Skip to main content

Early Detection of Systems Response: Molecular and Functional Imaging of Angiogenesis

  • Chapter
  • First Online:
From Molecular to Modular Tumor Therapy

Part of the book series: The Tumor Microenvironment ((TTME,volume 3))

Abstract

Non invasive imaging plays a crucial role in monitoring the efficacy of tumor therapy in the clinics. In addition, it has also been established in preclinical research and can favorably bridge from preclinical research to the clinics. However, up to now clinical imaging is mostly morphologic and does not meet the demands for innovative molecular and personalized therapy concepts. In order to become more disease and therapy specific, functional and molecular imaging strategies are of general interest. In this context, imaging of tumor angiogenesis as a general phenomenon of most tumors and as an important target for tumor therapy is an attractive approach.

This chapter reports on current strategies to assess functional parameters of vascularization (e.g. relative blood volume, perfusion, vessel permeability) as well as molecular vascular profiles by non invasive imaging. Hereby, CT, MRI, PET, optical imaging and ultrasound are covered. It is also reported how these tools can be used to assess tumor response to therapy and which role they may play in preclinical research and clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Amplitude

BOLD:

Blood oxygenation level dependent

CT:

Computed tomography

CLIO:

Cross linked iron oxide particle

[64]Cu-ATMS:

[64]Cu-allyltrimethylsilane

DCE CT:

Dynamic contrast enhanced computed tomography

DCE MRI:

Dynamic contrast enhanced magnetic resonance imaging

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

[18F]FAZA:

[18F]-fluoroazomycin arabinoside

[18F]FDG:

[18F]fluoro-desoxy-glucose

FGF-2:

Fibroblast growth factor-2

[18F]FLT:

3′Deoxy-3′-[18F]fluorothymidine

[18]F-MISO:

[18F]-Fluoromisonidazole

Gd-DTPA:

Gadolinium-Diethylenetriaminepentaacetate

ICAM-1:

Inter-cellular adhesion molecule 1

kep :

Uptake rate constant (extravascular space per unit volume)

Ktrans :

Volume transfer constant

MION:

Monocristalline iron oxide nanoparticle

MMP:

Matrix metalloproteinase

MRI:

Magnetic resonance imaging

MT1-MMP:

Membrane type-1 matrix metalloproteinase

NIRF:

Near-infrared fluorescence

OI:

Optical imaging

PFC:

Perfluorocarbon emulsion

PET:

Positron emission tomography

QD:

Quantum dot

SCC:

Squamous cell carcinoma

SPECT:

Single photon emission computed tomography

SPIO:

Superparamagnetic iron oxide nanoparticle

SU11248:

Sunitinib malate

TGF-ß:

Transforming growth factor beta

T1w:

T1 weighted

USPIO:

Ultrasmall superparamagnetic iron oxide nanoparticle

US:

Ultrasound

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

VEGFR-2:

Vascular endothelial growth factor receptor 2

vep :

Extracellular volume fraction

References

  1. Laking GR, Price PM (2003) Positron emission tomographic imaging of angiogenesis and vascular function. Br J Radiol 76:50–59.

    Article  Google Scholar 

  2. Miles KA, Hayball MP, Dixon AK (1993) Functional images of hepatic perfusion obtained with dynamic CT. Radiology 188:405–411.

    PubMed  CAS  Google Scholar 

  3. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101.

    Article  CAS  Google Scholar 

  4. Brix G, Bahner ML, Hoffmann U, Horvath A, Schreiber W (1999) Regional blood flow, ­capillary permeability, and compartmental volumes: Measurement with dynamic CT – initial experience. Radiology 210:269–276.

    PubMed  CAS  Google Scholar 

  5. Kiessling F, Jugold M, Woenne EC, Brix G (2007) Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol, 17:2136–2148.

    Article  PubMed  Google Scholar 

  6. Miller JC, Pien HH, Sahani D, Sorensen AG; Thrall JH (2005) Imaging angiogenesis: Applications and potential for drug development. J Natl Cancer Inst 97:172–187.

    Article  PubMed  CAS  Google Scholar 

  7. Persigehl T, Matuszewski L, Kessler T, Wall A, Meier N, Ebert W, Berdel WE, Heindel W, Mesters R, Bremer C (2007) Prediction of antiangiogenic treatment efficacy by iron oxide enhanced parametric magnetic resonance imaging. Invest Radiol 42:791–796.

    Article  PubMed  Google Scholar 

  8. Persigehl T, Bieker R, Matuszewski L, Wall A, Kessler T, Kooijman H, Meier N, Ebert W, Berdel WE, Heindel W, Mesters RM, Bremer C (2007) Antiangiogenic tumor treatment: Early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology 244:449–456.

    Article  PubMed  Google Scholar 

  9. Neeman M (2002) Functional and molecular MR imaging of angiogenesis: Seeing the target, seeing it work. J Cell Biochem Suppl 39:11–17.

    Article  PubMed  Google Scholar 

  10. Gross S, Gilead A, Scherz A, Neeman M, Salomon Y (2003) Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med 9:1327–1331.

    Article  PubMed  CAS  Google Scholar 

  11. Troprès I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, Lamalle L, Decorps M (2001) Vessel size imaging. Magn Reson Med 45:397–408.

    Article  PubMed  Google Scholar 

  12. Zwick S, Strecker R, Kiselev V, Gall P, Huppert J, Palmowski M, Lederle W, Woenne EC, Hengerer A, Taupitz M, Semmler W, Kiessling F (2009) Assessment of vascular remodelling under antiangiogenic therapy using DCE-MRI and vessel size imaging. J Magn Reson Imag, 29:1125–1133.

    Article  Google Scholar 

  13. Kiessling F, Huppert J, Palmowski M (2009) Functional and molecular ultrasound imaging: Concepts and contrast agents. Curr Med Chem 16:627–642.

    Article  PubMed  CAS  Google Scholar 

  14. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483.

    Article  PubMed  CAS  Google Scholar 

  15. Palmowski M, Huppert J, Hauff P, Reinhardt M, Schreiner K, Socher MA, Hallscheidt P, Kauffmann GW, Semmler W, Kiessling F (2008) Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive 3D high-frequency doppler ultrasound respond differently to multispecific tyrosine kinase receptor inhibition. Cancer Res 68:7042–7049.

    Article  PubMed  CAS  Google Scholar 

  16. Kang HW, Torres D, Wald L, Weissleder R, Bogdanov AA Jr (2006) Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 86:599–609.

    Article  PubMed  Google Scholar 

  17. Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC, Mueller MM, Zentgraf H, Eisenhut M, Addadi Y, Neeman M, Semmler W (2009) RGD-labeled USPIO inhibit adhesion and endocytotic activity of αvβ3 integrin expressing glioma cells and only accumulate in the vascular tumor compartment. Radiology 253:462–469.

    Google Scholar 

  18. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164.

    Article  PubMed  CAS  Google Scholar 

  19. Mulder WJ, van der Schaft DW, Hautvast PA, Strijkers GJ, Koning GA, Storm G, Mayo KH, Griffioen AW, Nicolay K. (2007) Early in vivo assessment of angiostatic therapy efficacy by molecular MRI. FASEB 21:378–383.

    Article  CAS  Google Scholar 

  20. Oostendorp M, Douma K, Hackeng TM, Dirksen A, Post MJ, van Zandvoort M, Backes WH (2008) Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. Cancer Res 68:7676–7683.

    Article  PubMed  CAS  Google Scholar 

  21. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS,McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent formolecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation 104:1280–1285.

    Article  PubMed  CAS  Google Scholar 

  22. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330.

    Article  PubMed  CAS  Google Scholar 

  23. Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM, Woenne EC, Jenne JW, Maurer M, Kauffmann GW, Semmler W (2008) Kiessling F. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol. Cancer Ther 7:101–109.

    Article  PubMed  CAS  Google Scholar 

  24. Palmowski M, Peschke P, Huppert J, Hauff P, Reinhardt M, Maurer M, Semmler W, Huber P, Kiessling F (2009) Molecular ultrasound imaging of early vascular response in prostate tumors irradiated with carbon ions. Neoplasia 11:856–863.

    PubMed  CAS  Google Scholar 

  25. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF, Goebel M, Hein R, Wester HJ, Kessler H, Schwaiger M (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F] galacto-RGD. PLOS Medicine 3:244–252148.

    Article  Google Scholar 

  26. Kondo M, Asai T, Katanasaka Y, Sadzuka Y, Tsukada H, Ogino K, Taki T, Baba K, Oku N (2004) Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int J Cancer 108:301–306.

    Article  PubMed  CAS  Google Scholar 

  27. Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirmalis G, Stuttle A, Courtenay-Luck NS, Konstantinides K, Epenetos AA (1998) Imaging of metastatic melanoma utilising a technetium-99 m labelled RGD-containing synthetic peptide. Eur J Nucl Med 25:1383–1389.

    Article  PubMed  CAS  Google Scholar 

  28. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49: 113–128.

    Article  Google Scholar 

  29. Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, Vogel H, Hou LC, Tse V, Rosenblum MG, Chen X (2007) Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 48:445–454.

    PubMed  CAS  Google Scholar 

  30. Cheng Z, Wu Y, Xiong Z, Gambhir SS and Chen X (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconjugate Chem 16:1433–1444.

    Article  CAS  Google Scholar 

  31. Licha K, Debus N, Emig-Vollmer S, Hofmann B, Hasbach M, Stibenz D, Sydow S, Schirner M, Ebert B, Petzelt D, Buhrer C, Semmler W, Tauber R (2006) Optical molecular imaging of lymph nodes using a targeted vascular contrast agent. J Biomed Opt 4:41205.

    Google Scholar 

  32. Citrin D, Lee AK, Scott T, Sproull M, Menard C, Tofilon PJ, Camphausen K (2004) In vivo tumor imaging in mice with near-infrared labeled endostatin. Mol Cancer Ther 2004 3:481–488.

    PubMed  CAS  Google Scholar 

  33. Bremer C, Tung H, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748.

    Article  PubMed  CAS  Google Scholar 

  34. Kiessling F, Farhan N, Lichy M, Vosseler S, Heilmann M, Krix M, Bohlen P, Miller DW, Mueller MA, Semmler W, Fusenig NE, Delorme S (2004). Dynamic contrast enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF-receptor 2 blockade with DC101. Neoplasia 6:213–223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Kiessling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Kiessling, F., Lederle, W. (2010). Early Detection of Systems Response: Molecular and Functional Imaging of Angiogenesis. In: Reichle, A. (eds) From Molecular to Modular Tumor Therapy. The Tumor Microenvironment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9531-2_20

Download citation

Publish with us

Policies and ethics