Skip to main content

Bugs or Gunk? Nanoscale Methods for Assessing the Biogenicity of Ancient Microfossils and Organic Matter

  • Chapter
  • First Online:
Earliest Life on Earth: Habitats, Environments and Methods of Detection

Abstract

Ancient microfossils and stromatolites represent some of our best evidence of early living organisms on Earth. However, due to increasingly critical evaluation of such biomarkers in the last decade, assessing the biogenicity of preserved microbe-like features and stromatolitic structures is far from trivial. Carbonaceous matter associated with bona fide microfossils and stromatolites should contain a general microstructure consistent with that of kerogen, the biogenic organic matter common in oil, gas, and coal source rocks. Although kerogen structure and composition can vary, there are consistent characteristics that may be used to identify “kerogen-like” carbonaceous material. Fischer-Trospch-type (FTT) reactions and other organic synthesis mechanisms may be a significant source of abiotic organic matter on the early Earth. Many minerals associated with hydrothermal activity, which was prevalent on the early Earth, have been shown to catalyze FTT synthesis. However, significant research into the maturation and preservation of FTT-derived carbonaceous matter is necessary before a robust distinction can be made from biogenic kerogen.

Controversial microfossils from the 3.458–3.465 Ga Apex Basalt and stromatolites from the 3.350–3.458 Ga Strelley Pool Chert are associated with hydrothermal activity, leading to the suggestion that the carbonaceous matter comprising these features is derived from abiotic FTT synthesis rather than biological processes. Carbon-rich black chert dike samples were obtained from the Apex and Strelley Pool localities for comparison with kerogen from the 1.9 Ga Gunflint Formation and laboratory-derived FTT carbonaceous matter. In situ scanning-transmission X-ray microscopy (STXM) and transmission electron microscopy (TEM) reveal the presence of ∼100 nm carbonaceous films along quartz grain boundaries in the chert samples, which may be separated from the quartz grains in ultramicrotomed sections. Electron energy-loss near-edge structure spectroscopy (ELNES) and X-ray absorption near-edge structure spectroscopy (XANES) indicate Apex and Strelley carbonaceous matter contains a complex microstructure with abundant aromatic domains and oxygenated organic functional groups similar to that observed in Gunflint kerogen. FTT samples were chemically distinct, containing abundant carboxyl functional groups and lacking polyaromatic domains. Although it is possible that FTT material could mature into an abiotic kerogen-like material with similar characteristics, it is more likely that the Apex and Strelley Pool carbonaceous matter formed from biological processes. Biogenic material could be preserved within an ancient hydrothermal system either through gravitational influx of microbial material from the surface or transport of carbonaceous matter from a deeper sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood AC, Walter MR, Kamber BS et al (2006a) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718

    Google Scholar 

  • Allwood AC, Walter MR, Marshall CP (2006b) Raman spectroscopy reveals thermal palaeoenvironments of c.3.5 billion-year-old organic matter. Vib Spectrosc 41:190–197

    Google Scholar 

  • Allwood AC, Walter MR, Burch IW et al (2007) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambr Res 158:198–227

    Google Scholar 

  • Anderson RB (1984) The Fischer-Tropsch synthesis. Academic Press, Orlando

    Google Scholar 

  • Apen E, Hitchcock AP, Gland JL (1993) Experimental studies of the core excitation of imidazole, 4, 5-dicyanoimidazole, and s-triazine. J Phys Chem 97:6859–6866

    Google Scholar 

  • Bagas L (2002) Stratigraphic revision of the Warrawoona and Gorge Creek Groups in the Kelly greenstone belt, Pilbara Craton, Western Australia. In: 2001–02 Annual Review. Geological Survey of Western Australia, Perth, Western Australia

    Google Scholar 

  • Bassim ND, De Gregorio BT, Stroud RM et al (2008) Study of FIB damage in carbonaceous materials using XANES. Microsc Microanal 14:1008–1009

    Google Scholar 

  • Behar F, Vandenbroucke M (1987) Chemical modelling of kerogens. Org Geochem 11:15–24

    Google Scholar 

  • Belavin VV, Okotrub AV, Bulusheva LG et al (2006) Determining misorientation of graphite grains from the angular dependence of X-ray emission spectra. J Exp Theor Phys 103:604–610

    Google Scholar 

  • Benzerara K, Menguy N, López-García P et al (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci USA 103:9440–9445

    Google Scholar 

  • Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geology 24:351–354

    Google Scholar 

  • Boyce CK, Cody GD, Feser M et al (2002) Organic chemical differentiation within fossil plant cell walls detected with X-ray spectromicroscopy. Geology 30:1039–1042

    Google Scholar 

  • Brandes JA, Cody GD, Rumble D et al (2008) Carbon K-edge XANES spectromicroscopy of natural graphite. Carbon 46:1424–1434

    Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP et al (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Google Scholar 

  • Brasier MD, Green OR, Lindsay JF et al (2005) Critical testing of Earth’s oldest putative fossil assemblage from the 3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambr Res 140:55–102

    Google Scholar 

  • Braun A, Huggins FE, Shah N et al (2005) Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies–a comparative study on diesel soot with EELS and NEXAFS. Carbon 43:117–124

    Google Scholar 

  • Braun A, Kubatova A, Wirick S et al (2009) Radiation damage from EELS and NEXAFS in diesel soot and diesel soot extracts. J Electron Spectrosc Relat Phenom 170:42–48

    Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archean chert-barite unit from North Pole, Western Australia. Alcheringa 5:161–181

    Google Scholar 

  • Buseck PR (ed) (1992) Minerals and reactions at the atomic scale. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Buseck PR, Bo-Jun H (1985) Conversion of carbonaceous material to graphite during metamorphism. Geochim Cosmochim Acta 49:2003–2016

    Google Scholar 

  • Buseck PR, Bo-Jun H, Miner B (1988) Structural order and disorder in Precambrian kerogens. Org Geochem 12:221–234

    Google Scholar 

  • Calkins WH (1994) The chemical forms of sulfur in coal: a review. Fuel 73:475–484

    Google Scholar 

  • Cody GD (2005) Geochemical connections to primitive metabolism. Elements 1:139–143

    Google Scholar 

  • Cody GD, Botto RE, Ade H et al (1995) C-NEXAFS microanalysis and scanning X-ray microscopy of microheterogeneities in a high-volatile A bituminous coal. Energy Fuels 9:75–83

    Google Scholar 

  • Cody GD, Botto RE, Ade H et al (1996) The application of soft X-ray microscopy to the in-situ analysis of sporinite in coal. Int J Coal Geol 32:69–86

    Google Scholar 

  • Cody GD, Ade H, Wirick S et al (1998) Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis. Org Geochem 28:441–455

    Google Scholar 

  • Cody GD, Alexander CMO’D, Yabuta H et al (2008) Organic thermometry for chondritic parent bodies. Earth Planet Sci Lett 272:446–455

    Google Scholar 

  • Cody GD, Brandes JA, Jacobsen C et al (2009) Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls. J Electron Spectrosc Relat Phenom 170:57–64

    Google Scholar 

  • De Gregorio BT, Sharp TG (2006) The structure and distribution of carbon in 3.5 Ga Apex chert: implications for the biogenicity of Earth’s oldest putative microfossils. Am Mineral 91:784–789

    Google Scholar 

  • De Gregorio BT, Sharp TG, Flynn GJ et al (2009) A biogenic origin for Earth’s oldest putative microfossils. Geology 37:631–634

    Google Scholar 

  • Derenne S, Robert F, Skrzypczak-Bonduelle A et al (2008) Molecular evidence for life in the 3.5 billion year old Warrawoona chert. Earth Planet Sci Lett 272:476–480

    Google Scholar 

  • Dhez O, Ade H, Urquhart SG (2003) Calibrated NEXAFS spectra of some common polymers. J Electron Spectrosc Relat Phenom 128:85–96

    Google Scholar 

  • Dow WG (1977) Kerogen studies and geological interpretations. J Geochem Explor 7:79–99

    Google Scholar 

  • Durand B (ed) (1980) Kerogen: insoluble organic matter from sedimentary rocks. Editions TECHNIP, Paris

    Google Scholar 

  • Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Egerton RF, Rauf I (1999) Dose-rate dependence of electron-induced mass loss from organic specimens. Ultramicroscopy 80:247–254

    Google Scholar 

  • Egerton RF, Crozier PA, Rice P (1987) Electron energy-loss spectroscopy and chemical change. Ultramicroscopy 23:305–312

    Google Scholar 

  • Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Google Scholar 

  • Espitalié J, Bordenave ML (1993) Rock-Eval pyrolysis. In: Bordenave ML (ed) Applied petroleum geochemistry. Editions TECHNIP, Paris

    Google Scholar 

  • Flynn GJ, Keller LP, Feser M et al (2003) The origin of organic matter in the solar system: evidence from the interplanetary dust particles. Geochim Cosmochim Acta 67:4791–4806

    Google Scholar 

  • Foustoukos DI, Seyfried WE (2004) Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304:1002–1005

    Google Scholar 

  • Freund H, Walters CC, Kelemen SR et al (2007) Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part 1 – concepts and implementation. Org Geochem 38:288–305

    Google Scholar 

  • Galwey AK (1972) The rate of hydrocarbon desorption from mineral surfaces and the contribution of heterogeneous catalytic-type processes to petroleum genesis. Geochim Cosmochim Acta 36:1115–1130

    Google Scholar 

  • García-Ruiz JM, Hyde ST, Carnerup AM et al (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Google Scholar 

  • Glikson M, Duck LJ, Golding SD et al (2008) Microbial remains in some earliest Earth rocks: comparison with a potential modern analogue. Precambr Res 164:187–200

    Google Scholar 

  • Gordon ML, Cooper G, Morin C et al (2003) Inner-shell excitation spectroscopy of the peptide bond: Comparison of the C 1s, N 1s, and O 1s spectra of glycine, glycyl-glycine, and glycyl-glycyl-glycine. J Phys Chem A 107:6144–6159

    Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Google Scholar 

  • Grotzinger JP, Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383:423–425

    Google Scholar 

  • Haberstroh PR, Brandes JA, Gélinas Y et al (2006) Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon X-ray spectromicroscopy. Geochim Cosmochim Acta 70:1483–1494

    Google Scholar 

  • Hayatsu R, Anders E (1981) Organic compounds in meteorites and their origins. Top Curr Chem 99:1–37

    Google Scholar 

  • Henke BL, Gullikson EM, Davis JC (1993) X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At Data Nucl Data Tables 54:181–342

    Google Scholar 

  • Hickman AH (1983) Geology of the Pilbara block and its environs. Geological Survey of Western Australia, Perth, Western Australia

    Google Scholar 

  • Hickman AH (2008) Regional review of the 3426–3350 Ma Strelley Pool Formation, Pilbara Craton, Western Australia. Geological Survey of Western Australia, Perth, Western Australia

    Google Scholar 

  • Hink W, Paschke H (1971) K-shell-fluorescence yield for carbon and other light elements. Phys Rev A 4:507

    Google Scholar 

  • Hitchcock AP, Brion CE (1980) Inner-shell excitation of formaldehyde, acetaldehyde and acetone studied by electron impact. J Electron Spectrosc Relat Phenom 19:231–250

    Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH et al (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262

    Google Scholar 

  • Holm NG, Charlou JL (2001) Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet Sci Lett 191:1–8

    Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Google Scholar 

  • House CH, Schopf JW, McKeegan KD et al (2000) Carbon isotopic composition of individual Precambrian microfossils. Geology 28:707–710

    Google Scholar 

  • Isaacson M (1979) Electron beam induced damage of organic solids: implications for analytical electron microscopy. Ultramicroscopy 4:193–199

    Google Scholar 

  • Isaacson M, Johnson D, Crewe AV (1973) Electron beam excitation and damage of biological molecules; its implications for specimen damage in electron microscopy. Radiat Res 55:205–224

    Google Scholar 

  • Ishii I, Hitchcook AP (1988) The oscillator strengths for C1s and O1s excitation of some saturated and unsaturated organic alcohols, acids and esters. J Electron Spectrosc Relat Phenom 46:55–84

    Google Scholar 

  • Jacobsen C, Kirz J, Williams S (1992) Resolution in soft X-ray microscopes. Ultramicroscopy 47:55–79

    Google Scholar 

  • Jacobsen C, Wirick S, Flynn GJ et al (2000) Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. J Microsc 197:173–184

    Google Scholar 

  • Jébrak M (1997) Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geol Rev 12:111–134

    Google Scholar 

  • Jokic A, Cutler JN, Ponomarenko E et al (2003) Organic carbon and sulphur compounds in wetland soils: insights on structure and transformation processes using K-edge XANES and NMR spectroscopy. Geochim Cosmochim Acta 67:2585–2597

    Google Scholar 

  • Jokic A, Schulten H, Cutler JN et al (2004) A significant abiotic pathway for the formation of unknown nitrogen in nature. Geophys Res Lett 31:L05502

    Google Scholar 

  • Kaźmierczak J, Kremer B (2002) Thermal alteration of the Earth’s oldest fossils. Nature 420:477–478

    Google Scholar 

  • Keller LP, Messenger S, Flynn GJ et al (2004) The nature of molecular cloud material in interplanetary dust. Geochim Cosmochim Acta 68:2577–2589

    Google Scholar 

  • Kelley DS, Früh-Green GL (1999) Abiogenic methane in deep-seated mid-ocean ridge environments: insights from stable isotope analyses. J Geophys Res 104:10439–10460

    Google Scholar 

  • Kerridge JF (1983) Isotopic composition of carbonaceous-chondrite kerogen: evidence for an interstellar origin of organic matter in meteorites. Earth Planet Sci Lett 64:186–200

    Google Scholar 

  • Kerridge JF, Chang S, Shipp R (1987) Isotopic characterisation of kerogen-like material in the Murchison carbonaceous chondrite. Geochim Cosmochim Acta 51:2527–2540

    Google Scholar 

  • Kikuma J, Warwick T, Shin H-J et al (1998) Chemical state analysis of heat-treated polyacrylonitrile fiber using soft X-ray spectromicroscopy. J Electron Spectrosc Relat Phenom 94:271–278

    Google Scholar 

  • Kirz J, Jacobsen C, Howells M (1995) Soft X-ray microscopes and their biological applications. Q Rev Biophys 28:33–130

    Google Scholar 

  • Knicker H (2004) Stabilization of N-compounds in soil and organic-matter-rich sediments–What is the difference? Mar Chem 92:167–195

    Google Scholar 

  • Krivanek OL, Corbin GJ, Dellby N et al (2008) An electron microscope for the aberration-corrected era. Ultramicroscopy 108:179–195

    Google Scholar 

  • Lancet MS, Anders E (1970) Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170:980–982

    Google Scholar 

  • Lawrence JR, Swerhone GDW, Leppard GG et al (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69:5543–5554

    Google Scholar 

  • Leif RN, Simoneit BRT (2000) The role of alkenes produced during hydrous pyrolysis of a shale. Org Geochem 31:1189–1208

    Google Scholar 

  • Leinweber P, Kruse J, Walley FL et al (2007) Nitrogen K-edge XANES–an overview of reference compounds used to identify ‘unknown’ organic nitrogen in environmental samples. J Synchrotron Radiat 14:500–511

    Google Scholar 

  • Lemelle L, Labrot P, Salomé M et al (2008) In situ imaging of organic sulfur in 700–800 My-old Neoproterozoic microfossils using X-ray spectromicroscopy at the S K-edge. Org Geochem 39:188–202

    Google Scholar 

  • Lerotic M, Jacobsen C, Schäfer T et al (2004) Cluster analysis of soft X-ray spectromicroscopy data. Ultramicroscopy 100:35–57

    Google Scholar 

  • Lerotic M, Jacobsen C, Gillow JB et al (2005) Cluster analysis in soft X-ray spectromicroscopy: finding the patterns in complex specimens. J Electron Spectrosc Relat Phenom 144–147:1137–1143

    Google Scholar 

  • Lindsay JF, Brasier MD, McLoughlin N et al (2005) The problem of deep carbon–an Archean paradox. Precambr Res 143:1–22

    Google Scholar 

  • Llorca J (2002) Are organic molecules produced by nebular Fischer-Tropsch processes preserved in comets? Adv Space Res 30:1469–1472

    Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284:441–443

    Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390

    Google Scholar 

  • Madix RJ, Solomon JL, Stöhr J (1988) The orientation of the carbonate anion on Ag(110). Surf Sci 197:L253–L259

    Google Scholar 

  • Malis TF, Steele D (1990) Ultramicrotomy for materials science. In: Specimen preparation for transmission electron microscopy II, MRS symposium proceedings, vol 199. Materials Research Society, Pittsburgh, pp 3–42

    Google Scholar 

  • Marshall CP, Love GD, Snape CE et al (2007) Structural characterization of kerogen in 3.4 Ga Archean cherts from the Pilbara Craton, Western Australia. Precambr Res 155:1–23

    Google Scholar 

  • Mathez EA (1987) Carbonaceous matter in mantle xenoliths: composition and relevance to the isotopes. Geochim Cosmochim Acta 51:2339–2347

    Google Scholar 

  • McCollom TM (2003) Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochim Cosmochim Acta 67:311–317

    Google Scholar 

  • McCollom TM, Seewald JS (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim Cosmochim Acta 65:3769–3778

    Google Scholar 

  • McCollom TM, Seewald JS (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet Sci Lett 243:74–84

    Google Scholar 

  • McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:153–166

    Google Scholar 

  • McLaren AC (1991) Transmission electron microscopy of minerals and rocks. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • McLoughlin N, Wilson LA, Brasier MD (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes–implications for the early fossil record. Geobiology 6:95–105

    Google Scholar 

  • Meyer B (1976) Elemental sulfur. Chem Rev 76:367–388

    Google Scholar 

  • Mitra-Kirtley S, Mullins OC, Branthaver JF et al (1993a) Nitrogen chemistry of kerogens and bitumens from X-ray absorption near-edge structure spectroscopy. Energy Fuels 7:1128–1134

    Google Scholar 

  • Mitra-Kirtley S, Mullins OC, Van Elp J et al (1993b) Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. J Am Chem Soc 115:252–258

    Google Scholar 

  • Morar JF, Himpsel FJ, Hollinger G et al (1985) Observation of a C-1s core exciton in diamond. Phys Rev Lett 54:1960–1963

    Google Scholar 

  • Moreau JW, Sharp TG (2004) A transmission electron microscopy study of silica and kerogen biosignatures in 1.9 Ga Gunflint microfossils. Astrobiology 4:196–210

    Google Scholar 

  • Mullins OC, Mitra-Kirtley S, Van Elp J et al (1993) Molecular structure of nitrogen in coal from XANES spectroscopy. Appl Spectrosc 47:1268–1275

    Google Scholar 

  • Nissenbaum A (1979) Phosphorus in marine and non-marine humic substances. Geochim Cosmochim Acta 43:1973–1978

    Google Scholar 

  • O’Keefe MA (1992) “Resolution” in high-resolution electron microscopy. Ultramicroscopy 47:282–297

    Google Scholar 

  • Oberlin A, Boulmier JL, Villey M (1980) Electron microscopic study of kerogen microtexture: selected criteria for determining the evolution path and evolution stage of kerogen. In: Durand B (ed) Kerogen. Editions TECHNIP, Paris

    Google Scholar 

  • Pasteris JD, Wopenka B (2003) Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3:727–738

    Google Scholar 

  • Reymond JP, Mérieudeau P, Teichner SJ (1982) Changes in the surface structure and composition of an iron catalyst of reduced or unreduced Fe2O3 during the reaction of carbon monoxide and hydrogen. J Catal 75:39–48

    Google Scholar 

  • Rightor EG, Hitchcock AP, Ade H et al (1997) Spectromicroscopy of poly(ethylene terephthalate): comparison of spectra and radiation damage rates in X-ray absorption and electron energy loss. J Phys Chem B 101:1950–1960

    Google Scholar 

  • Rosenberg RA, Love PJ, Rehn V (1986) Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite. Phys Rev B 33:4034–4037

    Google Scholar 

  • Rushdi AI, Simoneit BRT (2001) Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400°C. Orig Life Evol Biosph 31:103–118

    Google Scholar 

  • Rushdi AI, Simoneit BRT (2004) Condensation reactions and formation of amides, esters, and nitriles under hydrothermal conditions. Astrobiology 4:211–224

    Google Scholar 

  • Rushdi AI, Simoneit BRT (2005) Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions. Astrobiology 5:749–768

    Google Scholar 

  • Rushdi AI, Simoneit BRT (2006) Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions. Orig Life Evol Biosph 36:93–108

    Google Scholar 

  • Sarret G, Mongenot T, Connan J et al (2002) Sulfur speciation in kerogens of the Orbagnoux deposit (Upper Kimmeridgian, Jura) by XANES spectroscopy and pyrolysis. Org Geochem 33:877–895

    Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    Google Scholar 

  • Schopf JW (1992) Paleobiology of the Archean. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge

    Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Phil Trans R Soc B 361:869–885

    Google Scholar 

  • Schopf JW, Packer B (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG et al (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Google Scholar 

  • Schopf JW, Kudryavtsev AB, Czaja AD et al (2007) Evidence of Archean life: stromatolites and microfossils. Precambr Res 158:141–155

    Google Scholar 

  • Schroeder T, John B, Frost BR (2002) Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges. Geology 30:367–370

    Google Scholar 

  • Seewald JS, Zolotov MY, McCollom TM (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460

    Google Scholar 

  • Shard AG, Whittle JD, Beck AJ et al (2004) A NEXAFS examination of unsaturation in plasma polymers of allylamine and propylamine. J Phys Chem B 108:12472–12480

    Google Scholar 

  • Sherwood Lollar B, Lacrampe-Couloume G, Slater G et al (2006) Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem Geol 226:328–339

    Google Scholar 

  • Sherwood Lollar B, Lacrampe-Couloume G, Voglesonger K et al (2008) Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: a model for abiogenic polymerization of hydrocarbons. Geochim Cosmochim Acta 72:4778–4795

    Google Scholar 

  • Simoneit BRT, Rushdi AI, Deamer DW (2007) Abiotic formation of acylglycerols under simulated hydrothermal conditions and self-assembly properties of such lipid products. Adv Space Res 40:1649–1656

    Google Scholar 

  • Sinninghe Damsté JS, de Leeuw JW (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org Geochem 16:1077–1101

    Google Scholar 

  • Sitte H (1984) Process of ultrathin sectioning. In: Revel JP, Barnard T, Haggis GH et al (eds) The science of biological specimen preparation for microscopy and microanalysis. Scanning Electron Microscopy, Chicago, IL

    Google Scholar 

  • Skytt P, Glans P, Mancini DC et al (1994) Angle-resolved soft-x-ray fluorescence and absorption study of graphite. Phys Rev B 50:10457–10461

    Google Scholar 

  • Smith RE, Perdrix JL, Parks TC (1982) Burial metamorphism in the Hamersley Basin, Western Australia. J Petrol 23:75–102

    Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc B 361:1837–1843

    Google Scholar 

  • Stöhr J (1992) NEXAFS spectroscopy. Springer, Berlin

    Google Scholar 

  • Strauss H, Moore TB (1992) Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge

    Google Scholar 

  • Sviridov DV (2002) Chemical aspects of implantation of high-energy ions into polymeric materials. Russ Chem Rev 71:315–327

    Google Scholar 

  • Thackray M (1970) Melting point intervals of sulfur allotropes. J Chem Eng Data 15:495–497

    Google Scholar 

  • Thorne AM, Trendall AF (2001) Geology of the Fortescue Group, Pilbara Craton, Western Australia. Geological Survey of Western Australia, Perth, Western Australia

    Google Scholar 

  • Thorpe R, Hickman AH, Davis D et al (1992) U-Pb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambr Res 56:169–189

    Google Scholar 

  • Tingle TN, Mathez EA, Michael F Jr (1991) Carbonaceous matter in peridotites and basalts studied by XPS, SALI, and LEED. Geochim Cosmochim Acta 55:1345–1352

    Google Scholar 

  • Tissot BP, Welte DH (1978) Petroleum formation and occurrence, 2nd edn. Springer, Berlin

    Google Scholar 

  • Ueno Y, Yoshioka H, Maruyama S et al (2004) Carbon isotope and petrography of kerogens in 3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia. Geochim Cosmochim Acta 68:573–589

    Google Scholar 

  • Urquhart SG, Ade H (2002) Trends in the carbonyl core (C 1S, O 1S) → π*C=O transition in the near-edge X-ray absorption fine structure spectra of organic molecules. J Phys Chem B 106:8531–8538

    Google Scholar 

  • Urquhart SG, Hitchcock AP, Priester RD et al (1995) Analysis of polyurethanes using core excitation spectroscopy. Part II: inner shell spectra of ether, urea and carbamate model compounds. J Polym Sci B 33:1603–1620

    Google Scholar 

  • Vairavamurthy A, Wang S (2002) Organic nitrogen in geomacromolecules: insights on speciation and transformation with K-edge XANES spectroscopy. Environ Sci Technol 36:3050–3056

    Google Scholar 

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci Rev 74:197–240

    Google Scholar 

  • Van Kranendonk MJ (2007) A review of the evidence for putative Paleoarchean life in the Pilbara Craton, Western Australia. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 855–877

    Google Scholar 

  • Van Krevelen DW (1993) Coal: typology – physics – chemistry – constitution, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: evidence of Earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Williams DS, Carter CB (1996) Transmission electron microscopy. Plenum Press, New York

    Google Scholar 

  • Williams LB, Canfield B, Voglesonger KM et al (2005) Organic molecules formed in a “primordial womb”. Geology 33:913–916

    Google Scholar 

  • Wiltfong R, Mitra-Kirtley S, Mullins OC et al (2005) Sulfur speciation in different kerogens by XANES spectroscopy. Energy Fuels 19:1971–1976

    Google Scholar 

  • Winn B, Ade H, Buckley C et al (2000) Illumination for coherent soft X-ray applications: the new X1A beamline at the NSLS. J Synchrotron Radiat 7:395–404

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

  • Yoshida T, Nishizawa K, Tabata M et al (1993) Methanation of CO2 with H2-reduced magnetite. J Mater Sci 28:1220–1226

    Google Scholar 

  • Zhang X, Jacobsen C, Lindaas S et al (1995) Exposure strategies for polymethyl methacrylate from in situ x-ray absorption near edge structure spectroscopy. J Vac Sci Technol B 13:1477–1483

    Google Scholar 

  • Zhou D, Metzler RA, Tyliszczak T et al (2008) Assignment of polarization-dependent peaks in carbon K-edge spectra from biogenic and geologic aragonite. J Phys Chem B 112:13128–13135

    Google Scholar 

  • Zubavichus Y, Fuchs O, Weinhardt L et al (2004) Soft X-ray-induced decomposition of amino acids: an XPS, mass spectrometry, and NEXAFS study. Radiat Res 161:346–358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley T. De Gregorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Gregorio, B.T., Sharp, T.G., Rushdi, A.I., Simoneit, B.R.T. (2011). Bugs or Gunk? Nanoscale Methods for Assessing the Biogenicity of Ancient Microfossils and Organic Matter. In: Golding, S., Glikson, M. (eds) Earliest Life on Earth: Habitats, Environments and Methods of Detection. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8794-2_10

Download citation

Publish with us

Policies and ethics