Skip to main content

Abstract

In this chapter, the functions and potential applicability of bioreactors from a technical, scientific and clinical perspective will be reviewed in the context of tissue engineering and regenerative medicine. In particular, examples will be given to illustrate the role of bioreactors in (a) establishing and maintaining 3D cell cultures, (b) standardizing physicochemical culture parameters, (c) physically conditioning engineered grafts, (d) predicting mechanical functionality of constructs to be implanted, (e) automating conventional tissue culture processes, (f) streamlining tissue manufacturing strategies. The critical role of bioreactors to make tissue engineered products clinically accessible, safe and commercially competitive will finally be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman GH, Lu HH, Horan RL et al (2002) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124:742–749

    Article  Google Scholar 

  • Bancroft GN, Sikavitsas VI, van den DJ et al (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99:12600–12605

    Article  CAS  Google Scholar 

  • Braccini A, Wendt D, Jaquiery C et al (2005) Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells 23:1066–1072

    Article  Google Scholar 

  • Brosenitsch TA, Katz DM (2001) Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels. J Neurosci 21:2571–2579

    CAS  Google Scholar 

  • Bueno EM, Laevsky G, Barabino GA (2007) Enhancing cell seeding of scaffolds in tissue engineering through manipulation of hydrodynamic parameters. J Biotechnol 129:516–531

    Article  CAS  Google Scholar 

  • Candrian C, Vonwil D, Barbero A et al (2007) Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum 58:197–208

    Article  Google Scholar 

  • Chen JP, Lin CT (2006) Dynamic seeding and perfusion culture of hepatocytes with galactosylated vegetable sponge in packed-bed bioreactor. J Biosci Bioeng 102:41–45

    Article  CAS  Google Scholar 

  • Cioffi M, Boschetti F, Raimondi MT et al (2006) Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol Bioeng 93:500–510

    Article  CAS  Google Scholar 

  • Davisson T, Kunig S, Chen A et al (2002a) Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 20:842–848

    Article  CAS  Google Scholar 

  • Davisson T, Sah RL, Ratcliffe A (2002b) Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng 8:807–816

    Article  CAS  Google Scholar 

  • Demarteau O, Wendt D, Braccini A et al (2003) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310:580–588

    Article  CAS  Google Scholar 

  • Dvir T, Benishti N, Shachar M et al (2006) A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng 12:2843–2852

    Article  CAS  Google Scholar 

  • Fassnacht D, Portner R (1999) Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed-bed reactors. J Biotechnol 72:169–184

    Article  CAS  Google Scholar 

  • Fink C, Ergun S, Kralisch D et al (2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 14:669–679

    CAS  Google Scholar 

  • Flanagan TC, Cornelissen C, Koch S et al (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388–3397

    Article  CAS  Google Scholar 

  • Freed LE, Vunjak-Novakovic G (1997) Microgravity tissue engineering. In Vitro Cell Dev Biol Anim 33:381–385

    Article  CAS  Google Scholar 

  • Galbusera F, Cioffi M, Raimondi MT et al (2007) Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Comput Methods Biomech Biomed Eng 10:279–287

    Article  CAS  Google Scholar 

  • Grad S, Lee CR, Gorna K et al (2005) Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyte-seeded three-dimensional scaffolds. Tissue Eng 11:249–256

    Article  CAS  Google Scholar 

  • Hahn MS, McHale MK, Wang E et al (2007) Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann Biomed Eng 35:190–200

    Article  Google Scholar 

  • Hoerstrup SP, Zund G, Sodian R et al (2001) Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 20:164–169

    Article  CAS  Google Scholar 

  • Janssen FW, Hofland I, van OA et al (2006a) Online measurement of oxygen consumption by goat bone marrow stromal cells in a combined cell-seeding and proliferation perfusion bioreactor. J Biomed Mater Res A 79:338–348

    CAS  Google Scholar 

  • Janssen FW, Oostra J, Oorschot A et al (2006b) A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: in vivo bone formation showing proof of concept. Biomaterials 27:315–323

    Article  CAS  Google Scholar 

  • Kafienah W, Jakob M, Demarteau O et al (2002) Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng 8:817–826

    Article  CAS  Google Scholar 

  • Karim N, Golz K, Bader A (2006) The cardiovascular tissue-reactor: a novel device for the engineering of heart valves. Artif Organs 30:809–814

    Article  CAS  Google Scholar 

  • Kino-Oka M, Ogawa N, Umegaki R et al (2005) Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 11:535–545

    Article  CAS  Google Scholar 

  • Kitagawa T, Yamaoka T, Iwase R et al (2006) Three-dimensional cell seeding and growth in radial-flow perfusion bioreactor for in vitro tissue reconstruction. Biotechnol Bioeng 93:947–954

    Article  CAS  Google Scholar 

  • Knoll A, Scherer T, Poggendorf I et al (2004) Flexible automation of cell culture and tissue engineering tasks. Biotechnol Prog 20:1825–1835

    Article  CAS  Google Scholar 

  • Li Y, Ma T, Kniss DA et al (2001) Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices. Biotechnol Prog 17:935–944

    Article  CAS  Google Scholar 

  • Mantero S, Sadr N, Riboldi SA et al (2007) A new electro-mechanical bioreactor for soft tissue engineering. JABB 5:107–116

    CAS  Google Scholar 

  • Marston WA, Hanft J, Norwood P et al (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26:1701–1705

    Article  Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:80–86

    Article  CAS  Google Scholar 

  • Mason C, Hoare M (2006) Regenerative medicine bioprocessing: the need to learn from the experience of other fields. Regen Med 1:615–623

    Article  Google Scholar 

  • Mason C, Hoare M (2007) Regenerative medicine bioprocessing: building a conceptual framework based on early studies. Tissue Eng 13:301–311

    Article  CAS  Google Scholar 

  • Mauney JR, Sjostorm S, Blumberg J et al (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458–468

    Article  CAS  Google Scholar 

  • Mayhew TA, Williams GR, Senica MA et al (1998) Validation of a quality assurance program for autologous cultured chondrocyte implantation. Tissue Eng 4:325–334

    Article  CAS  Google Scholar 

  • Mol A, Driessen NJ, Rutten MC et al (2005) Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann Biomed Eng 33:1778–1788

    Article  Google Scholar 

  • Naughton GK (2002) From lab bench to market: critical issues in tissue engineering. Ann N Y Acad Sci 961:372–385

    Article  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbott WM et al (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  Google Scholar 

  • Pedrotty DM, Koh J, Davis BH et al (2005) Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol 288:H1620–H1626

    Article  CAS  Google Scholar 

  • Porter B, Zauel R, Stockman H et al (2005) 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38:543–549

    Article  Google Scholar 

  • Powell CA, Smiley BL, Mills J et al (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283:C1557–C1565

    CAS  Google Scholar 

  • Prenosil JE, Kino-Oka M (1999) Computer controlled bioreactor for large-scale production of cultured skin grafts. Ann N Y Acad Sci 875:386–397

    Article  CAS  Google Scholar 

  • Radisic M, Euloth M, Yang L et al (2003) High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol Bioeng 82:403–414

    Article  CAS  Google Scholar 

  • Radisic M, Park H, Shing H et al (2004a) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 101:18129–18134

    Article  CAS  Google Scholar 

  • Radisic M, Yang L, Boublik J et al (2004b) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286:H507–H516

    Article  CAS  Google Scholar 

  • Raimondi MT, Moretti M, Cioffi M et al (2006) The effect of hydrodynamic shear on 3D engineered chondrocyte systems subject to direct perfusion. Biorheology 43:215–222

    Google Scholar 

  • Scapinelli R, Aglietti P, Baldovin M et al (2002) Biologic resurfacing of the patella: current status. Clin Sports Med 21:547–573

    Article  Google Scholar 

  • Scherberich A, Galli R, Jaquiery C et al (2007) Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 25:1823–1829

    Article  CAS  Google Scholar 

  • Shangkai C, Naohide T, Koji Y et al (2007) Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration. Tissue Eng 13:483–492

    Article  CAS  Google Scholar 

  • Sikavitsas VI, Bancroft GN, Lemoine JJ et al (2005) Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds. Ann Biomed Eng 33:63–70

    Article  Google Scholar 

  • Sodian R, Lemke T, Fritsche C et al (2002) Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineering. Tissue Eng 8:863–870

    Article  CAS  Google Scholar 

  • Stevens MM, Marini RP, Schaefer D et al (2005) In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci U S A 102:11450–11455

    Article  CAS  Google Scholar 

  • Sun T, Norton D, Haycock JW et al (2005) Development of a closed bioreactor system for culture of tissue-engineered skin at an air-liquid interface. Tissue Eng 11:1824–1831

    Article  CAS  Google Scholar 

  • Thompson CA, Colon-Hernandez P, Pomerantseva I et al (2002) A novel pulsatile, laminar flow bioreactor for the development of tissue-engineered vascular structures. Tissue Eng 8:1083–1088

    Article  CAS  Google Scholar 

  • Timmins NE, Scherberich A, Fruh JA et al (2007) Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion). Tissue Eng 13:2021–2028

    Article  CAS  Google Scholar 

  • Vonwil D, Barbero A, Quinn T et al (2007) Expansion of adult human chondrocytes on an extendable surface: a strategy to reduce passageing-related dedifferentiation. Eur Cell Mater 13:17

    Google Scholar 

  • Vunjak-Novakovic G, Martin I, Obradovic B et al (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17:130–138

    Article  CAS  Google Scholar 

  • Wendt D, Marsano A, Jakob M et al (2003) Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng 84:205–214

    Article  CAS  Google Scholar 

  • Wendt D, Stroebel S, Jakob M et al (2006) Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology 43:481–488

    CAS  Google Scholar 

  • Wernike E, Li Z, Alini M et al (2007) Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs. Cell Tissue Res

    Google Scholar 

  • Yang J, Yamato M, Shimizu T et al (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28:5033–5043

    Article  CAS  Google Scholar 

  • Zhao F, Ma T (2005) Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng 91:482–493

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Martin, I., Riboldi, S.A., Wendt, D. (2010). Bioreactor Systems in Regenerative Medicine. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_6

Download citation

Publish with us

Policies and ethics