Skip to main content

A Micromechanical Model for Polycrystalline Shape Memory Alloys – Formulation and Numerical Validation

  • Conference paper
  • First Online:
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

  • 837 Accesses

Abstract

The specific material properties of shape memory alloys are due to the formation of martensitic microstructures. In this contribution, we develop a strategy to model the material behavior based on energy considerations: we first present narrow bounds to the elastic energy obtained by lamination of the multi-well problem in the monocrystalline case. These considerations are then extended to polycrystals and compared to a convexification bound. Due to the acceptably low difference between convexification lower and lamination upper bound,we use the convexification bound to establish a micromechanical model which, on the basis of physically well motivated parameters such as elastic constants and transformation strains, is able to represent a variety of aspects of the material behavior such as pseudoelasticity, pseudoplasticity and martensite reorientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal. 100, 1987, 13–52.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Bartel and K. Hackl, A novel approach to the modelling of single-crystalline materials undergoing martensitic phase-transformations, Mat. Sci. Eng. A 481, 2008 371–375.

    Article  Google Scholar 

  3. K. Bhattacharya, Microstructure of Martensite – Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, New York, 2003.

    Google Scholar 

  4. C. Bouvet, S. Calloch and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, Eur. J. Mech. A-Solids 23, 2004, 37–61.

    Article  MATH  MathSciNet  Google Scholar 

  5. O.P. Bruno, F. Reitich and P.H. Leo, The overall elastic energy of polycrystalline martensitic solids, J. Mech. Phys. Solids 44, 1996, 1051–1101.

    Article  Google Scholar 

  6. D. Christ and S. Reese, Finite-element modelling of shape memory alloys – A comparison between small-strain and large-strain formulations, Mat. Sci. Eng. A 481, 2008, 343–346.

    Article  Google Scholar 

  7. B. Dacorogna, Quasiconvexification and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal. 46, 1982, 102–118.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Govindjee, K. Hackl and R. Heinen, An upper bound to the free energy of mixing by twincompatible lamination for n-variant martensitic phase transformations, Continuum Mech. Thermodyn. 18, 2007, 443–453.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Govindjee, A. Mielke and G.J. Hall, The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis, J. Mech. Phys. Solids 51, 2003, 763.

    Article  MathSciNet  Google Scholar 

  10. S. Govindjee and C. Miehe, A mult-variant martensitic phase transformation model: Formulation and numerical implementation, Comput. Meth. Appl. Mech. Engrg. 191, 2001, 215–238.

    Article  MATH  Google Scholar 

  11. S. Grabe and O.T. Bruhns, On the viscous and strain rate dependent behavior of polycrystalline NiTi, Int. J. Solids Struct. 45, 2008, 1876-Ű1895.

    Article  MATH  Google Scholar 

  12. K. Hackl and F.D. Fischer, On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. R. Soc. A 464, 2008, 117–132

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Hackl and R. Heinen, A micromechanical model for pre-textured polycrystalline shape memory alloys including elastic anisotropy, Continuum Mech. Thermodyn. 19, 2008, 499–510.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Hackl and R. Heinen, A lamination upper bound to the free energy of n-variant polycrystalline shape memory alloys, J. Mech. Phys. Solids 56, 2008, 2832–2843.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Hackl, R. Heinen, W.W. Schmahl and M. Hasan, Experimental verification of a micromechanical model for polycrystalline shape memory alloys in dependence of martensite orientation distributions, Mat. Sci. Eng. A 481, 2008, 347–350.

    Article  Google Scholar 

  16. R. Heinen and K. Hackl, On the calculation of energy-minimizing phase fractions in shape memory alloys, Comput. Meth. Appl. Mech. Engrg. 196, 2007, 2401–2412.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Heinen, K. Hackl, W. Windl and M. Wagner, Microstructural evolution during multiaxial deformation of pseudoelastic NiTi studied by first-principles-based micromechanical modeling, Acta Materialia 57, 2009, 3856–3867.

    Article  Google Scholar 

  18. D. Helm and P. Haupt, Shape memory behaviour: Modelling within continuum thermodynamics, Int. J. Solids Struct. 40, 2003, 827–849.

    Article  MATH  Google Scholar 

  19. R. Kohn, The relaxation of a double-well energy, Continuum Mech. Thermodyn. 3, 1991, 193–236.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rat. Mech. Anal. 162, 2002, 137–177.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Continuum Mech. Thermodyn. 15, 2003, 351–382.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Müller and O.T. Bruhns, A thermodynamic finite-strain model for pseudoelastic shape memory alloys, Int. J. Plasticity 22, 2006, 1658–1682.

    Article  MATH  Google Scholar 

  23. M. Ortiz and L. Stainier, The variational formulation of viscoplastic constitutive updates, Comput. Meth. Appl. Mech. Engrg. 171, 1999, 419–444.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Reese and C. Christ, Finite deformation pseudo-elasticity of shape memory alloys – Constitutive modelling and finite element implementation, Int. J. Plasticity 24, 2008, 455–482.

    Article  MATH  Google Scholar 

  25. P. Sedlák, H. Seiner, M. Landa, V. Novák, P. Sittner and L. Mañosa, Elastic constants of bcc austenite and 2H orthorhombic martensite in CuA1Ni shape memory alloy. Acta Materialia 53, 2005, 3643–3661.

    Article  Google Scholar 

  26. V. Smyshlyaev and J. Willis, A ‘non-local’ variational approach to the elastic energy minimization of martensitic polycrystals, Proc. R. Soc. London A 454, 1998, 1573–1613.

    Article  MATH  MathSciNet  Google Scholar 

  27. V. Smyshlyaev and J. Willis, On the relaxation of a three-well energy, Proc. R. Soc. London A 455, 1998, 779–814.

    MathSciNet  Google Scholar 

  28. S. Stupkiewicz and H. Petryk, Modelling of laminated microstructures in stressinduced martensitic transformations, J. Mech. Phys. Sol. 50, 2002, 2303–2331.

    Article  MATH  MathSciNet  Google Scholar 

  29. M.F.-X. Wagner and W. Windl, Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Materialia 56, 2008, 6232–6245.

    Article  Google Scholar 

  30. L. Truskinovsky, About the normal growth apporximation in the dynamical theory of phasetransitions, Continuum Mech. Thermodyn. 6, 1994, 185–208.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Heinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Heinen, R., Hackl, K. (2010). A Micromechanical Model for Polycrystalline Shape Memory Alloys – Formulation and Numerical Validation. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics