Skip to main content

Controlling Parameters on Facies Geometries of the Bahamas, an Isolated Carbonate Platform Environment

  • Chapter
  • First Online:
Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters

Abstract

The Bahamas are among the most extensively studied carbonate regions in the world, and a number of phenomena typical of calcareous environments have been first observed in the Bahamas. Early geological research in the Bahamas was undertaken by Nelson (1853B) who surveyed their geography and topography. He noticed the “remarkable lowness of profile” and the dynamics of construction and destruction of the islands, outlined the biota and lithologies, described the formation of the carbonate rocks, and noticed the eolian origin of many Bahamian islands. Forty years later, the examination of modern carbonate environments rapidly progressed with the expedition of L. and A. Agassiz in 1893 (Agassiz 1894). Their explorations focused mainly on the fringing reefs of GE Great Bahama Bank. Research on abiotic carbonate components followed, by Vaughan (1914) who emphasized that carbonate constituents can originate from both skeletal secretion and chemical precipitation, and introduced the terms “organic” and “inorganic” limestones. Black (1933) first characterized the sedimentary facies on Great Bahama Bank and noted the significance of the widespread aragonitic mud. The sand-sized calcareous components of the Bahamas and their origin, including ooid sands, were described in detail in the classic papers by Illing (1954) and Newell et al. (1960).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abegg FE, Loope DB, Harris PM (2001) Carbonate eolianites – depositional models and diagenesis. In: Abegg FE, Harris PM, Loope DB (eds) Modern and ancient carbonate eolianites. SEPM Spec Publ 71:17–30

    Google Scholar 

  • Abel CE, Tracy BA, Vincent CL, Jensen RE (1989) Hurricane hindcast methodology and wave statistics for Atlantic and Gulf Hurricanes from 1956–1975. WIS Report 19. Coastal Engineering Research Center. Vicksburg, Mississippi, p 85

    Google Scholar 

  • Acker KL, Risk MJ (1985) Substrate destruction and sediment production by the boring sponge Cliona caribbaeaon Grand Cayman Island. J Sed Petrol 55:705–711

    Google Scholar 

  • Adey WH, Macintyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. GSA Bull 84:883–904

    Article  Google Scholar 

  • Agassiz A (1894) A reconnaissance of the Bahamas and of the elevated reefs of Cuba in the team yacht “Wild Duck”, January to April, 1893. Bull Mus Comp Zool Harvard Coll 17:1–281

    Google Scholar 

  • Andrews JE, Shepard FP, Hurley RJ (1970) Great Bahama Canyon. GSA Bull 81:1061–1078

    Article  Google Scholar 

  • Anselmetti FS, Eberli GP, Ding Z (2000) From the Great Bahama Bank into the Straits of Florida: a margin architecture controlled by sea-level fluctuations and ocean currents. GSA Bull 112:829–844

    Article  Google Scholar 

  • Atkinson LP, Berger T, Hamilton P, Waddell E, Leaman K, Lee TN (1995) Current meter observations in the Old Bahama Channel. J Geophys Res 100:8555–8560

    Article  Google Scholar 

  • Ball MM (1967) Carbonate sand bodies of Florida and the Bahamas. J Sed Petrol 37:556–591

    Google Scholar 

  • Ball MM (1972) Exploration methods for stratigraphic traps in carbonate rocks. In: King RE (ed) Stratigraphic oil and gas fields – classification, exploration methods and case histories. AAPG Mem 16:64–81

    Google Scholar 

  • Ball MM, Harrison CGA, Hurley RJ, Leist CE (1969) Bathymetry in the vicinity of the northeastern scarp of the Great Bahama Bank and Exuma Sound. Bull Mar Sci 19:243–252

    Google Scholar 

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis. Developments in Sedimentology 12, Elsevier, p 658

    Google Scholar 

  • Beach DK (1982) Depositional and diagenetic history of Pliocene-Pleistocene carbonates of Northwestern Great Bahama Bank; Evolution of a carbonate platform. Ph.D. thesis, University of Miami, p 447

    Google Scholar 

  • Beach DK, Ginsburg RN (1980) Facies succession of Pliocene-Pleistocene carbonates, northwestern Great Bahama Bank. AAPG Bull 64:1634–1642

    Google Scholar 

  • Bergman KL (2004) Seismic analysis of paleocurrent features in the Florida Straits: insights into the paleocurrent, upstream tectonics, and the Atlantic-Caribbean connection. Ph.D. thesis, University of Miami, p 190

    Google Scholar 

  • Bernet KH, Eberli GP, Anselmetti FS (1998) The role of orbital precession in creating marl/limestone alternations, Neogene, Santaren Channel, Bahamas. 15th international sedimentological congress, Alicante, Abstract: 191–192

    Google Scholar 

  • Bernet K, Eberli GP, Gilli A (2000) Turbidite frequency and composition in the distal part of the Bahamas. In: Swart PK, Eberli GP, Malone M, Sarg JF (eds) Proceedings of ODP, Sci. Results, 166: College Station, TX (Ocean Drilling Program), pp 45–60

    Google Scholar 

  • Betzler C, Reijmer JJG, Bernet K, Eberli GP, Frank T, Anselmetti FS (1999) Sedimentary patterns and geometries of the Bahamian outer carbonate ramp (Miocene and Lower Pliocene, Great Bahama Bank). Sedimentology 46:1127–1144

    Article  Google Scholar 

  • Black M (1933) The precipitation of calcium carbonate on the Great Bahama Bank. Geol Mag 832:455–466

    Article  Google Scholar 

  • Blair SM, Norris JN (1988) The deep-water species of Halimeda lamouroux(Halimedaceae, Chlorophyta) from San-Salvador Island, Bahamas – species composition, distribution and depth records. Coral Reefs 6:227–236

    Article  Google Scholar 

  • Boardman MR, Neumann CA (1984) Sources of periplatform carbonates: Northwest Providence Channel, Bahamas. J Sed Petrol 54:1110–1123

    Google Scholar 

  • Boothroyd JC, Hubbard DK (1975) Genesis of bedforms in mesotidal estuaries. In: Cronin LE (ed) Estuarine research, Geology and Engineering, 2. Academic, New York, pp 217–234

    Google Scholar 

  • Bosart LF, Schwartz BE (1979) Autumnal rainfall climatology of the Bahamas. Mon Weather Rev 107:1663–1672

    Article  Google Scholar 

  • Bosence D (1989) Aspects of carbonate deposition in the Caribbean. Proceedings Cumberland Geological Society 5(2):235–236

    Google Scholar 

  • Boss SK, Neumann AC (1993) Impact of Hurricane Andrew on carbonate platform environments, northern Great Bahama Bank. Geology 21:897–900

    Article  Google Scholar 

  • Boss SK, Rasmussen KA (1995) Misuse of Fischer plots as sea-level curves. Geology 23:221–224

    Article  Google Scholar 

  • Bosscher H, Schlager W (1992) Computer-simulation of reef growth. Sedimentology 39:503–512

    Article  Google Scholar 

  • Bourrouilh-Le Jan FG (1980) Hydrologie des nappes d’eau superficielles de l’ile Andros, Bahama; dolomitisation et diagenese de plaine d’estran en climat tropical humide. Bull des Centres de Recherches Exploration-Production Elf-Aquitaine 4(2):661–707

    Google Scholar 

  • Broecker WS, Sanyal A, Takahashi T (2000) The origin of Bahamian whitings revisited. Geophys Res Lett 27:3759–3760

    Article  Google Scholar 

  • Broecker WS, Takahashi T (1966) Calcium carbonate precipitation on the Bahamas Banks. J Geophys Res 71:1575–1602

    Article  Google Scholar 

  • Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfisch Scarus vetulaand Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol-Prog Ser 134:59–71

    Article  Google Scholar 

  • Budd DA, Land LS (1989) Geochemical imprint of meteoric diagenesis in Holocene ooid sands, Schooner Cays, Bahamas; correlation of calcite cement geochemistry with extant groundwaters. J Sed Petrol 60:361–378

    Google Scholar 

  • Bullard EG, Everett JE, Smith AG (1965) The fit of the continents around the Atlantic. Philos Trans R Soc Lond Ser A 1088:41–51

    Article  Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sed Geol 79:3–57

    Article  Google Scholar 

  • Caputo MV (1993) Eolian structures and textures in oolitic-skeletal calcarenites from the Quaternary of San Salvador Island, Bahamas; a new perspective on eolian limestones. In: Keith BD, Zuppann CW (eds) Mississippian oolites and modern analogs. AAPG Stud Geo 35:243–259

    Google Scholar 

  • Carew JL, Mylroie JE (1995) Depositional model and stratigraphy for the Quaternary geology of the Bahama Islands. In: Curran HA, White B (eds) Terrestrial and shallow marine geology of the Bahamas and Bermuda. GSA Special Paper 300:5–32

    Google Scholar 

  • Carew JL, Mylroie JE (1997) Geology of the Bahamas. In: Vacher HL, Quinn TM (eds) Geology and Hydrogeology of carbonate islands. Developments in Sedimentology 54, Elsevier, pp 91–140

    Google Scholar 

  • Carew JL, Mylroie JE (2001) Quaternary carbonate eolianites of the Bahamas: useful analogues for the interpretation of ancient rocks? In: Abegg FE, Harris PM, Loope DB (eds) Modern and ancient carbonate eolianites. SEPM Spec Publ 71:33–46

    Google Scholar 

  • Chalker BE, Barnes DJ, Dunlap WC, Jokiel PL (1988) Light and reef-building coral. Interdiscipl Sci Rev 13:22–237

    Article  Google Scholar 

  • Chiappone M, Sullivan KM, Sluka R (1997a) Reef invertebrates of the Exuma Cays, Bahamas: Part 1 – corals. Bahamas J Sci 4:30–36

    Google Scholar 

  • Chiappone M, Sullivan KM, Sluka R (1997b) Reef invertebrates of the Exuma Cays, Bahamas: Part 2 – octocorals, Part 1 – corals, continued. Bahamas J Sci 4:28–30

    Google Scholar 

  • Chiappone M, Sullivan KM, Lott C (1996) Hermatypic Scleractinian corals of the southeastern Bahamas: a comparison to western Atlantic reef systems. Carib J Sci 32:1–13

    Google Scholar 

  • Cloud PE Jr (1962) Environment of Calcium Carbonate deposition west of Andros Island, Bahamas. USGS Prof Paper 35:494

    Google Scholar 

  • Craton M (1986) A history of the Bahamas, 3rd edn. San Salvador Press, Waterloo Ontario, p 332

    Google Scholar 

  • Crevello PD, Schlager W (1980) Carbonate debris sheets and turbidites, Exuma Sound, Bahamas. J Sed Petrol 50:1121–1148

    Google Scholar 

  • Crutcher HL, Quayle RG (1974) Mariners world-wide climatic guide to tropical storms at sea. Naval Weather Service Command, U.S. Government Printing Office, Washington DC, p 246

    Google Scholar 

  • Cry GW (1965) Tropical cyclones of the North Atlantic Ocean: tracks and frequencies of hurricanes and tropical storms, 1871–1963. U. S. Weather Bureau Technical Paper 55:148

    Google Scholar 

  • Curran HA, White B (2001) The inchology of Holocene carbonate eolianites of the Bahamas. In: Abegg FE, Harris PM, Loope DB (eds) Modern and ancient carbonate eolianites. SEPM Spec Publ 71:47–56

    Google Scholar 

  • Dietz RS, Holden JC (1973) Geotectonic evolution and subsidence of Bahama platform, reply. GSA Bull 84:3477–3482

    Article  Google Scholar 

  • Dietz RS, Holden JC, Sproll WP (1970) Geotectonic evolution and subsidence of Bahama platform. GSA Bull 81:1915–1927

    Article  Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant stromatolites forming in normal salinity water. Nature 324:55–58

    Article  Google Scholar 

  • Dix GR, Patterson RT, Park LE (1999) Marine saline ponds as sedimentary archives of late Holocene climate and sea-level variation along a carbonate platform margin; Lee Stocking Island, Bahamas. Palaeogeogr Palaeoclim Palaeoecol 150:223–246

    Article  Google Scholar 

  • Doran E (1955) Land forms of the southeastern Bahamas. University of Texas Publications: 5509, p 38

    Google Scholar 

  • Dravis JJ (1982) Hardened subtidal stromatolites, Bahamas. Science 219:385–386

    Article  Google Scholar 

  • Dravis JJ (1979) Rapid and widespread generation of Recent oolitic hardgrounds on a high energy Bahamian platform, Eleuthra Bank, Bahamas. J Sed Petrol 49:195–208

    Google Scholar 

  • Dravis JJ (1977) Holocene sedimentary depositional environments on Eleuthera Bank, Bahamas. M.S. thesis, University of Miami, p 386

    Google Scholar 

  • Droxler AW, Schlager W (1985) Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology 13:799–802

    Article  Google Scholar 

  • Droxler AW, Schlager W, Whallon CC (1983) Quaternary aragonite cycles and oxygen-isotope record in Bahamian Carbonate ooze. Geology 11:235–239

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. AAPG Mem 1:108–121

    Google Scholar 

  • Eberli GP (2000) The record of Neogene sea-level changes in the prograding carbonates along the Bahamas Transect – Leg 166 synthesis. Proceedings of ODP, Sci. Results, 166: College Station, TX (Ocean Drilling Program), pp 167–177

    Google Scholar 

  • Eberli GP, Ginsburg RN (1987) Segmentation and coalescence of platforms, Tertiary, NW Great Bahama Bank. Geology 15:75–79

    Article  Google Scholar 

  • Eberli GP, Ginsburg RN (1989) Cenozoic progradation of NW Great Bahama Bank – A record of lateral platform growth and sea-level fluctuations. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin evolution. SEPM Spec Pub 44:339–351

    Google Scholar 

  • Eberli GP, Grammer GM, Harris PM (1998) Sequence stratigraphy and reservoir distribution in a modern carbonate platform. AAPG core workshop and field seminar, Guidebook, p 670

    Google Scholar 

  • Eberli GP, Kendall CGStC, Moore P, Whittle GL, Cannon R (1994) Testing a seismic interpretation of Great Bahama Bank with a computer simulation. AAPG Bull 78:981–1004

    Google Scholar 

  • Eberli GP, Swart PK, Malone M (1997a) Scientific Party. Proceedings of ODP, Init Repts, 166: College Station, TX (Ocean Drilling Program), p 850

    Google Scholar 

  • Eberli GP, Swart PK, McNeill DF, Kenter JAM, Anselmetti FS, Melim LA, Ginsburg RN (1997b) A synopsis of the Bahamas Drilling Project: results from two deep core borings drilled in the Great Bahama Bank. In: Eberli GP, Swart PK, Malone MJ et al (eds) Proceedings of ODP, Init Repts, 166: College Station, TX (Ocean Drilling Program), pp 23–41

    Chapter  Google Scholar 

  • Eberli GP, Anselmetti FS, Kenter JAM, McNeill DF, Ginsburg RN, Swart PK, Melim LA (2001) Calibration of seismic sequence stratigraphy with cores and logs. In: Ginsburg RN (ed) Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas drilling project. SEPM Spec Publ 70:241–266

    Google Scholar 

  • Emiliani C (1965) Precipitous continental slopes and considerations on the transitional crust. Science 147:145–148

    Article  Google Scholar 

  • Enos P (1974) Map of surface sediment facies of the Florida-Bahama Plateau. GSA Map Series MC-5, Boulder, CO

    Google Scholar 

  • Enos P (1983) Shelf environment. In: Scholle PA, Bebout DG, Moore CH (ed) Carbonate depositional environments. AAPG Mem 33:267–295

    Google Scholar 

  • Enos P (1991) Sedimentary parameters for computer modeling. In: Franseen EK, Watney WL, Kendall CSCG, Ross W (eds) Sedimentary modeling: computer simulation and methods for improved parameters definition. Bulletin of the Kansas Geological Survey 233:63–99

    Google Scholar 

  • Enos P, Perkins RD (1977) Quaternary sedimentation in South Florida. GSA Mem 147:198

    Google Scholar 

  • Ericsson DB, Ewing M, Heezen B (1952) Turbidity currents and sediments in the North Atlantic. AAPG Bull 36:489–511

    Google Scholar 

  • Fabricius FH (1977) Origin of marine ooids and grapestones. Contributions in Sedimentology 7, Schweitzerbart, Stuttgart, p 113

    Google Scholar 

  • Freeman-Lynde RP, Cita MA, Jadoul F, Miller EL, Ryan WVF (1981) Marine geology of the Bahama escarpment. Mar Geol 44:119–156

    Article  Google Scholar 

  • Freile D, Milliman JD, Hillis L (1995) Leeward bank margin Halimedameadows and draperies and their sedimentary importance on the western Great Bahama Bank slope. Coral Reefs 14:27–33

    Article  Google Scholar 

  • Fütterer DK (1974) Significance of the boring sponge Clionafor the origin of fine grained material of carbonate sediments. J Sed Petrol 44:79–84

    Google Scholar 

  • Gabb WM (1873) Topography and geology of Santo Domingo. Trans Am Phil Soc, n ser 15:49–259

    Article  Google Scholar 

  • Garrett P, Gould SJ (1984) Geology of New Providence Island, Bahamas. GSA Bull 95:209–220

    Article  Google Scholar 

  • Gebelein CD (1974) Guidebook for the modern bahamian platform environments. GSA Annual Meeting Fieldtrip Guide, p 93

    Google Scholar 

  • Gebelein CD, Steinen RP, Garrett P, Hoffman EJ, Queen JM, Plummer LN (1980) Subsurface dolomitization beneath the tidal flats of central west Andros Island, Bahamas. In: Zenger DH, Dunham JB, Ethington RL (eds) Concepts and models of dolomitization. SEPM Spec Publ 28:31–49

    Google Scholar 

  • Gibson TG, Schlee J (1967) Sediments and fossiliferous rocks from the eastern side of the Tongue of the Ocean, Bahamas. Deep-Sea Research 14:691–702

    Google Scholar 

  • Ginsburg RN, Shinn EA (1964) Distribution of the reef building community in Florida and the Bahamas. AAPG Bull 48:527

    Google Scholar 

  • Ginsburg RN (1976) Sedimentary record of paleoclimate in carbonate tidal flats. AAPG Bull 60:874–875

    Google Scholar 

  • Ginsburg RN (ed) (2001) Subsurface geology of a prograding carbonate platform margin. SEPM Spec Publ 70:207

    Google Scholar 

  • Ginsburg RN, James NP (1974) Holocene carbonate sediments of continental shelves. In: Burk CA, Drake CL (eds) Continental margins. Springer, New York, pp 137–155

    Google Scholar 

  • Ginsburg RN, Harris PM, Eberli GP, Swart PK (1991) The growth potential of a bypass margin, Great Bahama Bank. J Sed Petrol 61:976–987

    Google Scholar 

  • Ginsburg RN, Shinn EA (1994) Preferential distribution of reefs in the Florida reef tract: the past is the key to the present. In: Ginsburg RN (ed) Proceedings colloquium on global aspects of coral reefs: health, hazards, and history. RSMAS Univ Miami, p 21–27

    Google Scholar 

  • Gonzalez R, Eberli GP (1997) Sediment transport and sedimentary structures in a carbonate tidal inlet; Lee Stocking Island, Exumas Islands, Bahamas. Sedimentology 44:1015–1030

    Article  Google Scholar 

  • Glockhoff C (1973) Geotectonic evolution and subsidence of Bahama platform; discussion. GSA Bull 84:3473–3476

    Article  Google Scholar 

  • Grammer GM, Ginsburg RN (1992) Highstand versus lowstand deposition on carbonate platform margins – insight from quaternary foreslopes in the Bahamas. Mar Geol 103:125–136

    Article  Google Scholar 

  • Grammer GM, Ginsburg RN, Harris PM (1993) Timing of deposition, diagenesis, and failure of steep carbonate slopes in response to a high-amplitude/high-frequency fluctuation in sea level, Tongue of the Ocean, Bahamas. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy. AAPG Mem 57:107–131

    Google Scholar 

  • Graus RR, Macintyre IG, Herchenroder BE (1984) Computer simulation of the reef zonation at Discovery Bay, Jamaica: hurricane disruption and long term physical oceanographic control. Coral Reefs 3:59–68

    Article  Google Scholar 

  • Greenstein GJ (1993) Is the fossil record of regular echinoids really so poor? A comparison of living and subfossil assemblages. Palaios 8:587–601

    Article  Google Scholar 

  • Greenstein BJ, Meyer DL (1990) Mass mortality of Diadema antillarumadjacent to Andros Island Bahamas In: Myloroie J, Gerace D (eds) Fourth symposium on geology of the Bahamas. Bahamian field station, San Salvador, pp 159–168

    Google Scholar 

  • Haak AB, Schlager W (1989) Compositional variations in calciturbidites due to sea-level fluctuations, late Qaternary, Bahamas. Geol Rundsch 78:477–486

    Article  Google Scholar 

  • Halley RB, Harris PM, Hine AC (1983) Bank margin. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. AAPG Mem 33:463–506

    Google Scholar 

  • Hallock P, Cottey TL, Forward LB, Halas J (1986) Population biology and sediment production of Archias Angulatus (foraminifera) in Largo Sound, Florida. J Foraminifer Res 16:1–8

    Article  Google Scholar 

  • Hardie LA (1977) Sedimentation on the modern carbonate tidal flats of northwest Andros Island, Bahamas. John Hopkins Univ Stud Geol 22:202

    Google Scholar 

  • Hardie LA, Shinn EA (1986) Carbonate depositional environments, modern and ancient; Part 3: tidal flats. Colorado School Mines Quart 81(1):1–74

    Google Scholar 

  • Harris PM (1979) Facies anatomy and diagenesis of a Bahamian ooid shoal. Sedimenta 7, University of Miami, FL, p 163

    Google Scholar 

  • Harris PM (1983) The Joulters ooid shoal, Great Bahama Bank. In: Peryt TM (ed) Coated grains. Springer, New York, pp 132–141

    Chapter  Google Scholar 

  • Harris PM, Kowalik WS (1994) Satellite images of carbonate depositional settings – examples of reservoir- and exploration-scale geologic facies variation. AAPG, Methods in exploration 11:147

    Google Scholar 

  • Harris PM, Kerans C, Bebout DG (1993) Ancient outcrop and modern examples of platform carbonate cycles – implications for subsurface correlation and understanding reservoir heterogeneity. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy. AAPG Mem 57:475–492

    Google Scholar 

  • Hassan M (1998) Modification of carbonate substrata by bioerosion and bioaccretion on coral reefs of the Red Sea. Shaker Verlag, Aachen, p 124

    Google Scholar 

  • Hearty PJ, Kindler P (1997) The stratigraphy and surficial geology of New Providence and surrounding Islands, Bahamas. J Coastal Res 13:798–812

    Google Scholar 

  • Hein FJ, Risk MJ (1975) Bioerosion of coral heads: Inner patch reefs, Florida Reef Tract. Bull Mar Sci 25:133–138

    Google Scholar 

  • Herrera A de (1601–1615) Historia general de los hechos de los castellanos en las Islas y Tierra Firme del mar Océano que llaman Indias Occidentales

    Google Scholar 

  • Hess HH (1933) Submerged river valleys of the Bahamas. AGU transactions (14th anniversary meeting), pp 168–170

    Google Scholar 

  • Hess HH (1960) The origin of the Tongue of the Ocean and other great valleys of the Bahama Banks. 2nd Caribbean geological Conference, Mayaguez, Puerto Rico, pp 160–161

    Google Scholar 

  • Hickey BM, MacCready P, Elliott E, Kackel NB (2000) Dense saline plumes in Exuma Sound, Bahamas. J Geophy Res 105:11471–11488

    Article  Google Scholar 

  • Hidore JJ, Oliver JE (1993) Climatology: an atmospheric science. MacMillan, New York, p 423

    Google Scholar 

  • Hilgard EW (1871) On the geological history of the gulf of Mexico. Am J Sci 102:391–404

    Google Scholar 

  • Hilgard EW (1881) The later tertiary of the gulf of Mexico. Am J Sci 122:58–65

    Google Scholar 

  • Hillis H (1997) Coralgal reefs from a calcareous green alga perspective and a first carbonate budget. Proceedings of the 8th international coral reef symposium. Panama 1:761–766

    Google Scholar 

  • Hine AC (1977) Lily Bank, Bahamas; history of an active oolite sand shoal. J Sed Petr 47:1554–1581

    Google Scholar 

  • Hine AC, Neumann AC (1977) Shallow carbonate-bank-margin growth and structure, Little Bahama Bank, Bahamas. AAPG Bull 61:376–406

    Google Scholar 

  • Hine AC, Wilber RJ, Bane JM, Neumann AC, Lorenson KR (1981a) Offbank transport of carbonate sands along open, leeward bank margins: northern Bahamas. Mar Geol 42:327–348

    Article  Google Scholar 

  • Hine AC, Wilber RJ, Neumann AC (1981b) Carbonate sand bodies along contrasting shallow bank margins facing open seaways in northern Bahamas. AAPG Bull 65:261–290

    Google Scholar 

  • Hoskin CM, Reed JK (1985) Carbonate sediment production by the rock-boring urchin, Echinometra lucunterand associated endolithic infauna at Black Rock, Little Bahama Bank. In: Reaka ML (ed) The ecology of coral reefs. Symposia series for undersea research 3(1):151–162

    Google Scholar 

  • Hoskin CM, Reed JK, Mook DH (1986) Production and off-bank transport of carbonate sediment, Black Rock, southwest Little Bahama Bank. Mar Geol 73:125–144

    Article  Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs: a review. Coral Reefs 4:239–252

    Article  Google Scholar 

  • Illing MA (1952) Distribution of certain foraminifera within the littoral zone on the Bahama Banks. Ann Mag Nat Hist Ser 12(5):275–285

    Google Scholar 

  • Illing LV (1954) Bahamian calcareous sands. AAPG Bull 38:1–95

    Google Scholar 

  • Isemer HJ, Hasse L (1985) The Bunker climate atlas of the North Atlantic Ocean. Springer Verlag, New York, p 342

    Book  Google Scholar 

  • James NP (1983) Reef. In: Scholle PA, Bebout DG, Moore CH (ed) Carbonate depositional environments. AAPG Mem 33:345–440

    Google Scholar 

  • Jeans CV, Rawson PF (1980) Andros island, chalk and oceanic oozes – unpublished work of Maurice Black, 5th edn. Yorkshire Geol Soc Occasional Publications, p 100

    Google Scholar 

  • Johns E, Wilson WD, Molinary RL (1999) Direct observations of velocity and transport in the passages between the Intra-Americas Sea and the Atlantic Ocean, 1984–1996. J Geophys Res 104:25805–25820

    Article  Google Scholar 

  • Jokiel PL, Coles SL (1977) Effect of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–208

    Article  Google Scholar 

  • Kenter JAM, Anselmetti FS, Kramer P, Westphal H, Vandamme MGM (2002) Acoustic properties of “young” carbonate rocks, Ocean Drilling Program Leg 166 and Holes Clino and Unda, Western Great Bahama Bank. J Sed Res 72:129–137

    Article  Google Scholar 

  • Kier JS, Pilkey OH (1971) The influence of sea-level changes on sediment carbonate mineralogy, Tongue of the Ocean, Bahamas. Mar Geol 11:189–200

    Article  Google Scholar 

  • Kievman CM (1998) Match between late Pleistocene Great Bahama Bank and deep-sea oxygen isotope records of sea level. Geology 26:635–638

    Article  Google Scholar 

  • Kindler P (1995) New data on the Holocene stratigraphy of Lee Stocking island (Bahamas) and its relation to sea-level history. In: Curran HA, White B (eds) Terrestrial and shallow marine geology of the Bahamas and Bermuda. GSA Spec Paper 300:105–116

    Chapter  Google Scholar 

  • Kindler P, Hearty PJ (1995) Pre-Sangamonian eolianites in the Bahamas? New evidence from Eleuthera Island. Mar Geol 127:73–86

    Article  Google Scholar 

  • Kindler P, Hearty PJ (1996) Carbonate petrography as an indicator of climate and sea-level changes: new data from Bahamian Quaternary units. Sedimentology 43:381–399

    Article  Google Scholar 

  • Kindler P, Hearty PJ (1997) Geology of the Bahamas: architecture of Bahamian Islands. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Develoments in Sedimentology 54, Elsevier, pp 141–160

    Google Scholar 

  • Kindler P, Strasser A (2000) Palaeoclimatic significance of co-occurring wind- and water-induced sedimentary structures in the last-interglacial coastal deposits from Bermuda and the Bahamas. Sediment Geol 131:1–7

    Article  Google Scholar 

  • Kramer PA (2003) Synthesis of coral reef health indicators for the western Atlanitic: results of the AGRRA program 1997–2000. Atoll Res Bull 496:1–58

    Article  Google Scholar 

  • Kramer PA, Kramer PR, Ginsburg RN (2003) Assessment of the Andros island reef system, Bahamas (Part1: stony corals and algae). Atoll Res Bull 496:77–100

    Google Scholar 

  • Lang JC (1974) Biological zonation at the base of a reef. Am Scientist 62(3):272–281

    Google Scholar 

  • Lang JC, Wicklund RI, Dill RF (1988) Depth- and habitat-related bleaching of zooxanthellate reef organisms near Lee Stocking Island, Exuma Cays, Bahamas. Proceedings of the 6th international coral reef symposium, Townsville, Australia, pp 269–274

    Google Scholar 

  • Leaman KD, Vertes PS, Atkinson LP, Lee TN, Hamilton P, Waddell E (1995) Transport potential vorticity, and current/temperature structure across Northwest Providence and Santaren Channels and the Florida Current off Cay Sal Bank. J Geophys Res 100:8561–8569

    Article  Google Scholar 

  • Leg 101 Scientific Party (1988) Leg 101 – an overview. In: Austin JA Jr, Schlager W et al (ed) Proceedings of ODP, Sci Results, 101: College Station, TX (Ocean Drilling Program), pp 455–472

    Google Scholar 

  • Le Pichon X, Fox PJ (1971) Marginal offsets, fracture zones, and the early opening of the north Atlantic. J Geophys Res 76:6294–6308

    Article  Google Scholar 

  • Liddell WD, Avery WE, Ohlhorst SL (1997) Pattern of benthic community structure, 10–250 m, the Bahamas. Proceedings of the 8th International Coral Reef Symposium. Panama 1:437–442

    Google Scholar 

  • Linton D, Smith R, Alcolado P, Hanson C, Edwards P, Estrada R, Fisher T, Fernandez RG, Geraldes F, McCoy C, Vaughan D, Voegeli V, Warner G, Wiener J (2002) Status of coral reefs in the northern Caribbean and Atlantic Node of the GCRMN. In: Wilkinson C (ed) Status of coral reefs of the world. Australian Institute of Marine Science, Townsville, pp 277–302

    Google Scholar 

  • Littler MM, Littler DS (1984) A relative dominance model for biotic reefs. Advances in reef sciences. Proceedings of the joint meeting of the Atlantic Reef committee and international society of Reef studies, Miami, Florida, Abstract: 73–74

    Google Scholar 

  • Littler MM, Littler DS, Hanisak MD (1991) Deep-water rhodolith distribution, productivity and growth history at sites of formation and subsequent degradation. J Exp Biol Ecol 150:163–182

    Article  Google Scholar 

  • Logan BW (1961) Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. J Geo 69:517–533

    Article  Google Scholar 

  • Lugo-Fernandez A (1989) Wave height changes and mass transport on Tague Reef, North Coast of St. Croix, U.S. Virgin Islands. Unpub. Ph.D. disseration, The Louisiana State University and Agricultural and Mechanical College, p 205

    Google Scholar 

  • Lynts GW (1970) Conceptual model of the Bahamian platform for the last 135 million years. Nature 225:1226–1228

    Article  Google Scholar 

  • Macintyre IG (1972) Submerged reefs of eastern Caribbean. AAPG Bull 56:720–738

    Google Scholar 

  • Macintyre IG, Reid PR (1992) Comment on the origin of aragonite needle mud; a picture is worth a thousand words. J Sed Petrol 62:1095–1097

    Google Scholar 

  • Macintyre IG, Burke RB, Stuckenrath R (1977) Thickest recorded Holocene reef section, Isla Pérez core hole, Alacran Reef, Mexico. Geology 5:749–754

    Article  Google Scholar 

  • Macintyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:915–921

    Article  Google Scholar 

  • Macintyre IG, Reid RP, Steneck RS (1996) Growth history of stromatolites in a Holocene fringing reef, Stocking Island, Bahamas. J Sed Res 66:231–242

    Google Scholar 

  • Major RP, Bebout DG, Harris PM (1996) Facies heterogeneity in a modern ooid sand shoal – an analog for hydrocarbon reservoirs. Geological Circular 96-1, Bureau of Economic Geology, Univ Texas, Austin, p 30

    Google Scholar 

  • Maldonado M, Young CM (1996) Bathymetric patterns of sponge distribution on the Bahamian slope. Deep-Sea Res 43:897–915

    Article  Google Scholar 

  • Masaferro JL, Eberli GP (1999) Jurassic-Cenozoic structural evolution of the southern Great Bahama Bank. In: Mann P (ed) Caribbean basins: sedimentary basins of the world, Elsevier, pp 167–193

    Chapter  Google Scholar 

  • Masaferro JL, Poblet J, Bulnes M, Eberli GP, Dixon TH, McClay K (1999) Palaeogene-Neogene/present day (?) growth folding in the Bahamian foreland of the Cuban fold and thrust belt. J Geol Soc London 156:617–631

    Article  Google Scholar 

  • McKee ED, Ward WC (1983) Eolian Environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. AAPG Mem 33:131–170

    Google Scholar 

  • McNeill DF, Ginsburg RN, Chang SR, Kirschvink JL (1988) Magnetostratigraphic dating of shallow-water carbonates from San Salvador, Bahamas. Geology 16:8–12

    Article  Google Scholar 

  • McNeill DF, Eberli GP, Lidz BH, Swart PK, Kenter JAM (2001) Chronostratigraphy of prograding carbonate platform margins: A record of dynamic slope sedimentation, Western Great Bahama Bank. In: Ginsburg RN (ed) Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank. SEPM Spec Publ 70:101–134

    Google Scholar 

  • Meyerhoff AA, Hatten CW (1974) Bahamas salient of North America, Tectonic framework, stratigraphy and petroleum potential. AAPG Bull 58:1201–1239

    Google Scholar 

  • Milliman JD (1967) The geomorphology and history of Hogsty Reef, a Bahamian atoll. Bull Mar Sci 17:519–543

    Google Scholar 

  • Milliman JD, Freile D, Steinen RP, Wilber RJ (1993) Great Bahama Bank aragonitic muds: mostly inorganically precipitated, mostly exported. J Sed Petrol 63:589–595

    Google Scholar 

  • Monty CLV (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites, developments in Sedimentology 20, Elsevier, pp 193–250

    Chapter  Google Scholar 

  • Moore HB (1972) An estimate of carbonate production by macro-benthos in some tropical, soft-bottom communities. Mar Biol 17:145–148

    Google Scholar 

  • Morse JW, He S (1993) Influences of T, S, and PCO2on the pseudo-homogenous precipitation of CaCO3from seawater: implications for whiting formation. Mar Chem 41:291–297

    Article  Google Scholar 

  • Morse JW, Mackenzie FJ (1990) The geochemistry of sedimentary carbonates. Elsevier, Amsterdam, p 707

    Google Scholar 

  • Morse JW, Millero FJ, Thurmond V, Brown E, Ostlund HG (1984) The carbonate chemistry of Grand Bahama Bank waters: after 18 years another look. J Geophys Res 89:3604–3614

    Article  Google Scholar 

  • Morse JW, Gledhill DK, Millero FJ (2003) CaCO3precipitation kinetics in waters from the Great Bahama Bank: implications for the relationship between bank hydrochemistry and whitings. Geochim Cosmochim Acta 67:2819–2826

    Article  Google Scholar 

  • Mullins HT (1975) Stratigraphy and structure of Northeast Providence Channel, Bahamas and origin of the northwestern Bahama platform. M.S. thesis, Duke University, Durham, NC, p 203

    Google Scholar 

  • Mullins HT, Lynts GW (1977) Origin of the northwestern Bahama platform: review and reinterpretation. GSA Bull 88:1447–1461

    Article  Google Scholar 

  • Mullins HT, Neumann AC (1979) Deep carbonate bank margin structure and sedimentation in the northern Bahamas. In: Doyle LJ, Pilkey OH (eds) Geology of continental slopes. SEPM Spec Publ 28:165–192

    Google Scholar 

  • Mullins HT, Neumann AC, Wilber RJ, Hine AC, Chinburg SJ (1980) Carbonate sediment drifts in northern Straits of Florida. AAPG Bull 64:1701–1717

    Google Scholar 

  • Mullins HT, Heath KC, Van Buren HM, Newton CR (1984) Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank. Sedimentology 31:141–168

    Article  Google Scholar 

  • National Buoy Data Center (1973) Environmental conditions within specified geographic regions: offshore East and West coast of the United States and in the gulf of Mexico. U.S. Department of Commerce, p. 7/150–153

    Google Scholar 

  • Nelsen JE, Ginsburg RN (1986) Calcium-carbonate production by epibionts on Thalassiain Florida Bay. J Sed Petrol 56:622–628

    Google Scholar 

  • Nelson RJ (1853) On the geology of the Bahamas and on coral formations generally. Quaterly J Geol Soc London 9(35):200–215

    Article  Google Scholar 

  • Neumann AC, Ball MM (1970) Submersible observations in the Straits of Florida: geology and bottom currents. GSA Bull 81:2861–2874

    Article  Google Scholar 

  • Neumann AC, Land LS (1975) Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas: a budget. J Sed Petrol 45:763–786

    Google Scholar 

  • Neumann AC, Gebelein CD, Scoffin TP (1970) The composition, structure and erodability of subtidal mats, Abaco, Bahamas. J Sed Petrol 40:274–297

    Google Scholar 

  • Newell ND (1955) Bahamian platforms. In: Poldervaart A (ed) Crust of the Earth. Boulder, CO, pp 303–316

    Google Scholar 

  • Newell ND, Imbrie J (1955) Biogeological reconnaissance in the Bimini area, Great Bahama Bank. Trans N Y Acad Sci 18:3–14

    Article  Google Scholar 

  • Newell ND, Rigby JK (1957) Geological studies in the Great Bahama Bank. In: Le Blanc RJ, Breeding JG (eds) Regional aspects of carbonate sedimentation. SEPM Spec Publ 5:15–79

    Google Scholar 

  • Newell ND, Imbrie J, Purdy EG, Thurber DL (1959) Organism communities and bottom facies, Great Bahama Bank. Bull Am Mus Nat Hist 117:117–228

    Google Scholar 

  • Newell ND, Purdy EG, Imbrie J (1960) Bahamian oolitic sand. J Geo 68:481–497

    Article  Google Scholar 

  • Palmer MS (1979) Holocene facies geometry of the Leeward Bank Margin, Tongue of the Ocean, Bahamas. M.S. thesis, University of Miami, p 200

    Google Scholar 

  • Paull CK, Neumann AC, Bebout B, Zabielski V, Showers W (1992) Growth rate and stable isotopic character of modern stromatolites from San Salvador, Bahamas. Palaeogeogr Palaeoclim Palaeoecol 95:335–344

    Article  Google Scholar 

  • Paulus FJ (1972) The Geology of Site 98 and the Bahama Platform. In: Hollister CD, Ewing JI et al (eds) Proceedings of ODP, Init Repts, 11: College Station, TX (Ocean Drilling Program), pp 877–897

    Google Scholar 

  • Payri CE (1997) Hydrolithon reinboldiidistribution, growth and carbon production of a French Polynesian reef. 8th international coral reef symposium. Panama 1:755–760

    Google Scholar 

  • Perkins RD, Enos P (1968) Hurricane Betsy in the Florida-Bahamas area; geologic effects and comparison with Hurricane Donna. J Geo 76:710–717

    Article  Google Scholar 

  • Perkins RD, Dwyer GS, Rosoff DB, Fuller J, Baker PA, Lloyd RM (1994) Salina sedimentation and diagenesis; West Caicos Island, British West Indies. In: Purser B, Tucker M, Zenger D (eds) Dolomites; a volume in honour of Dolomieu. IAS Spec Publ 21:37–54

    Google Scholar 

  • Pilskaln CH, Neumann CA, Bane JH (1989) Periplatform carbonate flux in the northern Bahamas. Deep-Sea Res 36:1391–1406

    Article  Google Scholar 

  • Pomar L (1993) High-resolution sequence stratigraphy in prograding Miocene carbonates; application to seismic interpretation. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy; recent developments and applications. AAPG Mem 57:389–407

    Google Scholar 

  • Purdy EG (1963a) Recent calcium carbonate facies of the Great Bahama Bank. 1. Petrography and reaction groups. J Geo 71:334–355

    Article  Google Scholar 

  • Purdy EG (1963b) Recent calcium carbonate facies of the Great Bahama Bank. 2. Sedimentary facies. J Geo 71:472–497

    Article  Google Scholar 

  • Queen JM (1978) Carbonate sedimentology and ecology of some pelleted muds west of Andros Island, Great Bahama Bank. Ph.D. thesis, State University of New York, Stony Brook, p 401

    Google Scholar 

  • Rankey EC (2002) Spatial patterns of sediment accumulation on a Holocene carbonate tidal flat northwest Andros Island, Bahamas. J Sed Res 72:591–601

    Article  Google Scholar 

  • Rankey EC, Morgan J (2002) Quantified rates of geomorphic change on a modern carbonate tidal flat, Bahamas. Geology 30:583–586

    Article  Google Scholar 

  • Rankey EC, Enos P, Steffen K, Druke D (2004) Lack of impact of hurricane Michelle on tidal flats, Andros island, Bahamas: integrated remote sensing and field observations. J Sed Res 74:654–661

    Article  Google Scholar 

  • Rankey EC, Riegl B, Steffen, K (2006) Form, function, and in a tidally dominated ooid shoal, Bahamas. Sedimentology 53:1191–1210

    Article  Google Scholar 

  • Reaka-Kulda ML, O’Connell DO, Regan JD, Wicklund RI (1994) Effect of temperature and UV-B on different components of coral reef communities from the Bahamas. Proceedings colloquium on global aspects of coral reefs: health, hazards, and history. RSMAS Univ Miami, 126–131.

    Google Scholar 

  • Reeder SL, Rankey EC (2009) Controls on morphology and sedimentology of carbonate tidal deltas, Abacos, Bahamas. Marine Geology 267:141–155

    Article  Google Scholar 

  • Reid RP, Macintyre IG, Browne KM, Steneck RS, Miller T (1995) Modern marine stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33:1–17

    Article  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  Google Scholar 

  • Reijmer JJG, Schlager W, Bosscher H, Beets CJ, McNeill DF (1992) Pliocene/Pleistocene platform facies transition recorded in calciturbidites (Exuma Sound, Bahamas). Sediment Geol 78:171–179

    Article  Google Scholar 

  • Reijmer JJG, Schlager W, Droxler AW (1988) Site 632: Pliocene-Pleistocene sedimentation cycles in a Bahamian basin. In: Austin JA Jr, Schlager W et al (eds) Proceedings of ODP, Sci Results 101: College Station, TX (Ocean Drilling Program): 213–220

    Google Scholar 

  • Rendle, RH (2000) Quaternary slope development and sedimentology of the Western, Leeward Margin of Great Bahama Bank (ODP Leg 166). Ph.D. thesis, University of Kiel, Germany, p 199

    Google Scholar 

  • Richardson WS, Schmitz WJ Jr, Niiler PP (1969) The velocity structure of the Florida Current from the Straits of Florida to Cape Fear. Deep-Sea Res 16:225–231

    Google Scholar 

  • Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Int J Earth Sci 92:520–531

    Article  Google Scholar 

  • Riegl B, Manfrino C, Hermoyian C, Brandt M, Hoshino K (2003) Assessment of the coral reefs of the Turks and Caicos Islands (Part 1: stony corals and algae). Atoll Res Bull 496:461–480

    Article  Google Scholar 

  • Robbins LL, Blackwelder PL (1992) Biochemical and ultrastructural evidence for the origin of whitings: a biologically induced calcium carbonate precipitation mechanism. Geology 20:464–468

    Article  Google Scholar 

  • Robbins LL, Tao Y, Evans CA (1997) Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology 25:947–950

    Article  Google Scholar 

  • Roberts HH (1979) Reef-crest wave and current interactions and sediment transport. AAPG Bull 63:517

    Google Scholar 

  • Roberts HH, Rouse LJ Jr, Walker ND, Hudson JH (1982) Cold-water stress in Florida Bay and northern Bahamas; a product of winter cold-air outbreaks. J Sed Petrol 52:145–155

    Google Scholar 

  • Rose PR, Lidz B (1977) Diagnostic foraminiferal assemblages of shallow-water modern environments: South Florida and the Bahamas. Sedimenta 6, University of Miami, FL, p 55

    Google Scholar 

  • Rusnak GA, Nesteroff WD (1964) Modern turbidites: Terrigenous abyssal plain versus bioclastic basin. In: Miller RL (ed) Papers in marine geology. Macmillan, New York, pp 488–507

    Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platform. GSA Bull 92:197–211

    Article  Google Scholar 

  • Schlager W (2005) Carbonate sedimentology and sequence stratigraphy: SEPM concepts in Sedimentology and Paleontology 8, p 200

    Book  Google Scholar 

  • Schlager W, James NP (1978) Low-magnesian calcite limestone forming at the deep-sea floor, Tongue of the Ocean, Bahamas. Sedimentology 25:675–702

    Article  Google Scholar 

  • Schlager W, Chermak A (1979) Sediment facies of platform-basin transition, Tongue of the Ocean, Bahamas. In: Doyle LJ, Pilkey OH (eds) Geology of continental slopes. SEPM Spec Pub 27:193–208

    Google Scholar 

  • Schlager W, Ginsburg RN (1981) Bahama carbonate platforms – the deep and the past. Mar Geol 44:1–24

    Article  Google Scholar 

  • Schlager W, Austin JA et al (1985) Ocean drilling program; rise and fall of carbonate platforms in the Bahamas. Nature 315:632–633

    Article  Google Scholar 

  • Schlager W, Bourgeois F, Mackenzie G, Smit, J (1988) Boreholes at Great Isaac and Site 626 and the history of the Florida Straits. In: Austin JA Jr, Schlager W et al (eds) Proceedings of ODP, Sci Results, 101: College Station, TX (Ocean Drilling Program), 425–437

    Google Scholar 

  • Schlager W, Reijmer JJG, Droxler AW (1994) Highstand shedding of carbonate platforms. J Sed Petrol 64:270–281

    Google Scholar 

  • Schuchert C (1935) Historical geology of the Antillean-Caribbean region or the lands bordering the gulf of Mexico and the Caribbean Sea. Wiley, New York, p 811

    Google Scholar 

  • Sealey NE (1994) Bahamian Landscapes: an introduction to the physical geography of the Bahamas. Media Publishing, Nassau, Bahamas, p 128

    Google Scholar 

  • Sheridan RE (1971) Geotectonic evolution and subsidence of Bahama platform; discussion. GSA Bull 82:807–809

    Article  Google Scholar 

  • Sheridan RE (1974) Atlantic continental margin of North America. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 391–407

    Google Scholar 

  • Sheridan RE (1976) Sedimentary basins of the Atlantic margin of North America. Tectonophysics 36:113–132

    Article  Google Scholar 

  • Sheridan RE, Crosby JT, Bryan GM, Stoffa PL (1981) Stratigraphy and structure of Southern Blake Plateau, Northern Florida Straits and Northern Bahama platform from multichannel seismic reflection data. AAPG Bull 65:2571–2593

    Google Scholar 

  • Shinn EA (1983) Tidal flat. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. AAPG Mem 33:345–440

    Google Scholar 

  • Shinn EA, Ginsburg RN, Lloyd RM (1965) Recent supratidal dolomite from Andros Island, Bahamas. In: Pray LC, Murray RC (eds) SEPM Spec Publ 13:112–123

    Google Scholar 

  • Shinn EA, Lloyd RM, Ginsburg RN (1969) Anatomy of a modern carbonate tidal flat. J Sed Petrol 53:1202–1228

    Google Scholar 

  • Shinn EA, Steinen RP, Dill RF, Major RP (1993) Lime-mud layers in high energy tidal channels: a record of hurricane deposition. Geology 21:603–606

    Article  Google Scholar 

  • Shinn EA, Steinen RP, Lidz BH, Swart PK (1989) Whitings, a sedimentologic dilemma. J Sed Petrol 59:147–161

    Google Scholar 

  • Shore and Beach (1972) Surface water temperature and density – Atlantic Coast, North and South America. Shore Beach 40:37–43

    Google Scholar 

  • Smith CL (1940) The Great Bahama Bank. J Mar Res 3:147–189

    Google Scholar 

  • Smith FGW (1948) Atlantic reef corals; a handbook of the common reef and shallow-water ­corals of Bermuda, the Bahamas, Florida, the West Indies, and Brazil. University of Miami Press, p 112

    Book  Google Scholar 

  • Smith NP (2001) Weather and hydrographic conditions associated with coral bleaching: Lee Stocking Island, Bahamas. Coral Reefs 20:415–422

    Article  Google Scholar 

  • Smith JD, Hopkins TS (1972) Sediment transport on the continental shelf off of Washington and Oregon in light of recent current measurements. In: Swift DJP, Duane DB (eds) Shelf sediment transport; process and pattern. Dowden, Hutchinson and Ross, Stroudsburg, PA, pp 143–180

    Google Scholar 

  • Stafford-Smith MG (1992) Mortality of the hard coral Leptoria phrygiaunder persistent sediment influx. Proceedings of the 7th International Coral Reef Symposium. Guam 1:289–299

    Google Scholar 

  • Steneck RS, Testa V (1997) Are calcareous algae important to reefs today or in the past? Symposium summary. Proceedings of the 8th international coral reef symposium. Panama 1:685–698

    Google Scholar 

  • Stevens J (1726) The general history of the vast continent and islands of America

    Google Scholar 

  • Stockman KW, Ginsburg RN, Shinn EA (1967) The production of lime mud by algae in south Florida. J Sediment Geol 37:633–648

    Google Scholar 

  • Storr JF (1964) Ecology and oceanography of the coral-reef tract, Abaco Island, Bahamas. GSA Spec Paper 79:98

    Google Scholar 

  • Strasser A, Davaud E (1986) Formation of Holocene limestone sequences by progradation, cementation, and erosion; two examples from the Bahamas. J Sed Res 56:422–428

    Google Scholar 

  • Suess E (1885–1909) Das Antlitz der Erde. 3rdedn. F Tempsky, Prague, 1989 p.

    Google Scholar 

  • Swart PK, Eberli GP, Malone MJ, Sarg JK (eds) (2000) Proceedings of the ODP, Sci. Results, 166: College Station, TX, p 195

    Google Scholar 

  • Taft WH, Arrington F, Haimovitz A, MacDonald C, Woolheater C (1968) Lithification of modern marine carbonate sediments at Yellow Banks, Bahamas. Bull Mar Sci 18:762–828

    Google Scholar 

  • Talwani M, Worzel JL, Ewing M (1960) Gravity anomalies and structure of the Bahamas. Transactions of the 2nd Caribbean geological conference, University of Puerto Rico, pp 156–160

    Google Scholar 

  • Thompson JB (2000) Microbial whitings. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 250–260

    Google Scholar 

  • Traverse A, Ginsburg RN (1966) Palynology of the surface sediments of Great Bahama Bank, as related to water movement and sedimentation. Mar Geol 4:417–459

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science, Oxford, p 482

    Book  Google Scholar 

  • Uchupi E, Milliman JD, Luyendyk BP, Bowin CO, Emery KO (1971) Structure and origin of southeastern Bahamas. AAPG Bull 55:687–704

    Google Scholar 

  • United States Naval Oceanographic Office (1973) Surface currents. Naval Oceanographic Office Special Publication 1400-NA 1, Naval Oceanographic Office NSTL Station MS

    Google Scholar 

  • Vaughan TW (1914) Preliminary remarks on the Geology of the Bahamas, with special reference to the origin of the Bahaman and Floridian Oölites. Carnegie Institution publication no. 182:47–54

    Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implication for paleoecological reconstructions. Lethaia 33:190–204

    Article  Google Scholar 

  • Wang J, Mooers CNK (1997) Three-dimensional perspectives of the Florida Current: transport, potential vorticity, and related dynamical properties. Dyn Atmos Oceans 27:135–149

    Article  Google Scholar 

  • Wanless HR, Dravis JJ (1989) Carbonate environments and sequences of Caicos platform. Field Trip Guidebook T374, 28th International Geological Congress, p 75

    Google Scholar 

  • Westphal H (1998) Carbonate platform slopes – a record of changing conditions. The Pliocene of the Bahamas. Lecturer Notes in Earth Sciences 75, Springer, Heidelberg, p 197

    Google Scholar 

  • Westphal H, Reijmer JJG, Head MJ (1999) Input and diagenesis on a carbonate slope (Bahamas): response to morphology evolution and sea-level fluctuations. In: Harris PM, Saller AH, Simo JA, Handford CR (eds) Advances in carbonate sequence stratigraphy – application to reservoirs, outcrops and models. SEPM Spec Pub 63:247–274

    Google Scholar 

  • Westphal H, Head MJ, Munnecke A (2000) Differential diagenesis of rhythmic limestone alternations supported by palynological evidence. J Sedim Research 70:715–725

    Article  Google Scholar 

  • White B, Curran HA (1988) Mesoscale physical sedimentary structures and trace fossils in Holocene eolianites from San Salvador, Bahamas. Sediment Geol 55:163–184

    Article  Google Scholar 

  • Wilber RJ, Milliman JD, Halley RB (1990) Accumulation of Holocene banktop sediment on the western margin of Great Bahama Bank: rapid progradation of a carbonate megabank. Geology 18:970–974

    Article  Google Scholar 

  • Wilber RJ, Whitehead JA, Halley RB, Milliman JD (1993) Carbonate-periplatform sedimentation by density flows; a mechanism for rapid off-bank and vertical transport of shallow-water fines: comment. Geology 21:667–668

    Article  Google Scholar 

  • Wilkinson CR, Buddemeier RW (1994) Global climate change and coral reefs: implication for people and reefs. In: UNEP-IOC-ASPEI-IUCN global task team on the implication of climate on coral reefs, p 124

    Google Scholar 

  • Wilson JL (1974) Characteristics of carbonate platform margins. AAPG Bull 58:810–824

    Google Scholar 

  • Wilson PA, Roberts HH (1992) Carbonate-periplatform sedimentation by density flows: a mechanism for rapid off-bank and vertical transport of shallow water fines. Geology 20:713–716

    Article  Google Scholar 

  • Wilson PA, Roberts HH (1995) Density cascading: off-shelf transport, evidence and implications, Bahama Banks. J Sed Res 65:45–56

    Google Scholar 

  • Wilson WL, Mylroie JE, Carew J (1995) Caves as a geologic hazard; a quantitative analysis from San Salvador Island, Bahamas. In: Beck B (ed) Karst Geohazards; engineering and environmental problems in karst terranes. Proceedings – multidisciplinary conference on sinkholes and the Engineering and Environmental impacts of Karst 5:487–495

    Google Scholar 

  • Woelkerling WJ (1976) South Florida benthic marine algae; keys and comments. Sedimenta 5, University of Miami, FL, p 145

    Google Scholar 

  • Wood R (1999) Reef evolution. Oxford University Press, Oxford, p 414

    Google Scholar 

  • Young IR, Holland G (1996) Atlas of the oceans – Wind and wave climate. Pergamon Press, Oxford, p 414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly L. Bergman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bergman, K.L., Westphal, H., Janson, X., Poiriez, A., Eberli, G.P. (2010). Controlling Parameters on Facies Geometries of the Bahamas, an Isolated Carbonate Platform Environment. In: Westphal, H., Riegl, B., Eberli, G. (eds) Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9364-6_2

Download citation

Publish with us

Policies and ethics