1995) Urban waste compost: effects on physical, chemical, and biochemical soil properties. J Environ Qual 24:175–182

    CAS  Google Scholar 

  • Golueke CG (1975) Composting. A study of the process and its principles, 3rd edn. Rodale Press, Emmaus, PA

    Google Scholar 

  • Gray E, Tawhid A (1995) Effect of leaf mulch on seedling emergence, plant survival, and production of bush snap beans. J Sustain Agric 6:15–20

    Google Scholar 

  • Hadas A, Portnoy R (1997) Rates of decomposition in soil and release of available nitrogen from cattle manure and municipal waste compost. Compost Sci Utiliz 5(3):48–54

    Google Scholar 

  • Hartl W, Erhart E (2003) Long term fertilization with compost – effects on humus content and cation exchange capacity. Ecol Future, Bulgarian J Ecol Sci 2(3–4):38–42

    Google Scholar 

  • Hartl W, Erhart E (2005) Crop nitrogen recovery and soil nitrogen dynamics in a 10-year field experiment with biowaste compost. J Plant Nutr Soil Sci 168:781–788

    CAS  Google Scholar 

  • Hartl W, Erhart E, Bartl B, Horak O (2003) Beitrag von Biotonnekompost zur Phosphorversorgung in viehlosen biologisch wirtschaftenden Betrieben. In: Freyer B (Hrsg.) Ökologischer Landbau der Zukunft: Beiträge zur 7. Wissenschaftstagung zum Ökologischen Landbau, 24–26 Feb 2003 in Wien. Verlag University of Bodenkultur, Wien, pp 517–518

    Google Scholar 

  • Hartz T, Giannini C (1998) Duration of composting of yard wastes affects both physical and chemical characteristics of compost and plant growth. HortScience 33:1192–1196

    Google Scholar 

  • Haynes RJ (2000) Interactions between soil organic matter status, cropping history, method of quantification and sample pretreatment and their effects on measured aggregate stability. Biol Fertil Soils 30:270–275

    Google Scholar 

  • Haynes R, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 51:123–137

    Google Scholar 

  • He Z, Yang X, Kahn B, Stoffella P, Calvert D (2001) Plant nutrition benefits of phosphorus, potassium, calcium, magnesium, and micronutrients from compost utilization. In: Stoffella PJ, Kahn BA (eds) Compost utilization in horticultural cropping systems. Lewis Publishers, Boca Raton, FL, pp 307–320

    Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    PubMed  CAS  Google Scholar 

  • Hoitink H, Fahy P (1986) Basis for the control of soilborne plant pathogens with composts. Annu Rev Phytopathol 24:93–114

    Google Scholar 

  • Hoitink H, Krause M, Han D (2001) Spectrum and mechanisms of plant disease control with composts. In: Stoffella PJ, Kahn BA (eds) Compost utilization in horticultural cropping systems. Lewis Publishers, Boca Raton, FL, pp 263–273

    Google Scholar 

  • Hudson BD (1994) Soil organic matter and available water capacity. J Soil Water Conserv 49:189–194

    Google Scholar 

  • Hue N, Ikawa H, Silva J (1994) Increasing plant-available phosphorus in an ultisol with yard-waste compost. Commun Soil Sci Plant Anal 25:3291–3303

    CAS  Google Scholar 

  • Iglesias-Jimenez E, Alvarez C (1993) Apparent availability of nitrogen in composted municipal refuse. Biol Fertil Soils 16:313–318

    CAS  Google Scholar 

  • Illera V, Walter I, Cuevas G, Cala V (1999) Biosolid and municipal solid waste effects on physical and chemical properties of a degraded soil. Agrochimica 43:178–186

    CAS  Google Scholar 

  • Jakobsen ST (1996) Leaching of nutrients from pots with and without applied compost. Resour Conserv Recycl 17:1–11

    Google Scholar 

  • Kahle P, Belau L (1998) Modellversuche zur Prüfung der Verwertungsmöglichkeiten von Bioabfallkompost in der Landwirtschaft. Agribiol Res 51:193–200

    CAS  Google Scholar 

  • Khalilian A, Sullivan M, Mueller J, Shiralipour A, Wolak F, Williamson R, Lippert R (2002) Effects of surface application of MSW compost on cotton production – soil properties, plant responses, and nematode management. Compost Sci Utiliz 10:270–279

    Google Scholar 

  • Klasink A, Steffens G (1996) Grünkomposteinsatz in der Landwirtschaft - Ergebnisse aus einem Feldversuch. In: Braun C (ed) Sekundärrohstoffe im Stoffkreislauf der Landwirtschaft. VDLUFA Kongreßband 1996, VDLUFA-Verlag, Darmstadt, pp 385–388

    Google Scholar 

  • Kluge R, Mokry M (2000) Ist der produktionsbezogene Bodenschutz bei der landbaulichen Verwertung von Komposten zu gewährleisten? – Ergebnisse eines Forschungsprojektes aus Baden-Württemberg. Mitt Dt Bodenkundl Gesellsch 93:311–314

    Google Scholar 

  • Kolbe H (2007) Einfache Methode zur standortangepassten Humusbilanzierung von Ackerland unterschiedlicher Anbauintensität. In: Zikeli S, Claupein W, Dabbert S, Kaufmann B, Müller T, Valle Zárate A (Hrsg.) Zwischen Tradition und Globalisierung. Beiträge zur 9. Wissenschaftstagung Ökologischer Landbau. Universität Hohenheim, 20–23 March 2007. Verlag Dr. Köster, Berlin, pp 5–8

    Google Scholar 

  • Körschens M, Weigel A, Schulz E (1998) Turnover of soil organic matter (SOM) and long-term balances – tools for evaluating sustainable productivity of soils. Pflanzenernähr Bodenk 161:409–424

    Google Scholar 

  • Kromp B, Pfeiffer L, Meindl P, Hartl W, Walter B (1996) The effects of different fertilizer regimes on the populations of earthworms and beneficial arthropods found in a wheat field. In: IOBC/WPRS-Bulletin 19(11) Working group meeting “Integrated control in field vegetable crops”, 6–8 Nov 1995, Giutte, France, pp 184–190

    Google Scholar 

  • Lalande R, Gagnon B, Simard R (1998) Microbial biomass C and alkaline phosphatase activity in two compost amended soils. Can J Soil Sci 78:581–587

    CAS  Google Scholar 

  • Leclerc B, Georges P, Cauwel B, Lairon D (1995) A five year study on nitrate leaching under crops fertilised with mineral and organic fertilisers in lysimeters. In: International workshop on nitrogen leaching in ecological agriculture. Biol Agric Hortic 11:301–308

    Google Scholar 

  • Leithold G, Hülsbergen K-J, Michel D, Schönmeier H (1997) Humusbilanzierung – Methoden und Anwendung als Agrar-Umweltindikator. In: DBU (Deutsche Bundesstiftung Umwelt, ed) Umweltverträgliche Pflanzenproduktion – Indikatoren, Bilanzierungsansätze und ihre Einbindung in Ökobilanzen. Fachtagung, 11–12 July 1996, Wittenberg. Zeller Verlag, Osnabrück

    Google Scholar 

  • Lewis J, Lumsden R, Milner P, Keinath A (1992) Suppression of damping-off of peas and cotton in the field with composted sewage sludge. Crop Prot 11:260–266

    Google Scholar 

  • Lievens B, Vaes K, Coosemans J, Ryckeboer J (2001) Systemic resistance induced in cucumber against Pythium root rot by source separated household waste and yard trimmings composts. Compost Sci Utiliz 9:221–229

    Google Scholar 

  • Lumsden R, Lewis J, Millner P (1983) Effect of composted sewage sludge on several soilborne pathogens and diseases. Phytopathology 73:1543–1548

    Google Scholar 

  • Lynch D, Voroney R, Warman P (2004) Nitrogen availability from composts for humid region perennial grass and legume-grass forage production. J Environ Qual 33:1509–1520

    PubMed  CAS  Google Scholar 

  • Lynch D, Voroney R, Warman P (2005) Soil physical properties and organic matter fractions under forages receiving composts, manure or fertilizer. Compost Sci Utiliz 13:252–261

    Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    PubMed  Google Scholar 

  • Madrid F, Trasierra M, Lopez R, Murillo J, Cabrera F (1998) Municipal solid waste compost utilization in greenhouse-cultivated tomato. Acta Hortic 469:297–304

    Google Scholar 

  • Magdoff F, Weil RR (2004) Soil organic matter management strategies. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, FL, pp 45–65

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • Martins O, Kowald R (1988) Auswirkung des langjährigen Einsatzes von Müllkompost auf einen mittelschweren Ackerboden. Z Kulturtech Flurbereinigung 29:234–244

    Google Scholar 

  • Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:71–82

    CAS  Google Scholar 

  • Maynard A (1993) Nitrate leaching from compost-amended soils. Compost Sci Utiliz 1:65–72

    Google Scholar 

  • Maynard A (1994) Sustained vegetable production for three years using composted animal manures. Compost Sci Utiliz 2:88–96

    Google Scholar 

  • Maynard A (2000) Compost: the process and research, Bulletin 966. The Connecticut Agricultural Experiment Station, New Haven, CT

    Google Scholar 

  • Maynard A, Hill D (2000) Cumulative effect of leaf compost on yield and size distribution in onions. Compost Sci Utiliz 8:12–18

    Google Scholar 

  • Melero S, Madejon E, Herencia J, Ruiz J (2007) Biochemical properties of two different textured soils (loam and clay) after the addition of two different composts during conversion to organic farming. Span J Agric Res 5(4):593–604

    Google Scholar 

  • Nevens F, Reheul D (2003) The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture: nitrogen availability and use. Eur J Agron 19:189–203

    Google Scholar 

  • Noble R, Roberts SJ (2003) A review of the literature on eradication of plant pathogens and nematodes during composting, disease suppression and detection of plant pathogens in compost. The Waste and Resources Action Programme, The Old Academy, Oxon, UK

    Google Scholar 

  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E (2001) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils 34:31–41

    Google Scholar 

  • Oehmichen J, Gröblinghoff F-F, Reinders A, Dörendahl A (1994) Mit Bio-Kompost Mineraldünger einsparen. Dtsch Landtech Z 12(94):32–36

    Google Scholar 

  • Oehmichen J, Gröblinghoff F, Reinders A, Dörendahl A (1995) Untersuchung über die Verwendung von Bio-Kompost als Kreislaufdünger im Landbau. Müll Abfall 2(95):74–82

    Google Scholar 

  • Ozores-Hampton M, Hanlon E, Bryan H, Schaffer B (1997) Cadmium, copper, lead, nickel and zinc concentrations in tomato and squash grown in MSW compost-amended calcareous soil. Compost Sci Utiliz 5(4):40–45

    Google Scholar 

  • Pardini G, Volterrani M, Grossi N (1993) Effects of municipal solid waste compost on soil fertility and nitrogen balance: lysimetric trials. Agric Med 123:303–310

    Google Scholar 

  • Parkinson R, Fuller M, Groenhof A (1999) An evaluation of greenwaste compost for the production of forage maize (Zea mays L.). Compost Sci Utiliz 7:72–80

    Google Scholar 

  • Pascual J, Garcia C, Hernandez T, Ayuso M (1997) Changes in the microbial activity of an arid soil amended with urban organic wastes. Biol Fertil Soils 24:429–434

    CAS  Google Scholar 

  • Petersen U, Stöppler-Zimmer H (1999) Orientierende Feldversuche zur Anwendung von Biokomposten unterschiedlichen Rottegrades. In: UBA (Hrsg., 1999) Stickstoff in Bioabfall- und Grünschnittkompost – Bewertung von Bindungsdynamik und Düngewert. Runder Tisch Kompost. Wien, 29–30 Sept 1998. Umweltbundesamt, Wien

    Google Scholar 

  • Pfotzer GH, Schüler C (1999) Effects of different compost amendments on soil biotic and faunal feeding activity in an organic farming system. In: Kromp B (ed) Entomological research in organic agriculture. A. B. Academic, Bicester, UK, pp 1–4

    Google Scholar 

  • Poier KR, Richter J (1992) Spatial distribution of earthworms and soil properties in an arable loess soil. Soil Biol Biochem 24:1601–1608

    Google Scholar 

  • Raviv M, Krasnovsky A, Medina S, Reuveni R, Freiman L, Bar A (1998) Compost as a controlling agent against Fusarium wilt of sweet basil. Acta Hortic 469:375–381

    Google Scholar 

  • Reider C, Herdman W, Drinkwater L, Janke R (2000) Yields and nutrient budgets under composts, raw dairy manure and mineral fertilizer. Compost Sci Utiliz 8:328–339

    Google Scholar 

  • Rinaldi M, Vonella A, Garofalo P (2007) Organic fertilization in a “tomato-pea” rotation in southern Italy. In: Niggli U, Leifert C, Alföldi T, Lück L, Willer H (eds) Improving sustainability in organic and low input food production systems. Proceedings of the 3rd international congress of the European integrated project quality low input food (QLIF). University of Hohenheim, Germany, 20–23 March 2007. Research Institute of Organic Agriculture FiBL, CH-Frick

    Google Scholar 

  • Rodrigues M, Lopez-Real J, Lee H (1996) Use of composted societal organic wastes for sustainable crop production. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 447–456

    Google Scholar 

  • Roe N, Cornforth G (1997) Yield effects and economic comparison of using fresh or composted dairy manure amendments on double-cropped vegetables. HortScience 32:462

    Google Scholar 

  • Roinila P, Väisänen J, Granstedt A, Kunttu S (2003) Effects of different organic fertilization practices and mineral fertilization on potato quality. Biol Agric Hortic 21:165–194

    Google Scholar 

  • Römer W, Gerke J, Lehne P (2004) Phosphate fertilisation increases nitrogen fixation of legumes. Ökol Landbau 132(4):37–39

    Google Scholar 

  • Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218

    Google Scholar 

  • Sager M (1997) Possible trace metal load from fertilizers. Die Bodenkultur 48:217–223

    CAS  Google Scholar 

  • Sahin H (1989) Auswirkung des langjährigen Einsatzes von Müllkompost auf den Gehalt an organischer Substanz, die Regenwurmaktivität, die Bodenatmung sowie die Aggregatstabilität und die Porengrößenverteilung. Mitt Dt Bodenkundl Ges 59/II:1125–1130

    Google Scholar 

  • Sanchez J, Willson T, Kizilkaya K, Parker E, Harwood R (2001) Enhancing the mineralizable nitrogen pool through substrate diversity in long term cropping systems. Soil Sci Soc Am J 65:1442–1447

    CAS  Google Scholar 

  • Sauerbeck D (1992) Funktionen und Bedeutung der organischen Substanzen für die Bodenfrucht­barkeit – ein Überblick. Berichte über Landwirtschaft Sdh. 206. Landwirtschaftsverlag Münster-Hiltrup

    Google Scholar 

  • Schachtschabel P, Blume H-P, Brümmer G, Hartge K, Schwertmann U (1998) Lehrbuch der Bodenkunde. 14. Aufl., Enke Verlag, Stuttgart

    Google Scholar 

  • Scherer H, Werner W, Neumann A (1996) N-Nachlieferung und N-Immobilisierung von Komposten mit unterschiedlichem Ausgangsmaterial, Rottegrad und C/N-Verhältnis. Agribiol Res 49:120–129

    CAS  Google Scholar 

  • Schnug E, Haneklaus S (2002) Landwirtschaftliche Produktionstechnik und Infiltration von Böden – Beitrag des ökologischen Landbaus zum vorbeugenden Hochwasserschutz. Landbauforsch Völkenrode 52:197–203

    Google Scholar 

  • Schwaiger E, Wieshofer I (1996) Auswirkungen von Biotonnenkompost auf bodenmikrobiologische und enzymatische Parameter im biologischen Landbau. Mitt Dt Bodenk Ges 81:229–232

    Google Scholar 

  • Sekera F, Brunner A (1943) Beiträge zur Methodik der Gareforschung. Bodenk Pflanzenern 29:169–212

    CAS  Google Scholar 

  • Serra-Wittling C, Houot S, Barriuso E (1995) Soil enzymatic response to addition of municipal solid-waste compost. Biol Fertil Soils 20:226–236

    Google Scholar 

  • Shepherd M, Harrison R, Webb J (2002) Managing soil organic matter – implications for soil structure on organic farms. Soil Use Manag 18:284–192

    Google Scholar 

  • Siebert S, Leifeld J, Kögel-Knabner I (1998) Stickstoffmineralisierung von Bioabfallkomposten unterschiedlicher Rottegrade nach Anwendung auf landwirtschaftlich genutzte und rekultivierte Böden. Z Kulturtech Landentwicklung 39:69–74

    Google Scholar 

  • Siegrist S, Schaub D, Pfiffner L, Mäder P (1998) Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agric Ecosyst Environ 69:253–264

    Google Scholar 

  • Smidt E, Tintner J (2007) Application of differential scanning calorimetry (DSC) to evaluate the quality of compost organic matter. Thermochim Acta 459:87–93

    CAS  Google Scholar 

  • Steffens D, Pape H, Asche E (1996) Einfluß von Bioabfallkompost verschiedener Reifegrade auf die Bodenfruchtbarkeit. VDLUFA-Kongreßband 1996, VDLUFA-Schriftenr 44:405–408. VDLUFA-Verlag, Darmstadt

    Google Scholar 

  • Stevenson FJ (1982) Humus chemistry. Wiley, New York

    Google Scholar 

  • Stilwell D (1993) Evaluating the suitability of MSW compost as a soil amendment in field grown tomatoes. Part B: Elemental analysis. Compost Sci Utiliz 1(3):66–72

    Google Scholar 

  • Stoffella P, Graetz D (1996) Sugarcane filtercake compost influence on tomato emergence, seedling growth, and yields. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 1351–1356

    Google Scholar 

  • Stone A (2002) Organic matter-mediated suppression of Pythium, Phytophthora and Aphanomyces root rots in field soils. In: Michel F, Rynk R, Hoitink H (eds) Composting and compost utilization, Proceedings of 2002 international symposium, Columbus, OH, 6–8 May 2002

    Google Scholar 

  • Stöppler-Zimmer H, Petersen U (1997) Bewertungskriterien für Qualität und Rottestadium von Bioabfallkompost unter Berücksichtigung der verschiedenen Anwendungsbereiche. Orientierende Feldversuche mit Bioabfallkomposten unterschiedlichen Rottegrades. In: Umweltbundesamt (ed) Neue Techniken zur Kompostierung, Verwertung auf landwirtschaftlichen Flächen. Band I. Verlag UBA, Berlin

    Google Scholar 

  • Strumpf T, Pestemer W, Buchhorn R (2004) Nähr- und Schadstoffstatus in Boden und Pflanze nach Anwendung von Bioabfallkompost aus Ballungsgebieten im Gemüseanbau. Nachrichtenbl Dtsch Pflanzenschutzd 56:264–268

    CAS  Google Scholar 

  • Stukenholtz P, Koenig R, Hole D, Miller B (2002) Partitioning the nutrient and nonnutrient contributions of compost to dryland-organic wheat. Compost Sci Utiliz 10:238–243

    Google Scholar 

  • Termorshuizen A, von Rijn E, Blok W (2005) Phytosanitary risk assessment of composts. Compost Sci Utiliz 13:108–115

    Google Scholar 

  • Timmermann F, Kluge R, Bolduan R, Mokry M, Janning S (2003) Nachhaltige Kompostverwertung – pflanzenbauliche Vorteilswirkungen und mögliche Risiken. In: Gütegemeinschaft Kompost Region Süd e.V. (Hrsg.) Nachhaltige Kompostverwertung in der Landwirtschaft. Abschlußbericht. LUFA Augustenberg, Karlsruhe

    Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    CAS  Google Scholar 

  • VDLUFA (ed) (2004) Standpunkt Humusbilanzierung. Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. VDLUFA Verlag, Bonn

    Google Scholar 

  • Vogtmann H, Fricke K (1989) Nutrient value and utilization of biogenic compost in plant production. Agric Ecosyst Environ 27:471–475

    Google Scholar 

  • Vogtmann H, Fricke K, Turk T (1993a) Quality, physical characteristics, nutrient content, heavy metals and organic chemicals in biogenic waste compost. Compost Sci Utiliz 1:69–87

    Google Scholar 

  • Vogtmann H, Matthies K, Kehres B, Meier-Ploeger A (1993b) Enhanced food quality: effects of composts on the quality of plant foods. Compost Sci Utiliz 1:82–100

    Google Scholar 

  • Volterrani M, Pardini G, Gaetani M, Grossi N, Miele S (1996) Effects of application of municipal solid waste compost on horticultural species yield. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 1385–1388

    Google Scholar 

  • Wegener H-R, Moll W (1997) Beeinflussung des Bodens in physikalischer und chemischer Hinsicht. Handbuch Müll und Abfall, Lieferung 2/97

    Google Scholar 

  • Weil RR, Magdoff F (2004) Significance of soil organic matter to soil quality and health. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, FL, pp 1–43

    Google Scholar 

  • Workneh F., van Bruggen A., Drinkwater L., Shennan C (1993) Variables associated with corky root and Phytophthora root rot of tomatoes in organic and conventional farms. Phytopathology 83:581–589

    Google Scholar 

  • Zauner G, Stahr K (1997) Kompost- und Grünguthäckselanwendung in der Landwirtschaft – Erste Ergebnisse zu bodenphysikalischen und –mikrobiologischen Parametern. Mitt Dt Bodenkundl Ges 83:391–392

    Google Scholar 

  • Zethner G, Götz B, Amlinger F (2000) Qualität von Komposten aus der getrennten Sammlung. UBA Monographien, Bd. 133. Umweltbundesamt, Wien

    Google Scholar 

  • Zhang M, Heaney D, Solberg E, Heriquez B (2000) The effect of MSW compost on metal uptake and yield of wheat, barley and canola in less productive farming soils of Alberta. Compost Sci Utiliz 8:224–235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Erhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Erhart, E., Hartl, W. (2010). Compost Use in Organic Farming. In: Lichtfouse, E. (eds) Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8741-6_11

Download citation

Publish with us

Policies and ethics