Skip to main content

Regenerative Medicine in the Central Nervous System: Stem Cell-Based Gene-Therapy

  • Chapter
  • First Online:
Regenerative Medicine
  • 1626 Accesses

Abstract

Human neurological diseases such as Parkinson disease, Huntington disease, amyotrophic lateral sclerosis (ALS), Alzheimer disease, multiple ­sclerosis (MS), stroke and spinal cord injury are caused by a loss of neurons and glial cells in the brain or spinal cord. Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. In recent years, neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells, mesenchymal stem cells and neural stem cells, and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. I review here notable experimental and pre-clinical studies previously published involving stem cell-based cell- and gene-therapies for Parkinson disease, Huntington disease, ALS, Alzheimer disease, MS, stroke, spinal cord injury, brain tumor and lysosomal storage diseases, and discuss for future prospect for the stem cell therapy of neurological disorders in clinical ­setting. There are still many obstacles to be overcome before clinical application of cell therapy in neurological disease patients is adopted: (1) it is still uncertain what kind of stem cells would be an ideal source for cellular grafts, and (2) it needs to be better understood by what mechanism transplantation of stem cells leads to an enhanced functional recovery and structural reorganization. Steady and solid progress in stem cell research in both basic and pre-clinical settings should support the hope for development of stem cell-based cell therapies for neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agid Y. 1991. Parkinson’s disease: Pathophysiology. Lancet 337:1321–1324.

    CAS  PubMed  Google Scholar 

  • Akiyama Y, Radke C, Kocsis JD. 2002. Remyelination of rat spinal cord by implantation of identified bone marrow stromal cells. J Neurosci 22: 6623–6630.

    CAS  PubMed  Google Scholar 

  • Anton R, Kordower JH, Maidment NT, Manaster JS, Kane DJ, Rabizadeh S, Schueller SB, Yang J, Rabizadeh S, Edwards RH. 1994. Neural-targeted gene therapy for rodent and primate hemiparkinsonism. Exp Neurol 127:207–218.

    CAS  PubMed  Google Scholar 

  • Alston TA, Mela L, Bright HJ. 1977. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 74(9):3767–71.

    Google Scholar 

  • Armstrong RJ, Watts C, Svendsen CN, Dunnett SB, Rosser AE. 2000. Survival, neuronal differentiation, and fiber outgrowth of propagated human neural precursor grafts in an animal model of Huntington’s disease. Cell Transplant 9:55–64.

    CAS  PubMed  Google Scholar 

  • Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND. 2004. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417.

    CAS  PubMed  Google Scholar 

  • Bachoud-Lévi AC, Rémy P, Nguyen JP, Brugières P, Lefaucheur JP, Bourdet C, Baudic S,Gaura V, Maison P, Haddad B, Boissé MF, Grandmougin T, Jény R, Bartolomeo P, Dalla Barba G, Degos JD, Lisovoski F, Ergis AM, Pailhous E, Cesaro P, Hantraye P, Peschanski M. 2000. Motor and cognitive improvements in patients with Huntington’s disease after neural transplnatation. Lancet 356:1975–1979

    PubMed  Google Scholar 

  • Bales KR, Tzavara ET, Wu S, Wade MR, Bymaster FP, Paul SM, Nomikos GG. 2006. Cholinergc dysfunction in a mouse model of Alzheimer disease is reversed by an anti-Aβ antibody. J Clin Invest 116:825–832.

    CAS  PubMed  Google Scholar 

  • Bartus R, Dean RL, Beer B, Lippa AS. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–411.

    CAS  PubMed  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT. 1993. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192.

    CAS  PubMed  Google Scholar 

  • Bemelmans AP, Horellou P, Pradier L, Brunet I, Colin P, Mallet J. 1999. Brain-derived neurotrophic fator-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 10:2987–2997.

    CAS  PubMed  Google Scholar 

  • Bencsics C, Wachtel SR, Milstien S, Hatakeyama K, Becker JB, Kang UJ. 1996. Double transduction with GTP cyclohydrolase1 and tyrosine hydroxylase is necessary for spontaneous synthesis of L-DOPA by primary fibroblasts. J Neurosci 16:4449–4456.

    CAS  PubMed  Google Scholar 

  • Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, Abramsky O. 2003. Transplanted multipotential neural progenitor cells migrate into the inflamed white matter in response to experimental allergic encephalitis. Glia 41:73–80.

    PubMed  Google Scholar 

  • Bjorklund A, Lindvall O. 2000. Cell replacement therapies for central nervous system disorders. Nature Neurosci 3:537–544.

    CAS  PubMed  Google Scholar 

  • Bjorklund A, Stenevi N. 1979. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 177:555–560.

    CAS  PubMed  Google Scholar 

  • Boillee S, Van de Velde C, Cleveland DW. 2006. ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59.

    CAS  PubMed  Google Scholar 

  • Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR. 1998. Transplantation of cryopreserved human embryonic carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321.

    CAS  PubMed  Google Scholar 

  • Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF. 1995. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal movements in primates. Proc Nat Acad Sci USA 92:7105–7109.

    CAS  PubMed  Google Scholar 

  • Brustle O, McKay RG. 1996. Neuronal progenotors as tools for cell replacement in the nervous system. Curr Opin Neurobiol 6:688–695.

    CAS  PubMed  Google Scholar 

  • Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD. 1999. Embryonic stem cell-derived glial precursors: A source for myelinating transplants. Science 285:754–756.

    CAS  PubMed  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M. 2001. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688.

    CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M. 2003. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786.

    CAS  PubMed  Google Scholar 

  • Chu K, Kim M, Jeong SW, Kim SU, Yoon BW. 2003. Human neural stem cells can migrate, ­differentiate and integrate after intravenous transplantation in adult rats with transient forbrain ischemia. Neuroci Lett 343:637–643.

    Google Scholar 

  • Chu K, Park KI, Lee ST, Jung KH, Ko SY, Kang L, Sinn DI, Lee YS, Kim SU, Kim M, Roh JK. 2005. Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res 53:384–390.

    CAS  PubMed  Google Scholar 

  • Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS. 2002. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16:1829–1838.

    PubMed  Google Scholar 

  • Copray S, Balasubramaniyan V, Levenga J, de Bruijn J, Liem R, Boddeke E. 2006. Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes. Stem Cells 24:1001–1010.

    CAS  PubMed  Google Scholar 

  • Coyle JT, Price DL, DeLong MR. 1983. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 219:1184–1190.

    CAS  PubMed  Google Scholar 

  • DiFiglia M. 1990. Excitotoxic injury of the neostriatum: A model for Huntington’s disease. Trends Neurosci 13:286–289.

    CAS  PubMed  Google Scholar 

  • Donovan PJ, Gearhart J. 2001. The end of beginning for pluripotent stem cells. Nature 414:92–98.

    CAS  PubMed  Google Scholar 

  • Dunnett SB, Carter RJ, Watts C, Torres EM, Mahal A, Mangiarini L, Bates G, Morton AJ. 1998 Striatal transplantation in a transgenic mouse model of Huntington’s disease. Exp Neurol 154:31–40.

    CAS  PubMed  Google Scholar 

  • Dunnett SB, Bjorklund A. 1999. Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399:A32–A39.

    CAS  PubMed  Google Scholar 

  • During MJ, Naegele JR, O’Malley KL, Geller AI. 1994. Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266:1399–1403.

    CAS  PubMed  Google Scholar 

  • Ebers GC. 1988. Multiple scelrosis and other demyelinating diseases. In: Diseases of the Nervous System (Ed: A Asbury, G McKhann, W McDonald), WB Saunders, Philadelphia, pp1268–1291.

    Google Scholar 

  • Emerich DF, Winn SR, Harper J, Hammang JP, Baetge EE, Kordower JH. 1994. Implants of polymer-encapsulated human NGF-secreting cells in the non-human primate: Rescue and sprouting of degenerating cholinergic basal forebrain neurons. J Comp Neurol 349:148–164.

    CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. 1998. Neurogenesis in the adult human hippocampus. Nature Med 4:1313–1317.

    CAS  PubMed  Google Scholar 

  • Espinosa de los Monteros A., Baba H, Zhao PM, Pan T, Chang R, de Vellis J, Ikenaka K. 2001. Remyelination of the adult demyelinated mouse brain by grafted oligodendrocyte progenitors. Neurochemical Res 26:673–682.

    CAS  PubMed  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S. 2003. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta protein and the beta-amyloid precursor protein intracellular domain in vivo. Proc Nat Acad Sci USA 100:4162–4167.

    CAS  PubMed  Google Scholar 

  • Fischer W, Wictorin K, Björklund A, Williams LR, Varon S, Gage FH. 1987. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329:65–68.

    CAS  PubMed  Google Scholar 

  • Fisher LJ, Jinnah HA, Kale LC, Higgins GA, Gage FH. 1991. Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-DOPA. Neuron 6:371–380.

    CAS  PubMed  Google Scholar 

  • Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY. 1998. Engraftable human neural stem cells respond to developmental cues, replace neurons and express foreign genes. Nat Biotechnol 16:1033–1039.

    CAS  PubMed  Google Scholar 

  • Franklin RJ, Blakemore WF. 1997. Transplanting oligodendrocyte progenitors into the adult CNS. J Anat 190:23–33.

    PubMed  Google Scholar 

  • Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, Isacson O. 2000. Transplanted fetal striatum in Huntington’s disease: Phenotypic development and lack of pathology. Proc Nat Acad Sci USA 97:13877–13882.

    CAS  PubMed  Google Scholar 

  • Gage FH. 2000. Mammalian neural stem cells. Science 287:1433–1438.

    CAS  PubMed  Google Scholar 

  • Garbuzova-Davis S, Willing AE, Milliken M, Saporta S, Zigova T, Cahill DW, Sanberg PR. 2002. Positive effect of transplantation of hNT neurons (NTera 2/D1 cell-line) in a model of familial amyotrophic lateral sclerosis. Exp Neurol 174:169–180.

    PubMed  Google Scholar 

  • Glaser T, Perez-Bouza A, Klein K, Brustle O. 2005. Generation of purified oligodendrocyte progenitors from embryonic stem cells. FASEB J 19:112–114.

    CAS  PubMed  Google Scholar 

  • Glaser T, Perez-Bouza A, Klein K, Brüstle O. 2005. Generation of purified oligodendrocyte progenitors from embryonic stem cells. FASEB J 19(1):112–4. Epub 2004 Oct 14

    Google Scholar 

  • Goldman S. 2005. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotech 7:862–871.

    Google Scholar 

  • Gottlieb DI. 2002. Large scale sources of neural stem cells. Annu Rev Neurosci 25: 381–407.

    CAS  PubMed  Google Scholar 

  • Greenamyre JT, Shoulson I. 1994. Huntington Disease, In: Neurodegenrative disease (Ed: D Calne), WB Saunders, Philadelphia, pp 65–704.

    Google Scholar 

  • Gumpel M, Lachapelle F, Gansmuller A, Baulac M, Baron van Evercooren A, Baumann N.. 1987. Transplantation of human embryonic oligodendrocytes into shiverer brain. Ann NY Acad Sci 495:71–85.

    CAS  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX. 1994. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772–1775.

    CAS  PubMed  Google Scholar 

  • Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, Widner H, Brundin P, Rothwell JC, Odin P, Wenning GK, Morrish P, Gustavii B, Björklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O. 1999. Sequential bilateral transplantation in Parkinson’s disease: Effects of the second graft. Brain 122:1121–1132.

    PubMed  Google Scholar 

  • Hagell P, Brundin P. 2002. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropath Exp Neurol 60:741–752.

    Google Scholar 

  • Hardy J, Selkoe DJ. 2002. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297:353–356.

    CAS  PubMed  Google Scholar 

  • Harper PS. 1996. Huntington’s Disease, W.B. Saunders, Philadelphia.

    Google Scholar 

  • Harper JM, Krishnan C, Darman JS. 2004. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci USA 101:7123–7128.

    CAS  PubMed  Google Scholar 

  • Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J. 1999. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease. Brain 122:1667–1678.

    PubMed  Google Scholar 

  • Hefti F. 1986. NGF promotes survival of septal cholinergic neurons after fimbrial transection. J Neurosci 6:2155–2161.

    CAS  PubMed  Google Scholar 

  • Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe DJ. 2007. Reducing amyloid plaque burden via ex vivo gene delivery of an Aβ-degrading protease: A novel therapeutic approach to Alzheimer disease. PLoS Medicine 4:e264.

    Google Scholar 

  • Hoshimaru M, Ray J, Sah DW, Gage FH. 1996. Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc Nat Acad Sci USA 93:1518–1523.

    CAS  PubMed  Google Scholar 

  • Hudson AJ. 1990. Amyotrophic Lateral Sclerosis: Concepts in Pathogenesis and Etiology. University of Toronto Press, Toronto.

    Google Scholar 

  • Huntington’s Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983.

    Google Scholar 

  • Hwang DH, Lee HJ, Seok JI, Kim BG, Joo IS, Kim SU. 2009. Intrathecal transplantation of human neural stem cells over-expressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther 16:1234–1244.

    CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC. 2001. Metablic regulation of brain Abeta by neprilysin. Science 292:1550–1562.

    CAS  PubMed  Google Scholar 

  • Jeong SW, Chu K, Kim MH, Kim SU, Roh JK. 2003. Human neural stem cell transplantation in experimental intracerebral hemorrhage. Stroke 34:2258–2263.

    PubMed  Google Scholar 

  • Jiao S, Gurevich V, Wolff JA. 1993. Long-term correction of rat model of Parkinson’s disease by gene therapy. Nature 362:450–453.

    CAS  PubMed  Google Scholar 

  • Kang UJ, Fisher LJ, Joh TH, O’Malley KL, Gage FH. 1993. Regulation of dopamine production by genetically modified primary fibroblasts. J Neurosci 13:5203–5211.

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y. 2000. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40.

    CAS  PubMed  Google Scholar 

  • Kerr DA, Lladó J, Shamblott MJ, Maragakis NJ, Irani DN, Crawford TO, Krishnan C, Dike S, Gearhart JD, Rothstein JD. 2003. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 23:5131–5140.

    CAS  PubMed  Google Scholar 

  • Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R. 2002. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56.

    CAS  PubMed  Google Scholar 

  • Kim M, Lee ST, Chu K, Kim SU. 2008. Stem cell-based cell therapy for Huntington disease: A review. Neuropathology 28:1–9.

    CAS  PubMed  Google Scholar 

  • Kim SU. 2004. Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24:159–174.

    PubMed  Google Scholar 

  • Kim SU, deVellis J. 2009. Stem cell-based cell therapy in neurological diseases: A review. J Neurosci Res 88:2183–2200.

    Google Scholar 

  • Kim SU, Park IH, Kim TH, Kim KS, Choi HB, Hong SH, Bang JH, Lee MA, Joo IS, Lee CS, Kim YS. 2006. Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology 26:129–140.

    PubMed  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewitcz O. 1988. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Eng J Med 318:876–880.

    CAS  PubMed  Google Scholar 

  • Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN. 2005. GDNF delivery using human neural progenitor cells in a rat model of ALS. Human Gene Ther 16:509–521.

    CAS  PubMed  Google Scholar 

  • Klein RL, Hamby ME, Sonntag CF, Millard WJ, King MA, Meyer EM. 2002. Measurements of vector-derived neurotrophic factor and green fluorescent protein levels in the brain. Methods Oct 28(2):286–92.

    Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L. 2000. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569.

    CAS  PubMed  Google Scholar 

  • Kordower JH, Goetz CG, Freeman TB, Olanow CW. 1997a. Doparminergic transplants in patients with Parkinson’s disease: Neuroanatomical correlates of clinical recovery. Exp Neurol 144:41–46.

    CAS  PubMed  Google Scholar 

  • Kordower JH, Chen EY, Winkler C, Fricker R, Charles V, Messing A, Mufson EJ, Wong SC, Rosenstein JM, Björklund A, Emerich DF, Hammang J, Carpenter MK. 1997b. Grafts of EGFresponsive neural stem cells derived from GFAP-hNGF transgenic mice: Trophic and tropic effects in a rodent model of Huntington’s disease. J Comp Neurol 387:96–113.

    CAS  PubMed  Google Scholar 

  • Kordower JH, Tuszynski DW 1999. Fetal neuronal grafting for CNS regeneration. In: CNS Regeneration, Tuszynski DW, Kordower JH (Eds), pp 159–182, Academic Press, San Diego.

    Google Scholar 

  • Kosuga M, Sasaki K, Tanabe A, Li XK, Okawa H, Ogino I, Okuda O, Arai H, Sakuragawa N, Kamata Y, Azuma N, Suzuki S, Yamada M, Okuyama T. 2001. Engraftment of genetically engineered amniotic epithelial cells corrects lysosomal storage in multiple areas of the brain in MPS VII mice. Mol Ther 3:39–48.

    Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H. 2004. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9:189–197.

    CAS  PubMed  Google Scholar 

  • Lachapelle F, Gumpel M, Baulac C, Jacque C. 1983. Transplantation of fragments of CNS into the brain of shiverer mutant mice: Extensive myelination of transplanted oligodendrocytes. Dev Neurosci 6:326–334.

    Google Scholar 

  • Lang AE, Lozano AM. 1998a. Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053.

    CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM. 1998b. Parkinson’s disease. Second of two parts. N Engl J Med 339:1130–1143.

    CAS  PubMed  Google Scholar 

  • Learish RD, Brustle O, Zhang SC, Duncan ID. 1999. Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutants in widespread formation of myelin. Ann Neurol 46:716–722.

    CAS  PubMed  Google Scholar 

  • Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU. 2007a. Brain transplantation of human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25:211–224.

    Google Scholar 

  • Lee HJ, Kim KS, Kim EJ, Park IH, Kim SU. 2007b. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 1:e156.

    Google Scholar 

  • Lee HJ, Park IH, Kim HJ, Kim SU. 2009a. Human neural stem cells overexpressing glial cell line derived neurotrophic factor (GDNF) promote functional recovery and neuroprotection in experimental cerebral hemorrhage. Gene Ther 16:1066–1076.

    CAS  PubMed  Google Scholar 

  • Lee HJ, Kim MK, Kim HJ, Kim SU. 2009b. Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One 4:e5586.

    PubMed  Google Scholar 

  • Lee HJ, Kim SU. 2010. Human neural stem cells genetically modified to overexpress BDNF in mouse stroke model: Behavioral improvement and neuroprotection. J Neurosci Res, in press.

    Google Scholar 

  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. 2000. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotech 18:675–679.

    CAS  Google Scholar 

  • Lee ST, Chu K, Park JE, Lee K, Kang L, Kim SU, Kim M. 2005. Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res 52:243–249.

    CAS  PubMed  Google Scholar 

  • Lee ST, Park JE, Lee K, Kang L, Chu K, Kim SU, Kim M, Roh JK. 2006. Noninvasive method of immortalized neural stem-like cell transplantation in an experimental model of Huntington’s disease. J Neurosci Meth 52:250–254.

    Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK. 2008. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in hemorrhagic stroke. Brain 131:616–629.

    PubMed  Google Scholar 

  • Le Gros Clark WE. 1940. Neuronal differentiation in implanted foetal cortical tissue. Journal of Neurology and Psychiatry 3:263–284.

    Google Scholar 

  • Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD, et al. 1990. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247:574–577.

    CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A. 2004. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Medicine 10 suppl:S42–S50.

    PubMed  Google Scholar 

  • Lindvall O, Kokaia Z. 2006. Stem cells for the treatment of neurological disorders. Nature 441:1094–1096.

    CAS  PubMed  Google Scholar 

  • Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC. 2005. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 23(2):215–21. Epub 2005 Jan 30.

    Google Scholar 

  • Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW. 2000. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after transplantation. Proc Natl Acad Sci USA 97:6126–6131.

    CAS  PubMed  Google Scholar 

  • Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH. 2000. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329.

    CAS  PubMed  Google Scholar 

  • Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E. 2003. Neprilysin gene transfer reduces human amyloid patholgy in trasgenic mice. J Neurosci 23:1992–1996.

    CAS  PubMed  Google Scholar 

  • Marshak DR, Gardner RL, Gottlieb D. 2001. Stem Cell Biology. Cold Spiring Harbor Laboratory Press, New York.

    Google Scholar 

  • Marshall J, Thomas DJ. Cerebrovascular disease. 1988. In: Diseases of the Nervous System (Ed: A Asbury, G McKhann, W McDonald), WB Saunders, Philadelphia, pp 1101–1135.

    Google Scholar 

  • McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH. 2004. Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219.

    PubMed  Google Scholar 

  • McFarlin DE, McFarland HF. 1982. Multiple sclerosis. N Eng J Med 307:1183–1188.

    CAS  PubMed  Google Scholar 

  • McKay RG. 1997. Stem cells in the central nervous system. Science 276: 66–71.

    CAS  PubMed  Google Scholar 

  • Meikle PJ, Hopwood JJ, Clague AE, Carey WF. 1999. Prevalence of lysosomal storage disorders. J Am Med Ass 281:249–254.

    CAS  PubMed  Google Scholar 

  • Melchor JP, Pawlak R, Strickland S. 2003. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta degradation and inhibit Abeta-induced neurodegeneration. J Neurosci 23:8867–8871.

    CAS  PubMed  Google Scholar 

  • Meng XL, Shen JS, Ohashi T, Maeda H, Kim SU, Eto Y. 2003. Brain transplantation of genetically engineered human neural stem cells transduced with beta-glucuronidase globally corrects lysosomal storage and brain lesions in mucopolysaccharidosis VII mice. J Neuosci Res74:266–277.

    CAS  PubMed  Google Scholar 

  • Miles GB, Yohn DC, Wichterle H. 2004. Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24:7848–7858.

    CAS  PubMed  Google Scholar 

  • Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, Hersh LB, Thiele DL. 2003. Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Nat Acad Sci USA 100:6221–6226.

    CAS  PubMed  Google Scholar 

  • Modo M, Stroemer RP, Tang E, Patel S, Hodges H. 2002. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33:2270–2278.

    PubMed  Google Scholar 

  • Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J, Wang X, Yu G, Esposito L,Mucke L, Gan L. 2006. Antiamyloidogenic and neuroprotective functions of cathepsin B: Implications for Alzhemer’s disease. Neuron 51:703–714.

    CAS  PubMed  Google Scholar 

  • Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS, Hong SH, Park IH, Kim SU. 2007. Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS ONE 2/e1272:1–18.

    Google Scholar 

  • Nakao N, Itakura T. 2000. Fetal tissue transplants in animal models of Huntington’s disease: The effects on damaged neuronal circuitry and behavioral deficits. Prog Neurobiol 61:313–338.

    CAS  PubMed  Google Scholar 

  • Nistor GI, Totoiu MO, Haque N. 2005. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396.

    PubMed  Google Scholar 

  • Olanow CW, Kordower J, Freeman T. 1996. Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci 19:102–109.

    CAS  PubMed  Google Scholar 

  • Panickar KS, Nonner D, Barrett JN. 2005. Overexpression of Bcl-XL protects septal neurons from prolonged hypoglycemia and from acute ischemia-like stress. Neuroscience 135:73–80.

    CAS  PubMed  Google Scholar 

  • Park IH, Zhao R, West JA. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 415:141–146.

    Google Scholar 

  • Paty D, Ebers GC. 1998. Multiple Sclerosis. FA Davis, Philadelphia.

    Google Scholar 

  • Pérez-Navarro E, Canudas AM, Akerund P, Alberch J, Arenas E. 2000. Brain-derived neurotrophic factor, NT-3 and NT-3/4 prevent the death of striatal projection neurons in rodent model of Huntington’s disease. J Neurochem 75:2190–2199.

    PubMed  Google Scholar 

  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. 1979. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647.

    CAS  PubMed  Google Scholar 

  • Ramon y Cajal S. 1928. Degeneration and Regeneration of the Nervous System, Oxford University Press, London.

    Google Scholar 

  • Ranson SW. 1909. Transplantation of spinal ganglion into the brain. Quaterly Bulletin of Northwestern University Medical Schools 11:176–178.

    Google Scholar 

  • Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY. 2007. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci USA 104:12175–12180.

    CAS  PubMed  Google Scholar 

  • Renfranz PJ, Cunningham M, McKay R. 1991. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66:713–729.

    CAS  PubMed  Google Scholar 

  • Roberts TJ, Price J, Williams SC, Modo M. 2006. Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease. Neuroscience 139:1187–1199.

    CAS  PubMed  Google Scholar 

  • Rowland LP, Shneider NA. 2001. Amyotrophic lateral sclerosis. New Eng J Med 344: 1688–1700.

    CAS  PubMed  Google Scholar 

  • Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MC, McLarnon JG, Kim SU. 2004. Proactive transplantation of human neural stem cells blocks neuronal cell death in rat model of Huntington disease. Neurobiol Disease 16: 68–77.

    CAS  Google Scholar 

  • Ryu MY, Lee MA, Ahn YH, Kim KS, Yoon SH, Snyder EY, Cho KG, Kim SU. 2005. Brain transplantation of genetically modified neural stem cells in parkinsonian rat. Cell Transplant 14:193–202.

    CAS  PubMed  Google Scholar 

  • Sah DW, Ray J, Gage F. 1997. Bipotent progenitor cell lines from the human CNS. Nat Biotech 15, 574–580.

    CAS  Google Scholar 

  • Saporta S, Borlongan CV, Sanberg PR. 1999. Neural transplantation of human teratocarcinoma neurons into ischemic rats. A quantitative dose-response analysis of cell survival and behavioral recovery. Neuroscience 180:519–525.

    Google Scholar 

  • Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR. 2002. Cell transplantation for stroke. Ann Neurol 52:266–275.

    PubMed  Google Scholar 

  • Seilhean D, Gansmüller A, Baron-Van Evercooren A, Gumpel M, Lachapelle F. 1996. Myelination by transplanted human and mouse CNS tissue after long-term cryopreservation. Acta Neuropath 91:82–88.

    CAS  PubMed  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. 1998. Derivation of pluripotent stem cells from cultured juman primordial germ cells. Proc Natl Acad Sci USA 95:13726–13731.

    CAS  PubMed  Google Scholar 

  • Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS, Studer L, Lee SH. 2004. Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J Neurosci 24:843–852.

    CAS  PubMed  Google Scholar 

  • Sinden JD, Rashid-Doubell F, Kershaw TR, Nelson A, Chadwick A, Jat PS, Noble MD, Hodges H, Gray JA. 1997. Recovery of spatial learning by grafts of a conditionallyt immortalized hippocampal neuroepithelial cell line into the ischemia-lesioned hippocampus. Neuroscience 23:599–608.

    Google Scholar 

  • Sly WS, Vogler C. 2002. Brain directed gene therapy for lysosomal storage disease: Going well beyond the blood-brain barrier. Proc Natl Acad Sci USA 99:5760–5762.

    CAS  PubMed  Google Scholar 

  • Snyder EY, Deitcher DL, Walsh C. 1992. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51.

    CAS  PubMed  Google Scholar 

  • Snyder EY, Taylor RM, Wolfe JH. 1995. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374:367–370.

    CAS  PubMed  Google Scholar 

  • Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, Van Damme P, Rutten B, Man WY, De Mol M, Wyns S, Manka D, Vermeulen K, Van Den Bosch L, Mertens N, Schmitz C, Robberecht W, Conway EM, Collen D, Moons L, Carmeliet P. 2005. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neurosci 8: 85–92.

    CAS  PubMed  Google Scholar 

  • Studer L, Tabar V, McKay R. 1998. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1:290–295.

    CAS  PubMed  Google Scholar 

  • Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N. 2005. Dopaminergic neurons generated from monkey ES cells function in a Parkinson primate model. J Clin Invest 115:102–108.

    CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872.

    CAS  PubMed  Google Scholar 

  • Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y. 2000. Dynamic expression of bHLH Olig family members: Implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Devel 99:143–148.

    CAS  PubMed  Google Scholar 

  • Taylor RM, Wolfe JH. 1997. Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of betaglucuronidase. Nature Med 3:771–774.

    CAS  PubMed  Google Scholar 

  • Temple S. 2001. The development of neural stem cells. Nature 414:112–117.

    CAS  PubMed  Google Scholar 

  • Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F, McCusker E, Frackowiak RS. 2002. The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828.

    CAS  PubMed  Google Scholar 

  • Thompson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998. Embryonic stem cell line derived from human blastocysts. Science 282:1145–1147.

    Google Scholar 

  • Thompson WG. 1890. Succesful brain grafting. New York Medical Journal 51:701–702.

    Google Scholar 

  • Tuszynski DW, U HS, Amaral DG, Gage FH. 1990. Nerve growth factor infusion in primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci 10:3604–3614.

    CAS  PubMed  Google Scholar 

  • Tuszynski DW. 2002. Gene therapy for neurodegenerative disorders. Lancet Neurol 1:51–57.

    PubMed  Google Scholar 

  • Tuszynski DW, Thal L, Pay M, Salmon DP, U HS, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J. 2005. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Medicine 11:551–555.

    CAS  PubMed  Google Scholar 

  • Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. 2001. Resolution of stroke deficits following contalateral grafts of conditionally immortlized neuroepithelial stem cells. Stroke 32:1012–1019.

    CAS  PubMed  Google Scholar 

  • Visnyei K, Tatsukawa KJ, Erickson RI, Simonian S, Oknaian N, Carmichael ST, Kornblum HI. 2006. Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion. Exp Neurol 197:465–474.

    PubMed  Google Scholar 

  • Wagner J, Akerud P, Castro DS, Holm PC, Canals JM, Snyder EY, Perlmann T, Arenas E. 1999. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat Biotech 17:653–659.

    CAS  Google Scholar 

  • Watabe K, Ohashi T, Sakamoto T, Kawazoe Y, Takeshima T, Oyanagi K, Inoue K, Eto Y, Kim SU. 2000. Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J Neurosci Res 60:511–519.

    CAS  PubMed  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM. 2002. Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385–397.

    CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. 1981. Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis.. Ann Neurol 10:122–126.

    CAS  PubMed  Google Scholar 

  • Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G, Roy NS, Goldman SA. 2004. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nature Med 10:93–97.

    CAS  PubMed  Google Scholar 

  • Wolff JA, Fisher LJ, Xu L, Jinnah HA, Langlais PJ, Iuvone PM, O’Malley KL, Rosenberg MB, Shimohama S, Friedmann T, et al. 1989. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci USA 86:9011–9014.

    CAS  PubMed  Google Scholar 

  • Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johe K, Hatfield G, Koliatsos VE. 2006. Human neural stem cell grafts ameliorate motor neuron disease in SOD1 transgenic rats. Transplantation 82:865–875.

    PubMed  Google Scholar 

  • Yandava B, Billinghurst L, Snyder E. 1999. Global cell replacement is feasible via neural stem cell transplantation: Evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 96:7029–7034.

    CAS  PubMed  Google Scholar 

  • Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV. 2006. Transplantation of neural stem cells exerts neuroprotection in a rat model of Parkinson disease. J Neurosci 26:12497–12511.

    Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Thompson.JA. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920.

    CAS  PubMed  Google Scholar 

  • Zhang SC, Ge B, Duncan ID. 1999. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA 96:4089–4094.

    CAS  PubMed  Google Scholar 

  • Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. 2002. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischmica brain of rats. Exp Neurol 174:11–20.

    PubMed  Google Scholar 

  • Zheng C, Nennesmo I, Fadeel B, Henter JI. 2004. Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 56:564–567.

    CAS  PubMed  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ. 2000. Identification of a novel family of oligodendrocyte lineage specific basic helix loop helix transcription factors. Neuron 25:331–343.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from KOSEF and the Canadian Myelin Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung U. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Kim, S.U. (2011). Regenerative Medicine in the Central Nervous System: Stem Cell-Based Gene-Therapy. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_24

Download citation

Publish with us

Policies and ethics