Skip to main content

Detection of Bacterial and Phytoplasmal Pathogens

  • Chapter
  • First Online:
Microbial Plant Pathogens-Detection and Disease Diagnosis:

Abstract

Bacterial pathogens classified as prokaryotes are much simpler in structure and smaller in size and they have less complex structural features compared to fungal plant pathogens. As the morphological characteristics of bacterial cells are less variable, biological, biochemical, physiological, immunological and genomic characteristics have to be determined for reliable identification and meaningful classification of bacterial pathogens. Detection and identification of bacterial plant pathogens present in whole plants and in propagative plant materials have been possible by employing isolation on cultural media and metabolic fingerprinting methods. But they are labor-intensive and require long time. Results often are inconclusive. Isozyme analysis, direct colony thin layer chromatography and gel electrophoresis techniques have been successfully applied for the detection of some bacterial pathogens. Immunoassays and nucleic acid-based assays have become widely accepted techniques, providing more sensitive and specific detection and quantification of bacterial pathogens affecting a wide range of host plant species. However, the major limitation of the molecular techniques is their inability to discriminate living cells from the dead ones. Attempts have been made to overcome this limiting factor by using DNA binding dyes and estimating pathogen RNAs as an indicator of cell viability. The diagnostic methods have both merits and demerits and hence, appropriate method has to be selected based on cost-effectiveness and possibility of obtaining reliable results rapidly to suit the requirements of the investigation concerned.

Phytoplasmas are cell wall-less, nonculturable bacteria belonging to Mollicutes. Lack of cultural characteristics has made obligatory to study the morphological characteristics of phytoplasmas present in the phloem cells of infected plant hosts by observing under electron microscopes. As most of the phytoplasmas look alike in the ultrathin sections, the morphological characters have no diagnostic value. Histochemical methods using DNA binding dyes have been employed to localize the phytoplasmas in the host cells. Application of immunoassays and nucleic acid-based techniques has been effective in providing information for the identification and differentiation of phytoplasams. Polyclonal and monoclonal antibodies have been generated for detection of phytoplasmas infecting several plant species. Universal and species-specific primers and probes have been designed based on DNA sequences of the target phytoplasma(s) to be detected. Precise, rapid and reliable results obtained from molecular methods can be used for detection, quantification and classification of phytoplasmas infecting whole plants, as well as those present in propagative plant materials which form the primary sources of infection for the crops to be planted in the subsequent seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal PC, Mortensen CN, Mathur SB (1989) Seedborne diseases and seed health testing of rice. Phytopathological Papers No. 30, Danish Government Institute of Seed Pathol Devloping Countries, Copenhagen-CAB International Mycological Institute, UK.

    Google Scholar 

  • Agrios GN (2005) Plant Pathology, fifth edition, Elsevier/Academic, Amsterdam, The Netherlands.

    Google Scholar 

  • Ahrens U, Seemüller F (1992) Detection of DNA of plant pathogenic mycoplasma-like organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82: 828–832.

    Article  CAS  Google Scholar 

  • Aldaghi M, Massart S, Roussel S, Jijakli MH (2006) Establishment of a new method for rapid and precise estimation of apple proliferation phytoplasama concentration in periwinkle. Comm Appl Biol Sci Ghent Univ 71: 853–857.

    CAS  Google Scholar 

  • Aldaghi M, Massart S, Roussel S, Jijakli MH (2007) Development of a new probe for specific and sensitive detection of ‘Candidatus Phytoplasma mali’ in inoculated apple trees. Ann Appl Biol 151: 251–258.

    Article  CAS  Google Scholar 

  • Aldaghi M, Massart S, Dutrecq O, Bertaccini A, Jijakli MH (2009) A simple and rapid protocol of crude DNA extraction from apple trees for PCR and real-time PCR detection of ‘Candidatus Phytoplasma mali’. J Virol Meth 156: 96–101.

    Article  CAS  Google Scholar 

  • Aljanabi SM, Paramessure Y, Moutia Y, Saumtally A, Dookun A (2001) Further evidence of the association of a phytoplasma and a virus with yellow syndrome in sugarcane. Plant Pathol 50: 628–636.

    Article  Google Scholar 

  • Alvarez AM (2001) Differentiation of bacterial populations in seed extracts by flow cytometry. In: De Boer SH (ed), Plant Pathogenic Bacteria, Kluwer, Dordrecht, The Netherlands, pp. 393–396.

    Google Scholar 

  • Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu Rev Phytopathol 42: 339–366.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez AM, Benedict AA, Mizumoto CY, Hunter JE, Gabriel DW (1994) Serological, pathological and genetic diversity among strains of Xanthomonas campestris infecting crucifers. Phytopathology 84: 1449–1457.

    Article  Google Scholar 

  • Alvarez AM, Schenck S, Benedict AA (1996) Differentiation of Xanthomonas albilineans strains with monoclonal antibody reaction patterns and DNA fingerprints. Plant Pathol 45: 358–366.

    Article  CAS  Google Scholar 

  • Angelini E, Bianchi GL, Filippin L, Morassutti C, Borgo M (2007) A new TaqMan method for the identification of phytoplasmas associated with grapevine yellows by real-time PCR assay. J Microbiol Meth 68: 613–622.

    Article  CAS  Google Scholar 

  • Anon (2005) EPPO standards PM7/44(1) Quarantine procedure for Xanthomonas axonopodis pv. citri. OEPP/EPPO Bull 35: 289–294.

    Google Scholar 

  • Anovich D, Garnett HM (1989) The use of immunogold staining technique for detection of a bacterium associated with greening diseased citrus. Phytopathology 79: 382–384.

    Article  Google Scholar 

  • Arocha Y, Almeida R, Jones P (2008) Using a ribosomal probe for the detection of the phytoplasma associated with ‘bunchy top symptom of papaya’ (BTS) in plant and insect hosts. Rev Prot Veg 23: 16–20.

    Google Scholar 

  • Audy P, Braat CE, Saindon G, Huang HC, Laroche A (1996) A rapid and sensitive PCR-based assay for concurrent detection of bacteria causing common and halo blights in bean seed. Phytopathology 86: 361–366.

    Article  CAS  Google Scholar 

  • Audy P, Laroche A, Saindon G, Huang HC, Gilbertson RC ( 1994) Detection of bean common blight bacteria Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans using polymerase chain reaction. Phytopathology 84:1185–1192.

    Article  CAS  Google Scholar 

  • Avila FJ, Burton BD, Fletcher J, Sherwood JL, Pair SD, Melcher U (1998) Polymerase chain reaction of an agent associated with yellow vein disease of cucurbits. Phytopathology 88: 428–436.

    Article  PubMed  CAS  Google Scholar 

  • Avramov Z, Gillet J, Langinova M (2008) First detection of stolbur phytoplasma in grapevine (Vitis vinifera cv. Merlot) affected with grapevine yellows in Bulgaria. J Phytopathol 156: 112–114.

    Article  CAS  Google Scholar 

  • Baer D, Mitzel E, Pasche J, Gudmestad NC (2001) PCR detection of Clavibacter michinganensis subsp. sepedonicus-infected tuber samples in a plate capture assay. Am J Potato Res 78: 269–277.

    Article  CAS  Google Scholar 

  • Baharuddin B, Rudolph K, Niepold F (1994) Production of monospecific antiserum against the blood disease bacterium affecting banana and plantain. Phytopathology 84: 570–575.

    Article  Google Scholar 

  • Ball S, Reeves J (1992) Application of rapid techniques to seed health testing – prospects and potential. In: Duncan JM, Torrance L (eds), Techniques for the Rapid Detection of Plant Pathogens, Blackwell Scientific Publications, Oxford, pp. 193–207.

    Google Scholar 

  • Baric S, Dalla-Via J (2004) A new approach to apple proliferation detection: a highly sensitive real-time PCR assay. J Microbiol Meth 57: 135–145.

    Article  CAS  Google Scholar 

  • Baric S, Kerschabamer C, Via JD (2006) TaqMan real-time PCR versus four conventional PCR assays for detection of apple proliferation phytoplasma. Plant Mol Biol Rep 24: 169–184.

    Article  CAS  Google Scholar 

  • Benedict A, Alvarez AM, Berestecky J, Imanaka W, Mizumoto C, Pollard L, Mew T, Gonzalez C (1989) Pathovar-specific monoclonal antibodies for Xanthomonas campestris pv. oryzae. Phytopathology 79: 322–328.

    Article  Google Scholar 

  • Bentsink L, Leone GOM, van Beckhoven JRCM, van Schijndel MB, van Gemen B, van der Wolf JM (2002) Amplification of RNA by NASBA allows direct detection of viable cells of Ralstonia solanacearum in potato. J Appl Microbiol 93: 647–655.

    Article  PubMed  CAS  Google Scholar 

  • Bereswill S, Bugert P, Volksch B, Ulrich M, Bender CL ( 1994) Identification and relatedness of coronate-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of amplification products. Appl Environ Microbiol 60: 2924–2930.

    PubMed  CAS  Google Scholar 

  • Bereswill S, Geider K (1996) Identification of Erwinia amylovora by PCR analyses. Acta Hortic 411: 57–62.

    CAS  Google Scholar 

  • Berg M, Davies DL, Clark MF, Vetten HJ, Maier G, Marcone C, Seemüller E(1999) Isolation of the gene encoding one immunodominant membrane protein of the apple proliferation phytoplasma and expression and characterization of the gene product. Microbiology (Reading) 145: 1937–1943.

    Article  CAS  Google Scholar 

  • Berg T, Tesoriero L, Hailstones DL (2005) PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol 54: 416–426.

    Article  CAS  Google Scholar 

  • Bertaccini A, Davis RE, Lee I-M (1992) In vitro micropropagation for maintenance and mycoplasma-like organisms in infected plant tissues. Hortic Sci 27: 1041–1043.

    Google Scholar 

  • Bertolini E, Olmos A, López MM, Cambra M (2003) Multiplex nested-RT-PCR in a single closed tube for sensitive and simultaneous detection of four RNA viruses and Pseudomonas savastanoi pv. savastanoi in olive trees. Phytopathology 93: 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Bertolini E, Penyalver R, García A, Olmos A, Quesada JM, Cambra M, López MM (2003) Highly sensitive detection of Pseudomonas savastanoi pv. savastanoi in asymptomatic olive plants by nested PCR in single closed tube. J Microbiol Meth 52: 261–266.

    Article  CAS  Google Scholar 

  • Bertolini E, Torres E, Olmos A, Martin MP, Bertaccini A, Cambra M (2007) Cooperational PCR coupled with dot blot hybridization for detection and 16Sr X grouping of phytoplasma. Plant Pathol 56: 677–682.

    Article  CAS  Google Scholar 

  • Bextine BR, Miller TA ( 2004) Comparison of whole-tissue and xylem fluid collection techniques to detect Xylella fastidiosa in grapevine and oleander. Plant Dis 88: 600–604.

    Article  Google Scholar 

  • Bhat AI, Madhubala R, Hareesh PS, Anandaraj M (2006) Detection and characterization of the phytoplasma associated with a phyllody disease of balck pepper (Piper nigrum L.) in India. Sci Hortic 107: 200–204.

    Article  CAS  Google Scholar 

  • Biosca EG, Gonzalez R, Lopez-Lopez MJ, Soria S, Montón C, Peréz-Laorga E, López MM (2003) Isolation and characterization of Brennaria quercina, causal agent of bark canker and drippy nut of Quercus spp. in Spain. Phytopathology 93: 485–492.

    Article  PubMed  Google Scholar 

  • Boudon-Padieu E, Larrue J, Clair D, Hourdel J, Jeanneau A, Sforza R, Collin E (2004) Detection and prophylaxis of elm yellows phytoplasma in France. Invest Agrar Sist Recur For 13: 71–80.

    Google Scholar 

  • Bouzar H, Jones JB, Minsavage GV, Stall RE, Scott JE (1994) Proteins unique to phenotypically distinct groups of Xanthomonas campestris pv. vesicatoria revealed by silver staining. Phytopathology 64: 39–44.

    Article  Google Scholar 

  • Bricker JS, Stutz JC (2004) Phytoplasmas associated with ash decline. J Arboricult 30: 193–199.

    Google Scholar 

  • Brinkerhoff LA (1960) Variability for pathogenicity of Xanthomonas malvacearum. Emp Cotton Grow Rev 37: 235.

    Google Scholar 

  • Bukhalid RA, Chung SY, Loria R (1998) Nec1, a gene conferring a necrogenic phenotype, is conserved in plant pathogenic Streptomyces spp. and linked to a transposase pseudogene. Mol Plant Microbe Interact 11: 960–967.

    Article  PubMed  CAS  Google Scholar 

  • Bultreys A, Gheysen I (1999) Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants. Appl Environ Microbiol 65: 1904–1909.

    PubMed  CAS  Google Scholar 

  • Burdman S, Kots N, Kritzman G, Kopelowitz J (2005) Molecular, physiological and host range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis 89: 1339–1347.

    Article  CAS  Google Scholar 

  • Burokiene D. (2006) Early detection of Clavibacter michiganensis subsp. michiganensis in tomato seedlings. Agron Res 4: 151–154.

    Google Scholar 

  • Buzkan N, Kocsis L, Walker MA (2005) Detection of Xylella fastidiosa from resistant and susceptible grapevine by tissue sectioning and membrane entrapment immunofluorescence. Microbiol Res 160; 225–231.

    Article  PubMed  Google Scholar 

  • Buzombo P, Jaimes J, Lam V, Cantrell K, Harkness M, McCullough D, Morano L (2006) An American hybrid vineyard in the Texas Gulf Coast: analysis within a Pierce’s disease hot zone. Am J Enol Vitic 57: 347–355.

    Google Scholar 

  • Candlish AAG, Taylor JD, Cameron J (1988) Immunological methods as applied to bacterial pea blight. Proc Brighton Crop Prot Conf 2: 787–794.

    Google Scholar 

  • Caruso P, Gorris MT, Cambra M, Palomo JL, Collar J, López MM (2002) Enrichment double-antibody enzyme-linked immunosorbent assay that uses a specific monoclonal antibody for sensitive detection of Ralstonia solanacearum in asympomatic potato tubers. Appl Environ Microbiol 68: 3634–3638.

    Article  PubMed  CAS  Google Scholar 

  • Casati P, Quaglino F, Tedeschi R, Spiga FM, Alma A, Spadone P, Bianco PA (2010) Identification and molecular characterization of ‘Candidatus Phytoplasma mali’ isolates in north-western Italy. J Phytopathol 158: 81–87.

    Article  CAS  Google Scholar 

  • Caudwell A, Meigno SR, Kuszala C, Schneider C, Larrue J, Fleury A, Boudon E (1982) Serological purification and visualization in the electron microscope of grapevine Flvescence dorée pathogen (MLO) in diseased plants and infectious vector extracts. Yale J Biol Mediterr 56: 936–937.

    Google Scholar 

  • Cazelles D, Ruchta A, Schwarzel R (1995) Bacterial soft rot of potato tubers: progress in detection of latent infection of Erwinia chrysanthemi and forecasting field outbreaks. Rev Suisse Agric 27: 17–22.

    Google Scholar 

  • Ceramic-Zagorac P, Hiruki C (1996) Comparative molecular studies on aster yellows phytoplasmas. Acta Hortic 377: 266–276.

    Google Scholar 

  • Chen J, Groves R, Civerolo EL, Viveros M, Freeman M, Zheng Y (2005) Two Xylella fastidiosa genotypes associated with almond leaf scorch disease on the same location in California. Phytopathology 95: 708–714.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Pu X, Deng D, Liu X, Li H, Civerolo E (2009) A phytoplasma related to ‘Candidiatus Phytoplasma asteris’ detected in citrus showing huanglongbing (yellow shoot disease) symptoms in Guangdon, P.R. China. Phytopathology 99: 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Chen KH, Credi R, Loi N, Maixner M, Chen TA (1994) Identification and grouping of mycoplasma-like organisms associated with grapevine yellows and clover phyllody disease based on immunological and molecular analyses. Appl Environ Microbiol 60: 1905–1913.

    PubMed  CAS  Google Scholar 

  • Chitaara LG, Breeuwer P, Abee T, van den Bulk RW (2006) The use of fluorescent probes to assess viability of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis by flow cytometry. Fitopatol Bras 31: 349–356.

    Article  Google Scholar 

  • Chitaara LG, Langerak CJ, Begervoet JH, van den Bulk RW (2002) Detection of the plant pathogenic Xanthomonas campestris pv. campestris in seed extracts of Brassica sp. applying fluorescent antibodies and flow cytometry. Cytometry 47: 118–126.

    Article  Google Scholar 

  • Chitaranjan S, De Boer SH (1997) Detection of Xanthomonas campestris pv. pelargonii in geranium and greenhouse nutrient solution by serological and PCR techniques. Eur J Plant Pathol 103: 553–563.

    Article  Google Scholar 

  • Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004) Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant-Microbe Interact 17: 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  • Cimmerman A, Arnaud G, Foissac X (2006) Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl Environ Microbiol 72: 3274–3283.

    Article  CAS  Google Scholar 

  • Clark MF, Morton A, Buss SL (1989) Preparation of mycoplasma immunogens from plants and a comparison of polyclonal and monoclonal antibodies made against primula yellows MLO associated with antigens. Ann Appl Biol 114: 111–124.

    Article  Google Scholar 

  • Colletta-Filho HD, Takita MA, de Souza AA, Neto JR, Destefano SAL, Hartung JS, Machado MA (2006) Primers based on the rpf gene region provide improved detection of Xanthomonas axonopodis pv. citri in naturally and artificially infected citrus plants. J Appl Microbiol 100: 279–285.

    Article  CAS  Google Scholar 

  • Coletta-Filho HD, Takita MA, Targon MLPN, Machado MA (2005) Analysis of 16S rDNA sequences from citrus huanglongbing bacteria reveal a different ‘Ca. Liberibacter strain associated with citrus disease in São Paulo. Plant Dis 88: 848–652.

    Article  CAS  Google Scholar 

  • Coletto-Filho HD, Targon MLPN, Takita MA, de Negri JD, Pompedu J Jr. do Amaral AM, Muller GW, Machado MA ( 2004) First report of the causal agent of huanglongbing (Candiatus Liberibacter asiaticus) in Brazil. Plant Dis 88: 1382.

    Google Scholar 

  • Comstock JC, Irey MS, Lockhart BEL, Wang ZK (1998) Incidence of yellow leaf syndrome in CP cultivars based on polymerase chain reaction and serological reactions. SugarCane 4: 21–24.

    Google Scholar 

  • Conci L, Meneguzzi N, Galdeano E, Torres L, Nome C, Nome S (2005) Detection and molecular characterization of an alfalfa phytoplasma in Argentina that represents a new group in the 16S rDNA ash yellows group (Candidatus Phytoplasma fraxini). Eur J Plant Pathol 113: 255–265.

    Article  CAS  Google Scholar 

  • Cordova J, Jones P, Harrison NA, Oropeza C (2003) In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Appl Microbiol 4: 99–108.

    CAS  Google Scholar 

  • Costa HS, Raetz E, Pinckard TR, Gispert C, Hernandez-Martinez R, Dumnyo CK, Cooksey DA (2004) Plant hosts of Xylella fastidiosa in and near southern California vineyards. Plant Dis 88: 1255–1261.

    Article  Google Scholar 

  • Cottyn B, Bautista AT, Nelson RJ, Leach LE, Swings J, Mew TW (1994) Polymerase chain reaction amplification of DNA from bacterial pathogens of rice using specific oligonucleotide primers. Int Rice Res Notes 19: 30–32.

    Google Scholar 

  • Cousin MT, Roux J, Boudon-Padieu E, Berges R, Seemüller E, Hiruki C (1998) Use of heteroduplex mobility analysis (HMA) for differentiating phytoplasma isolates causing wiches’ broom disease on Populus nigra cv. Italica and stolbur or big bud symptoms on tomato. J Phytopathol 146: 97–102.

    Article  Google Scholar 

  • Crosslin JM, Vandemark GJ, Munyaneza JE (2006) Development of a real-time, quantitative PCR for detection of the Columbian Basin potato purple top phytoplasma in plants and leafhoppers. Plant Dis 90: 663–667.

    Article  CAS  Google Scholar 

  • Cubero J, Graham JH (2002) Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl Environ Microbiol 68: 1257–1264.

    Article  PubMed  CAS  Google Scholar 

  • Cubero J, Graham JH (2005) Quantitative real-time polymerase chain reaction for bacterial enumeration and allelic discrimination to differentiate Xanthomonas strains on citrus. Phytopathology 95: 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  • Cubero J, Martinez MC, Llop P, Lopez M (1999) A simple and efficient PCR method for the detection of Agrobacterium tumefaciens. J Appl Microbiol 86: 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Cubero J, van der Wolf J, van Beckhoven J, López MM (2002) An intenal control for the diagnosis of crown gall by PCR. J Microbiol Meth 51: 387–392.

    Article  CAS  Google Scholar 

  • Dai Q, He FT, Lue PY (1997) Elimination of phytoplasma by stem culture from mulberry plants (Morus alba) with dwarf disease. Plant Pathol 46: 56–61.

    Article  Google Scholar 

  • Dale JL (1988) Rapid compression technique for detecting mycoplasma-like organisms in leaf midrib sieve tubes by fluorescence microscopy. Phytopathology 78: 118–120.

    Article  Google Scholar 

  • Da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorella CB, Sluys MAV (2002) Comparisons of genomes of two Xanthomonas pathogens with different host specificities. Nature 417: 459–463.

    Article  PubMed  Google Scholar 

  • Davies DL (1998) The occurrence of two distinct phytoplasma isolates associated with Rubus species in the UK. Acta Hortic 471: 63–65.

    Google Scholar 

  • Davies RE, Dally EL, Gundersen DE, Lee I-M, Habili N (1997) ‘Candidatus Phytoplasma australiense’ a new phytoplasma taxon associated with Australian grapevine yellows. Int J Syst Bacteriol 47: 262–269.

    Article  Google Scholar 

  • Davis RE, Flectcher J (1983) Spiroplasma citri in Maryland: isolation from field-grown plants of horseradish with brittle root symptoms. Plant Dis 67: 900–973.

    Article  Google Scholar 

  • Davis RE, Lee I-M (1982) Pathogenicity of spiroplasma, mycoplasma-like organisms and vascular-limited fastidious walled bacteria. In: Mount GS, Lacy GH (eds), Phytopathogenic Prokaryotes, Vol 1, Academic, New York, pp. 492–513.

    Google Scholar 

  • Davis RE, Lee I-M, Douglas SM, Dally EL (1990) Molecular cloning and detection of chromosomal and extrachromosomal DNA of the mycoplasma-like organisms associated with little leaf disease in periwinkle (Catharanthus roseus). Phytopathology 80: 789–793.

    Article  CAS  Google Scholar 

  • Davis RE, Lee I-M, Douglas SM, Dally EL, Dewitt N (1988) Cloned nucleic acid hybridization probes in detection and classification of mycoplasma-like organisms. Acta Hortic 234: 115–122.

    Google Scholar 

  • Davis RE, Sinclair WA (1998) Phytoplasma identity and disease etiology. Phytopathology 88: 1372–1376.

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, Sinclair WA, Lee I-M, Dally E (1992) Cloned DNA probes specific for detection of a mycoplasma-like organism associated with ash yellows. Mol Plant-Microbe Interact 5: 163–169.

    Article  CAS  Google Scholar 

  • Davis RE, Dally EL, Jomantiene R, Zhao Y, Roe B, Lin SP, Shao J (2005) Cryptic plasmid pSKU146 from wall-less plant pathogen Spiroplasma kunkelii encodes an adhension and components of a type IV translocation-related conjugation system. Plasmid 53:179–191

    Google Scholar 

  • De Boer SH, Cupples DA, Gitaitis RD (1996) Detecting latent bacterial infections. Adv Bot Res 23: 27–57.

    Article  Google Scholar 

  • De Boer SH, Hall JW (2000) Proficiency testing in a laboratory accreditation program for bacterial ring rot pathogen of potato. Plant Dis 84: 649–653.

    Article  Google Scholar 

  • De Boer SH, McNaughton ME (1987) Monoclonal antibodies to the lipopolysaccharides of Erwinia carotovora subsp. atroseptica serogroup I. Phytopathology 77: 828–832.

    Article  Google Scholar 

  • De Boer SH, Stead DE, Alivizatos AS, Janse JD, van Vaerenbergh J, De Haan TL, Mawhinney J (1994) Evaluation of serological tests for detection of Clavibacter michiganensis subsp. sepedonicus in composite stem and tuber samples. Plant Dis 74: 1431–1434.

    Google Scholar 

  • De Boer SH, Ward LJ (1995) PCR detection of Erwinia carotovora subsp. atroseptica associated with potato tissue. Phytopathology 85: 854–858.

    Article  Google Scholar 

  • Deepa James, Girija D, Mathew SK, Nazeem PA, Babu TD, Varma AS (2003) Detection of Ralstonia solanacearum race 3 causing bacterial wilt of solanaceous vegetables in Kerala using random amplified polymorphic DNA (RAPD) analysis. J Trop Agric 41: 33–37.

    Google Scholar 

  • de León L, Rodriguez A, Lopez MM, Siverio F (2007) Evaluation of the efficacy of immunomagnetic separation for the detection of Clavibacter michiganensis subsp. michiganensis in tomato seeds. J Appl Microbiol 104: 776–786.

    Article  PubMed  Google Scholar 

  • de León L, Siverio F, Rodriguez A (2006) Detection of Clavibacter michiganensis subsp. michiganensis in tomato seeds using immunomaganetic separation. J Microbiol Meth 67: 141–149.

    Article  CAS  Google Scholar 

  • De Parasis J, Roth DA (1990) Nucleic acid probes for identification of genus specific 16S rRNA sequences. Phytopathology 80: 618.

    Article  Google Scholar 

  • Derrick KS, Brlansky RH (1976) Assay for viruses and mycoplasma using serologically specific electron microscopy. Phytopathology 66: 815–820.

    Article  Google Scholar 

  • Dianese JC, Schaad NW (1982) Isolation and characterization of inner and outer membranes of Xanthomonas campestris pv. campestris. Phytopathology 72: 1284–1289.

    Article  CAS  Google Scholar 

  • Doi Y, Ternaka M, Yora K, Asuyama H (1967) Mycoplasma and PLT group-like microorganisms infected with mulberry dwarf, potato witches’ broom, aster yellows and paulownia witches’ broom. Ann Phytopathol Soc Jpn 33: 259–266.

    Article  Google Scholar 

  • Dong LC, Sun CW, Thies KL, Luther DS, Graves CH Jr (1992) Use of polymerase chain reaction to detect pathogenic strains of Agrobacterium. Phytopathology 82: 434–439.

    Article  CAS  Google Scholar 

  • Dreo T, Gruden K, Manceau C, Janse JD, Ravnikar M (2007) Development of a real-time PCR based method for detection of Xylophilus ampelinus. Plant Pathol 56: 9–16.

    Article  CAS  Google Scholar 

  • Dreier J, Bermpohl A, Eichenlaub R (1995) Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Phytopathology 85: 462–468.

    Article  CAS  Google Scholar 

  • Duduk B, Bertaccini A (2006) Corn with symptoms of reddening: new host of stolbur phytoplasma. Plant Dis 90: 1313–1319.

    Article  CAS  Google Scholar 

  • Duduk B, Bott S, Ivanovic M, Krstic B, Dukic N, Bertaccini A (2004) Identification of phytoplasmas associated with grapevine yellows in Serbia. J Phytopathol 152: 575–579.

    Article  CAS  Google Scholar 

  • Duduk B, Calari A, Paltrinieri S, Duduk N, Bertaccini A (2009) Multigenic analysis for differentiation of aster yellows phytoplasamas infecting carrots in Serbia. Ann Appl Biol 154: 219–229.

    Article  CAS  Google Scholar 

  • Duduk B, Perić P, Mařuć D, Drobnjaković T, Picuau L, Alma A, Bertaccini A (2008) Phytoplasma in carrots: disease and potential vectors in Serbia. Bull Insectol 61: 327–331.

    Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. New Zealand J Sci 5: 393–416.

    Google Scholar 

  • Ebisugi H, Ooishi S, Goda T, Kubo H, Sakiyama K (1988) Effectiveness of membrane filtration for phage technique for detection of Xanthomonas campestris pv. citri. Res Bull Plant Protect Serv 34: 113–115.

    Google Scholar 

  • Edwin BT, Mohankumar C (2007) Kerala wilt disease phytoplasma: phylogenetic analysis and identification of vector Proutista moesta. Physiol Mol Plant Pathol 71: 41–47.

    Article  CAS  Google Scholar 

  • Ed Stover, Riaz S, Walker MA (2008) PCR screening for Xylella fastidiosa in grape genebank accessions collected in the southeastern United States. Am J Enol Vitic 59: 437–439.

    CAS  Google Scholar 

  • Elibox W, Umaharan P (2007) A green fluorescent protein-based screening method for identification of resistance in anthurium to systemic infection by Xanthomonas axonopodis pv. diffenbachiae. Plant Pathol 56: 819–827.

    Article  CAS  Google Scholar 

  • Elphinstone JG, Stead DE, Caffer D, Janse JD, López MM, Mazzucchi U, Müller P, Persson P, Rauscher E, Schiessendoppler E, Sousa Santos M, Stefani E, van Vaerenbergh J (2000) Standardization of methods for detection of Ralstonia solanacearum in potato tuber extract. Bull OEPP 30: 391–395.

    Article  Google Scholar 

  • Errampalli D, Fletcher J (1993) Production of monospecific polyclonal antibodies against aster yellows mycoplasma-like organisms-associated antigen. Phytopathology 83: 1279–1282.

    Article  CAS  Google Scholar 

  • Fang CT, Allen ON, Riker AJ, Dickson JG (1950) The pathogenic physiological and serological reactions of the form species Xanthomonas translucens. Phytopathology 40: 44–64.

    Google Scholar 

  • Fegan M, Croft BJ, Teakle DS, Hayward AC, Smith GR (1998) Sensitive and specific detection of Clavibacter xyli subsp. xyli causal agent of ratoon stunting disease of sugarcane with a polymerase chain reaction based assay. Plant Pathol 47: 495–504.

    Article  CAS  Google Scholar 

  • Fessehaie A, De Boer SH, Lévesque CA (2003) An oligonucleotide array for the identification and differentiation of bacterial pathogenic on potato. Phytopathology 93: 262–269.

    Article  PubMed  CAS  Google Scholar 

  • Fessehaie A, Wydra K, Rudolph K (1999) Development of a new semiselective medium for isolating Xanthomonas campestris pv. manihotis from plant material and soil. Phytopathology 89: 591–597.

    Article  PubMed  CAS  Google Scholar 

  • Fogliano V, Gallo M, Vinale F, Ritieni A, Randazzo G, Greco ML, Lops R, Graniti A (1999) Immunological detection of syringopeptins produced by Pseudomonas syringae pv. lachrymans. Physiol Mol Plant Pathol 55: 255–261.

    Article  CAS  Google Scholar 

  • Firrao G, Gobbi E, Locel R (1994) Rapid diagnosis of apple proliferation mycoplasma-like organism using a polymerase chain reaction procedure. Plant Pathol 43: 669–674.

    Article  Google Scholar 

  • Fraaije BA, Birnbaum Y, Franken AAJM, van den Bulk RW ( 1996) The development of a ­conductimetric assay for the automated detection of metabolically active soft rot Erwinia spp. in potato tuber peel extracts. J Appl Bacteriol 81: 375–382.

    CAS  Google Scholar 

  • Francis M, Lin H, Rosa JC, Doddapaneni H, Civerolo EL (2006) Genome-based PCR primers for specific and sensitive detection and quantification of Xylella fastidiosa. Eur J Plant Pathol 115: 203–213.

    Article  CAS  Google Scholar 

  • Franken AAJM (1992) Application of polyclonal and monoclonal antibodies for the detection of Xanthomonas campestris pv. campestris in crucifer seeds using immunofluorescence microscopy. Neth J Plant Pathol 98: 95–106.

    Article  Google Scholar 

  • Franken AAJM, Zilverentant JF, Boonekamp PM, Schots A (1992) Specificity of polyclonal and monoclonal antibodies for the identification of Xanthomonas campestris pv. campestris. Neth J Plant Pathol 98: 81–94.

    Article  Google Scholar 

  • Freigoun SO, El Faki HI, Gelie B, Schirmer M, Lemattre M (1994) Phage sensitivity in relation to pathogenicity and virulence of the cotton bacterial blight pathogen of Sudan. Plant Pathol 43: 493–497.

    Article  Google Scholar 

  • Frommel MI, Pazos G (1994) Detection of Xanthomonas campestris pv. undulosa infested wheat seeds by combined liquid medium enrichment and ELISA. Plant Pathol 43: 589–596.

    Article  Google Scholar 

  • Frosini A, Casati P, Bianco PA, Bordoni R, Consolandi C, Catiglioni B, Mezzelani A, Rizzi E, Battaglia C, Belli G, Bernardi R, DeBellis G (2002) Ligase detection reaction and universal array as a tool to detect grapevine-infecting phytoplasmas. Minerva Biotechnol 14: 265–267.

    Google Scholar 

  • Fukui H, Alvarez AM, Fukui R (1998) Differential susceptibility of anthurium cultivars to bacterial blight in foliar and systemic infection phases. Plant Dis 82: 800–806.

    Article  Google Scholar 

  • Gaitaitis R, Sumner D, Gay D, Smittle D, McDonald G, Maw B, Johnson WC III, Tolner B, Hung Y (1997) Bacterial streak and bulb rot of onion. I. A diaganostic medium for semiselective isolation and enumeration of Pseudomonas viridiflava. Plant Dis 87: 897–900.

    Article  Google Scholar 

  • Galetto L, Bosco D, Marzachi C (2005) Universal and group-specific real-time PCR diagnosis of flavescence doree (16Sr-V), bois noir (16Sr-Xii) and apple proliferation (16Sr-XII) phytoplasmas from field-collectded plant hosts and insect vectors. Ann Appl Biol 147: 191–201.

    Article  CAS  Google Scholar 

  • Gallo M, Fogliano V, Ritieni A, Peluso L, Greco ML, Lops R, Graniti A (2000) Immunoassessment of Pseudomonas syringae lipdepsipeptides (syringomycins and syringopeptins). Phytopathol Mediterr 39: 410–416.

    CAS  Google Scholar 

  • Galvis CA, Leguizamon JE, Gaitan AL, Mejia JF, Alvarez E, Arroyave J (2007) Detection and identification of a group 16SrIII-related phytoplasma associated with coffee crispiness disease in Colombia. Plant Dis 91: 248–252.

    Article  CAS  Google Scholar 

  • Gao R, Zhang G-M, Lan Y-F, Zhu T-S, Yu X-Q, Zhu X-P, Li X-D (2008) Molecular characterization of phytoplasma associated with rose witches’ broom in China. J Phytopathol 156: 93–98.

    Article  CAS  Google Scholar 

  • Gardan L, Moreno B, Guinebretiere JP (1984) The use of a micromethod of auxanogram, and data analysis for identification of Pseudomonas. Proceedings of the 2nd Working Group, Athens Greece, pp. 37–39.

    Google Scholar 

  • Gibb KS, Padovan AC, Mogen BD (1995) Studies on sweet potato little leaf phytoplasma detected in sweet potato and other species growing in Northern Australia. Phytopathology 85: 169–174.

    Article  Google Scholar 

  • Gibb KS, Persley DM, Schneider B, Thomas JE (1996) Phytoplasmas associated with papaya diseases in Australia. Plant Dis 80: 174–178.

    Article  Google Scholar 

  • Gibson UEM, Heid CA, Williams PM (1996) A novel method for real-time quantitative RT-PCR. Genome Res 6: 995–1001.

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson RL, Maxwell DP, Hagedorn DJ, Leong SA ( 1989) Development and application of a plasmid DNA probe for detection of bacterial causing common bacterial blight of bean. Phytopathology 79: 418.

    Article  Google Scholar 

  • Gillings MR, Fahy PC, Broadbent P, Barnes D (1995) Rapid identification of a second outbreak of Asiatic citrus canker in the Northern Territory using polymerase chain reaction and genomic fingerprinting. Aust Plant Pathol 24: 104–111.

    Article  Google Scholar 

  • Giunchedi L, Pollini CP, Biondi S, Babini AR (1993) PCR detection of MLOs in quick decline affected trees in Italy. Ann Appl Biol 124: 399–403.

    Article  Google Scholar 

  • Gnanamanickam SS, Shigaki T, Medalla ES, Mew T, Alvarez AM (1994) Problems in detection of Xanthomonas oryzae pv. oryzae in rice seeds and potential for improvement using monoclonal antibodies. Plant Dis 78: 173–178.

    Article  Google Scholar 

  • Golmohammadi M, Cubero J, Peñyaler J, Quesada JM, López MM, Llop P ( 2007) Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker in commercial fruits by isolation and PCR-based methods. J Appl Microbiol 103: 2309.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin PH, Nassuth A (1993) Detection and characterization of plant pathogens. In: Glick BR, Thomson JC (eds), Methods in Plant Molecular Biology and Biotechnology, CRC Press Inc., Boca Raton, FL, pp. 303–319.

    Google Scholar 

  • Goodwin PH, Xue BG, Kuske CR, Sears MK (1994) Amplification of plasmid DNA to detect plant pathogenic mycoplasma-like organisms. Ann Appl Biol 124: 27–36.

    Article  CAS  Google Scholar 

  • Gouda KA, Baranwal VK, Ahlawat YS (2006) Simplified DNA extraction and improved PCR-based detection of greening bacterium in citrus. J Plant Biochem Biotechnol 15: 117–121.

    CAS  Google Scholar 

  • Green MJ, Thompson DA, MacKenzie DJ (1999) Easy and efficient DNA extraction from woody plants for the detection of phytoplasma by polymerase chain reaction. Plant Dis 83: 482–485.

    Article  Google Scholar 

  • Griep RA, van Twisk C, van Beckhoven JRCM, van der Wolf J, Schots A (1998) Development of specific recombinant monoclonal antibodies against the lipopolysaccharide of Ralstonia solanacearum race 3. Phytopathology 88: 795–803.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths HM, Sinclair WA, Davis RE, Lee I-M, Dally EL, Guo YK, Chen TA, Hibben CR (1994) Characterization of mycoplasma-like organisms from Fraxinus, Syringa and associated plants from geographically diverse sites. Phytopathology 84: 110–126.

    Article  Google Scholar 

  • Grisham MP, Pan YB, Richard EP Jr (2007) Early detection of Leifsonia xyli subsp. xyli in sugarcane leaves by real-time polymerase chain reaction. Plant Dis 91: 430–434.

    Article  CAS  Google Scholar 

  • Groves PL, Chen J, Civerolo EL, Freeman MW, Viveros MA (2005) Spatial analysis of almond leaf scorch disease in the San Joaquim Valley of California: factors affecting pathogen distribution and spread. Plant Dis 89: 581–589.

    Article  Google Scholar 

  • Gudmestad NC, Mallik I, Pasche JS, Anderson NR, Kinzer K (2009) A real-time PCR assay for the detection of Clavibacter michiganensis subsp. sepedonicus based on cellulase A gene sequences. Plant Dis 93: 649–659.

    Article  CAS  Google Scholar 

  • Guo X, Lu J (2004) Use of a pressure chamber to isolate and detect Xylella fastidiosa in xylem exudates of grapevines. Am J Enol Vitic 52: 202–204.

    Google Scholar 

  • GuoYH, Cheng Z-M, Walla JA (2003) Rapid PCR-based detection of phytoplasmas from infected plants. Hort Sci 38: 1134–1136.

    CAS  Google Scholar 

  • Guo YH, Cheng Z-M, Walla JA, Zhang Z (1998) Diagnosis of X-disease phytoplasma in stone fruits by a monoclonal antibody developed directly from a woody plant. J Eniviron Hortic 16: 33–57.

    Google Scholar 

  • Ha Y, Fessehaie A, Ling KS, Wechter WP, Keinath AP, Walcott RR (2009) Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Phytopathology 99: 666–678.

    Article  PubMed  CAS  Google Scholar 

  • Haas JH, Moore LW, Ream W, Manulis S (1995) PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61: 2879–2884.

    PubMed  CAS  Google Scholar 

  • Hadas R, Kritzman GK, Kleitman F, Gefen T, Manulis S (2005) Comparison of extraction procedures and determination of the detection threshold for Clavibacter michinganensis ssp. michiganensis in tomato seeds. Plant Pathol 54:643–649

    Google Scholar 

  • Hale CN, Taylor RK (1999) Effect of cool storage on survival of Erwinia amylovora in apple calyxes. Acta Hortic 489: 139–143.

    Google Scholar 

  • Han S (2005) Specific primer for detection of jujube witches’ broom phytoplasm group (16SrV) in Korea. Plant Pathol J 21: 55–58.

    Article  Google Scholar 

  • Han S-S, Hiurki C, Kim S-M (1998) Rapid analysis of genetic relationship of phytoplasma isolates by a DNA heteroduplex mobility assay. Korean J Plant Pathol 14: 382–385.

    Google Scholar 

  • Hara H, Hoga K, Tanaka H (1995) An improved selective medium for quantitative isolation of Pseudomonas solanacearum. Ann Phytopathol Soc Jpn 61: 255.

    Google Scholar 

  • Harris-Baldwin A, Gudmestad NC (1996) Identification of phytopathogenic coryneform bacteria using the Biolog automated microbial identification system. Plant Dis 80: 874–878.

    Article  Google Scholar 

  • Harrison NA, Bourne CM, Cox RL, Tsai JH, Richardson PA (1992) DNA probes for detection of mycoplasma-like organisms associated with lethal yellowing disease of plants in Florida. Phytopathology 82: 216–224.

    Article  CAS  Google Scholar 

  • Hartung F, Werner R, Mühlbach HP, Büttner C (1998) Highly specific PCR diagnosis to determine Pseudomonas solanacearum strains of different geographic origins. Theor Appl Genet 96: 797–782.

    Article  CAS  Google Scholar 

  • Hartung JS, Civerolo EL (1989) Restriction fragment length polymorphisms distinguish Xanthomonas campestris strains isolated from Florida citrus nurseries from X. campestris pv. citri. Phytopathology 79: 793–799.

    Article  Google Scholar 

  • Hartung JS, Pruvost OP, Villeniot I, Alvarez A (1996) Rapid and sensitive colorimetric detection of Xanthomonas axonopodis pv. citri by immunocapture and nested polymerase chain reaction assay. Phytopathology 86: 95–101.

    Article  CAS  Google Scholar 

  • Henrich M, Botti S, Caprara L, Arthofer W, Strommer S, Hanzer V, Katinger H, Bertaccini A, Laimer M, Machado DC (2001) Improved detection methods for fruit tree phytoplasmas. Plant Mol Biol Rep 19: 169–179.

    Article  Google Scholar 

  • Helias V, Roux AC, le Bertheau Y, Andrivon D, Gauthier JP, Jouan B (1998) Characterization of Erwinia carotovora subspecies and detection of Erwinia carotovora subsp. atroseptica in potato plants, soil or water extracts with PCR-based methods. Eur J Plant Pathol 104: 685–699.

    Article  CAS  Google Scholar 

  • Henriquez NP, Kenyone L, Quiroz L (1999) Corn stunt complex mollicutes in Belize. Plant Dis 83: 77.

    Article  Google Scholar 

  • Hernandez-Martinez R, Costa HS, Dumenyo CK, Cooksey DA (2006) Differentiation of strains of Xylella fastidiosa infecting grape, almonds and oleander using a multiprimer PCR assay. Plant Dis 90: 1382–1388.

    Article  CAS  Google Scholar 

  • Hiruki C, da Rocha A (1986) Histochemical diagnosis of mycoplasma infections in Catharanthus roseus by means of a fluorescent DNA binding agent 4,6-diamidino-2-phenylindole-dihydrochloride. Can J Plant Pathol 8: 185–188.

    Article  CAS  Google Scholar 

  • Hobbs HA, Reddy DVR, Reddy AS (1989) Detection of a mycoplasma-like organism in peanut plants with witches’ broom using indirect enzyme-linked immunosorbent assay (ELISA). Plant Pathol 36: 164–167.

    Article  Google Scholar 

  • Hodgetts J, Ball T, Boonham N, Mumford R, Dickinson M (2007) Use of terminal restriction fragment length polymorphism (T-RFLP) for identification of phytoplasmas in plants. Plant Pathol 56: 357–365.

    Article  CAS  Google Scholar 

  • Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M (2008) Phytoplasma phylogenetics based on anlysis of secA and 23S rRNS gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int J Syst Evol Microbiol 58: 1826–1837.

    Article  PubMed  CAS  Google Scholar 

  • Hooker ME, Lee RF, Civerolo EL, Wang SY (1993) Reliability of gentisic acid, a fluorescent marker for diagnosis of citrus greening disease. Plant Dis 77: 174–180.

    Article  CAS  Google Scholar 

  • Horita M, Yano K, Tsuchiya K (2004) PCR-based specific detection of Ralstonia solanacearum race 4 strains. J Gen Plant Pathol 70: 278–283.

    Article  CAS  Google Scholar 

  • Hren M, Boben J, Rotter A, Kralj P, Gruden K, Ravnikar M (2007) Real-time PCR detection systems for Flavescence dorée and Bois noir phytoplasms in grapevine: comparison with conventional PCR detection and application in diagnostics. Plant Pathol 56: 785–796.

    Article  CAS  Google Scholar 

  • Hseu SH, Lin CY (2000) Serological detection of Xanthomonas axonopodis pv. diffenbachiae in Taiwan. Plant Prot Bull (Taipei) 42: 97–106.

    Google Scholar 

  • Hu X, Lai F-M, Reddy ANS, Ishimaru CA (1995) Quantitative detection of Clavibacter michiganensis subsp. sepedonicus by competitive polymerase chain reaction. Phytopathology 85: 1468–1473.

    Article  CAS  Google Scholar 

  • Huang BC, Zhu H, Hu GG, Li QX, Gao JL, Goto M (1993) Serological studies of Xanthomonas campestris pv. oryzae with polyclonal and monoclonal antibodies. Ann Phytopathol Soc Jpn 59: 123–127.

    Article  Google Scholar 

  • Huang Q, Bentz J, Sherald JL (2006) Fast, easy and efficient DNA extraction and one-step polymerase chain reaction for the detection of Xylella fastidiosa in potential vectors. J Plant Pathol 88: 77–81.

    Article  CAS  Google Scholar 

  • Hung TH, Wu ML, Su HJ (1999) Detection of fastidious bacteria causing citrus greening disease by non-radioactive DNA probes. Ann Phytopathol Soc Jpn 65: 140–146.

    Article  Google Scholar 

  • Hyman LJ, Birch PRJ, Dellagi A, Avrova AO, Toth IK (2000) A competitive PCR-based method for detection and quantification of Erwinia carotovora subsp. atroseptica on potato tubers. Lett Appl Microbiol 30: 330–335.

    Article  PubMed  CAS  Google Scholar 

  • Ishiie T, Doi Y, Yora K, Asuyama H (1967) Suppressive effects of an antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Ann Phytopathol Soc Jpn 33: 267–275.

    Article  CAS  Google Scholar 

  • Ito S, Ushijima Y, Fujii T, Tanaka M, Kameya-Iwaki S, Yoshiwara S, Kishi F (1998) Detection of viable cells of Ralstonia solanacearum in soil using a semiselective medium and PCR technique. J Phytopathol 146: 379–384.

    Article  Google Scholar 

  • Jagoueix S, Bové JM, Garnier M (1994) The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria. Int J Syst Bacteriol 44: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Jagoueix S, Bové JM, Garnier M (1996) PCR detection of the two ‘Candidatus Liberibacter’ ­species associated with greening disease of citrus. Mol Cell Probes 10: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Jarausch W, Lansac M, Saillard C, Broquaire JM, Dosba F (1998) PCR assay for specific detection of European stone fruit yellows phytoplasmas and its use for epidemiology. Eur J Plant Pathol 104: 17–27.

    Article  Google Scholar 

  • Ji P, Allen C, Sanchez-Perez A, Yao J, Elphinstone JG, Jones JB, Momol MT (2007) New diversity of Ralstonia solanacearum strains associated with vegetable and ornamental crops in Florida. Plant Dis 91: 195–203.

    Article  CAS  Google Scholar 

  • Jin K-S, Kang I-B, Ko K-I, Lee E-S, Heo J-Y, Kang Y-K, Kim B-K (2001) Detection of Xanthomonas axonopodis pv. citri on citrus fruits using enzyme-linked immunosorbent assay. Plant Pathol J 17: 62–66.

    CAS  Google Scholar 

  • Jones JB, van Vuurde JWL (1996) Immunomagnetic isolation of Xanthomonas campestris pv. pelargonii. J Appl Bacteriol 81: 78–82.

    Article  Google Scholar 

  • Jones R, Barnes L, Gonzalez C, Leach J, Alvarez A, Benedict A (1989) Identification of low virulence strains of Xanthomonas campestris pv. oryzae from rice in the United States. Phytopathology 79: 984–990.

    Article  CAS  Google Scholar 

  • Jones WT, Harvey D, Zhao YF, Mitchell RE, Bender CL, Reynolds PHS (2001) Monoclonal antibody based immunoassays for the phytotoxin coronatine. Food Agric Immunol 13: 19–32.

    Article  CAS  Google Scholar 

  • Joppa B, Li S, Cole S, Gallagher S (1992) Pulsed field gel electrophoresis for separation of large DNA. Probe 2(3): Fall, nal.usda.gov/pgdic/Probe/v2n3/puls/html

    Google Scholar 

  • Joshi M, Rong S, Moll S, Kers J, Franco C, Loria R (2007) Streptomyces turgidiscabies secretes a novel protein Nec1 which facilitates infection. Mol Plant-Microbe Interact 20: 599–608.

    Article  PubMed  CAS  Google Scholar 

  • Kado CI (1971) Methods in Plant Bacterioloty-Laboratory Manual. Department of Plant Pathology, University of California, Davis

    Google Scholar 

  • Kamińska M, Śliwa H (2005) Detection of ‘Candidatus Phytoplasma asteris’ in ashleaf maple trees with shoot prolifieration and decline. J Fruit Ornament Plant Res 13: 123–134.

    Google Scholar 

  • Kanamori H, Sugimoto H, Ochiar K, Kaku H, Tsuyumu S (1999) Isolation of hrp cluster from Xanthomonas campestris pv.citri and its application for RFLP analyses of xanthomonads. Ann Phytopathol Soc Jpn 65: 110–115.

    Article  CAS  Google Scholar 

  • Kawabe K, Truc NTN, Lan BTN, Hong LTT, Onuki M (2006) Quantification of DNA of citrus huanglongbing pathogen in diseased leaves using competitive PCR. J Gen Plant Pathol 72: 355–359.

    Article  CAS  Google Scholar 

  • Kazmi MR, Farooq SI, Fateh FS, Hameed S, Fahmeed F, Ashraf M, Ahmed I (2007) Identification of phytoplasma from mango trees showing sudden death phenomenon through molecular techniques. Pak J Bot 39: 2153–2157.

    Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity of Pseudomonas solancacearum to colony appearance in a tetrazolium medium. Phytopathology 44: 693–895.

    Google Scholar 

  • Khadhair A-H, Kawchuk LM, Taillon RC, Botar G (1998) Detection and molecular characterization of an aster yellows phytoplasma in parsley. Can J Plant Pathol 20: 55–61.

    Article  CAS  Google Scholar 

  • Khan AA, Furuya N, Matsumoto M, Matsuyama N (1999) Trial for rapid identification of pathogens from blasted pear blossoms and rotted radish leaves by direct TLC and whole cellular fatty acid analysis. J Fac Agric Kyushu Univ 43: 327–335.

    CAS  Google Scholar 

  • Khan AJ, Bonti S, Al-Subhi AM, Gundersen-Rindal DE, Bertaccini AF (2002) Molecular identification of a new phytoplasma associated with alfalfa witches’ broom in Oman. Phytopathology 92: 1038–1047.

    Article  PubMed  CAS  Google Scholar 

  • Khan JA, Srivastava P, Singh SK (2009) Sensitive detection of a phytoplasma associated with little leaf symptoms in Withania somnifera. Eur J Plant Pathol 115: 401–408.

    Article  Google Scholar 

  • Khoodoo MHR, Sahin F, Jaufeerally-Fakim Y (2005) Sensitive detection of Xanthomonas axonopodis pv. diffenbachiae on Anthurium andreanum by immunocapture PCR (IC-PCR) using primers designed from sequence characterized amplified regions (SCAR) of the blight pathogen. Eur J Plant Pathol 112: 379–390.

    Article  CAS  Google Scholar 

  • Kievits T, van Gemen B, van Strijp D, Schukkink R, Dircks M, Adriaanse H, Malek L, Sooknanan R, Lens P (1991) NASBATM isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Meth 35: 273–286.

    Article  CAS  Google Scholar 

  • Kirkpatrick BC, Stenger DC, Morris TJ, Purcell H (1987) Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Klinger JM, Stowe RP, Obenhuber DC, Groves TO, Mishra SK, Pierson DL (1992) Evaluation of the Biolog automated microbial identification system. Appl Environ Microbiol 58: 2089–2092.

    Google Scholar 

  • Ko HC, Lin CP (1994) Development and application of cloned DNA probes for mycoplasma-like organism associated with sweet potato witches’ broom. Phytopathology 84: 468–473.

    Article  CAS  Google Scholar 

  • Koike ST, Barak JD, Handerson DM, Gilbertson RL (1999) Bacterial blight of leek: a new disease in California caused by Pseudomonas syringae. Plant Dis 83: 165–170.

    Article  Google Scholar 

  • Kokošková B, Mraz I, Hýblová J (2007) Comparison of specificity and sensitivity of immunochemical and molecular techniques for reliable detection of Erwinia amylovora. Folia Microbiol 52: 175–182.

    Article  Google Scholar 

  • Kokošková B, Panková I, Krejzar V (2000) Characteristics of polyclonal antisera for detection and determination of Clavibacter michiganensis subsp. insidiosus. Plant Prot Sci 36: 46–52.

    Google Scholar 

  • Krell RK, Boyd EA, Nay JE, Park Y-L, Perring TM (2007) Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am J Enol Vitic 58: 211–216.

    CAS  Google Scholar 

  • Krell RK, Perring TM, Hashim-Buckey JM, Pinckard TR (2008) Susceptibility of Vitis vinifera L. cv. Redglobe and Thompson seedless to Pierce’s disease. Am J Enol Vitic 59: 61–66.

    Google Scholar 

  • Krieg NR, Holt JG (eds) (1984) Bergy’s Manual of Systematic Bacteriology, Vol I, Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Kuflu KM, Cuppels DA (1997) Development of a diagnostic cDNA probe for Xanthomonads causing bacterial leaf spot of peppers and tomatoes. Appl Environ Microbiol 63: 4462–4470.

    PubMed  CAS  Google Scholar 

  • Kunkel LO (1926) Studies on aster yellows. Am J Bot 23: 646–705.

    Article  Google Scholar 

  • Kuo TT, Huang TC, Wu RY, Yang CM (1967) Characterization of three bacteriophages of Xanthomonas oryzae (Uyeda et Ishiyama)Dowson. Bot Bull Acad Sinica 8: 246–254.

    Google Scholar 

  • Kutin RK, Alvarez A, Jenkins DM (2009) Detection of Ralstonia solanacearum in natural substrates using phage amplification integrated with real-time PCR assay. J Microbiol Meth 76: 241–246.

    Article  CAS  Google Scholar 

  • Lamka GL, Hill JH, McGee DC, Brawn EJ (1991) Development of an immunosorbent assay for seedborne Erwinia stewartii in corn seeds. Phytopathology 81: 839–846.

    Article  Google Scholar 

  • Lang JM, Gent DH, Schwartz HF (2007) Management of Xanthomonas leaf blight of onion with bacteriophages and plant activator. Plant Dis 91: 871–878.

    Article  CAS  Google Scholar 

  • Leach JE, White FE (1991) Molecular probes for disease diagnosis and monitoring. In: Khush GS, Toenniessen GH (eds), Rice Biotechnology, CAB International, UK; International Rice Research Institute, Philippines, pp. 281–307.

    Google Scholar 

  • Lee I-M, Bottner KD, Munyaneza JE, Davis RE, Crosslin JM, du Toit LJ, Crossby T (2006) Carrot purple leaf: a new spiroplasmal disease associated with carrots in Washington State. Plant Dis 90: 989–993.

    Article  CAS  Google Scholar 

  • Lee I-M, Davis RE (1983) Phloem-limited prokaryotes in sieve elements isolated by enzyme treatment of diseased plant tissues. Phytopathology 73: 1540–1543.

    Article  Google Scholar 

  • Lee I.M, Davis RE (1988) Detection and investigation of genetic relatedness among ater yellows and other mycoplasma-like organisms by using cloned DNA and RNA probes. Mol Plant-Microbe Interact 1: 303–310.

    Article  Google Scholar 

  • Lee I-M, Gunderson-Rindal DE, Bertaccini A (1998a) Phytoplasma: Ecology and genomic diversity. Phytopathology 88: 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  • Lee I-M, Gunderson-Rindal DE, Davis RE, Bartoszyk IM (1998b) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48: 1153–1169.

    Article  CAS  Google Scholar 

  • Lee I-M, Hammond RW, Davis RE, Gunderson DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma-like organisms. Phytopathology 83: 834–842.

    Article  CAS  Google Scholar 

  • Lee I-M, Lukaesko LA, Maroon CJM (2001) Comparison of dig-labeled PCR, nested PCR and ELISA for the detection of Clavibacter michiganensis subsp. sepedonicus in field-grown potatoes. Plant Dis 85: 261–266

    Article  CAS  Google Scholar 

  • Lee I-M, Zhao Y, Davis RE, Wei W, Martini M (2007) Prospects of DNA-based systems for ­differentiation and classification of phytoplasmas. Bull Insectol 60: 239–244.

    Google Scholar 

  • Lee ME, Grau CR, Lukaesko LA, Lee I-M (2002) Identification of aster yellows phytoplasma in Wisconsin based on RFLP analysis of PCR-amplified products. Can J Plant Pathol 24: 125–130.

    Article  CAS  Google Scholar 

  • Lehtonen MJ, Rantala H, Kreuze JF, Bang H, Kuisma L, Koski P, Virtanen E, Vihlman K, Valkonen JPT (2004) Occurrence and survival of potato scab pathogens (Streptomyces species) on tuber lesions: quick diagnosis based on PCR-based assay. Plant Pathol 53: 280–287.

    Article  Google Scholar 

  • Leite RP Jr, Minsavage GV, Bonas U, Stall RF ( 1994) Detection and identification of phytopathogenic Xanthomonas strains by amplifications of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol 60: 1068–1077.

    PubMed  CAS  Google Scholar 

  • Leu HH, Leu LS, Lin CP (1998) Development and application of monoclonal antibodies against Xylella fastidiosa the causal bacterium of pear leaf scorch. J Phytopathol 146: 31–37.

    Article  CAS  Google Scholar 

  • Lherminier J, Prensier G, Boudon-Padieu E, Caudwell A (1990) Immunolabeling of grapevine Flavescence dorée MLO in salivary glands of Euscelidius variegatus: a light and electron microscopy study. J Histochem Cytochem 38: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Li W, Harung JS, Levy L (2007) Evaluation of DNA amplification methods for improved detection of ‘Candiatus Liberibacter species’ associated with citrus huanglongbing. Plant Dis 91: 51–58.

    Article  CAS  Google Scholar 

  • Li W, Levy L, Hartung JS (2009) Quantitative distribution of ‘Candiatus Liberibacter asiaticus’ in citrus plants with citrus huanglongbing. Phytopathology 99: 139–144.

    Article  PubMed  Google Scholar 

  • Li WB, Pria WD Jr, Laeava PM, Qin X, Hartung JS (2003) Presence of Xylella fastidiosa in sweet orange fruit and seeds and its transmission to seedlings. Phytopathology 93: 953–958.

    Article  PubMed  Google Scholar 

  • Li X, De Boer SH (1995) Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85: 837–842.

    Article  CAS  Google Scholar 

  • Li X, De Boer SH, Ward LJ (1997) Improved microscopic identification of Clavibacter michiganensis subsp. sepedonicus by combining in situ hybridization with immunofluoresence. Lett Appl Microbiol 24: 431–434.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wong WC, Hayward AC (1993) Production and use of monoclonal antibodies to Pseudomonas andropogonis. J Phytopathol 138: 21–30.

    Article  CAS  Google Scholar 

  • Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GRG (2009) A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Dis 93: 208–214.

    Article  CAS  Google Scholar 

  • Lima JEO de, Miranda VS, Hartung JS, Brlansky RH, Coutinho A, Roberto SR, Carlos EF (1998) Coffee leaf scorch bacterium: axenic culture, pathogenicity and comparison with Xylella fastidiosa in citrus. Plant Dis 82: 94–97.

    Article  Google Scholar 

  • Lin CP, Chen TA (1985) Production of monoclonal antibodies against Spiroplasma citri. Phytopathology 75: 845–851.

    Article  Google Scholar 

  • Lin CP, Chen TA (1986) Comparison of monoclonal antibodies and polyclonal antibodies in detection of aster yellows mycoplasma-like organism. Phytopathology 76: 45–50.

    Article  Google Scholar 

  • Lin CP, Shen WC, Ko HC, Chang FL, Yu YL, Chen MF, Wu FY (1993) Application of monoclonal antibodies and cloned DNA probes for the detection and differentiation of phytopathogenic mycoplasma-like organisms. Plant Pathol Bull 2: 161–168.

    Google Scholar 

  • Llop Bonaterra A, Peñalver I, Lopez MM (2000) Development of a highly sensitive nested-PCR procedure using a single closed tube for detection in asymptomatic plant material. Appl Environ Microbiol 66: 2071–2078.

    Article  Google Scholar 

  • Loi N, Ermacora P, Carraro L, Osler R, Chen TA (2002) Production of monoclonal antibodies against apple proliferation phytoplasma and their use in serological detection. Eur J Plant Pathol 108: 81– 86.

    Article  CAS  Google Scholar 

  • Loi N, Ermacora P, Chen TA, Carraro L, Osler R (1998) Monoclonal antibodies for the detection of tagetes witches’ broom agent. J Plant Pathol 80: 171–174.

    Google Scholar 

  • Lorenz K-H, Schneider B, Ahrens U, Seemüller E (1995) Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology 85: 771–776.

    Article  CAS  Google Scholar 

  • Louws FJ, Beu J, Medina-Mora CM, Smart CD, Opgenorth D, Ishimaru CA, Hausbeck MK, de Bruijn FJ, Fulbright DW (1998) rep-PCR-mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology 88: 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ (1994) Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas cultivars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60: 2286–2295.

    PubMed  CAS  Google Scholar 

  • Luo LX, Walters C, Bolkan H, Liu XL, Li JQ (2008) Quantification of viable cells of Clavibacter michiganensis subsp. michiganensis using a DNA binding dye and a real-time PCR assay. Plant Pathol 57: 332–337.

    Article  CAS  Google Scholar 

  • Lydon J, Patterson CD (2001) Detection of tabtoxin-producing strains of Pseudomonas syringae by PCR. Lett Appl Microbiol 32: 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Lyons NF, Cruz L, Santos MS (2001) Rapid field detection of Ralstonia solanacearum in infected tomato and potato plants using Staphylococcus aureus slide agglutination test. Bull OEPP 31: 91–93.

    Article  Google Scholar 

  • Lyons NF, Taylor JD (1990) Serological detection and identification of bacteria from plants by the conjugated Staphylococcus aureus slide agglutination test. Plant Pathol 39: 584–590.

    Article  Google Scholar 

  • Machado MA (2009) Xylella fastidiosa and the citrus variegated chlorosis (CVC), a new destructive citrus disease in Brazil. www.lbi.ic.unicampa.br/xylella _cvc-strain/home mmachado.html

  • Maes M, Garbera P, Crepel C (1996) Identification and sensitive endophytic detection of the fire blight pathogen Erwinia amylovora with 23S ribosomal DNA sequences and polymerase chain reaction. Plant Pathol 45: 1139–1149.

    Article  CAS  Google Scholar 

  • Mahmoudi E, Soleimani MJ, Taghavi M (2007) Detection of bacterial soft rot of crown imperial caused by Pectobacterium carotovorum subsp. carotovorum, using specific primers. Phytopathol Mediterr 46: 168–176.

    CAS  Google Scholar 

  • Malandrin L, Huard A, Samson R (1996) Discriminant envelope profiles between Pseudomonas syringae pv. pisi and P. syringae pv. syringae. FEMS Microbiol Lett 41: 11–17.

    Article  Google Scholar 

  • Malandrin L, Samson R (1998) Isozyme analysis for the identification of Pseudomonas syringae pv. strains. J Appl Microbiol 84: 895–902.

    Article  CAS  Google Scholar 

  • Malandrin L, Samson R (1999) Serological and molecular size characterization of flagellins of Pseudomonas syringae pathovars and related bacteria. Syst Appl Microbiol 22: 534–545.

    Article  PubMed  CAS  Google Scholar 

  • Malisano G, Firrao G, Locci R (1996) 16S rDNA oligonucleotide probes for the differential diagnosis of plum leptonecrosis and apple proliferation phytoplasmas. Bull OEPP 26: 421–428.

    Article  Google Scholar 

  • Manulis S, Kogan N, Valinsky L, Dror O, Kleitman F (1998) Detection of Erwinia herbicola pv. gysophilae in gysophila plants by PCR. Eur J Plant Pathol 104: 85–91.

    Article  CAS  Google Scholar 

  • Marcone C, Hergenhahn F, Ragozzino A, Seemüller R (1999) Dodder transmission of pear decline, European stone fruit yellows, rubus stunt, Pieris echioides yellows and cotton phyllody phtoplasmas to periwinkle. J. Phytopathol 147: 187–192.

    CAS  Google Scholar 

  • Marcone C, Seemüller E (2001) A chromosome map of the European fruit yellows phytoplasma. Microbiology 174: 1213–1221.

    Google Scholar 

  • Maringoni AC, Camara RC, Souza VL (2006) Semi-selective medium for Curtobacterium flaccumfaciens pv. flaccumfaciens isolation from bean seeds. Seed Sci Technol 34: 117–124.

    Google Scholar 

  • Marzarei M, Hajimoral MR, Kerr A (1922) Specificity of polyclonal antibodies to different antigenic preparations of Pseudomonas syringae pv. pisi strain UQM551 and Pseudomonas syringae pv. syringae strain L. Plant Pathol 41:437–443

    Google Scholar 

  • Matsuyama N (1995) Trials for rapid identification of phytopathogenic bacteria by HPLC and direct colony TLC. J Fac Agric Kyushu Univ 40: 87–91.

    CAS  Google Scholar 

  • Matsuyama N, Daikohara M, Yoshimura K, Manabe K, Khan MAA, de Melo MS, Negishi H, Suyama K, Tsuchiya K, Furuya N (2009) Presumptive differentiation of phytopathogenic and non-pathogenic bacteria by improved rapid-extraction TLC method. J Fac Agric Kyushu Univ 54: 1–11.

    CAS  Google Scholar 

  • Matsuyama N, Furuya N (1993) Application of the direct colony TLC for identification of phytopathogenic bacteria (II) chromatographic profile of Erwinia and Pseudomonas spp. J Fac Agric Kyushu Univ 38: 89–95.

    CAS  Google Scholar 

  • Matsuyama N, Mian IH, Akanda AM, Furuya N (1993) On a rapid identification of phytopathogenic bacteria by direct colony thin-layer chromatography. Proc Assoc Plant Prot Kyushu 39: 60–63.

    Article  Google Scholar 

  • Matsuyama N, Ueda Y, Iiyama K, Furuya N, Ura H, Ashraf Khan A, Matusmoto M (1998) Rapid extraction – HPLC as a tool for presumptive identification of Burkholderia gladioli, B. glumae and B. Plantarii, causal agents of various rice diseases. J Fac Agri Kyushu Univ 42: 265–272.

    CAS  Google Scholar 

  • Mavrodieva V, Levy L, Gabriel DW (2004) Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples. Phytopathology 94: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Mazarei A, Kerr A (1990) Distinguishing pathovars of Pseudomonas syringae pv. syringae on peas: nutritional pathogenicity and serological tests. Plant Pathol 39: 278–285.

    Article  Google Scholar 

  • Mc Garvey A, Denny TP, Schell MA (1999) Spatial-temporal and quantitative analysis of growth and EPS production by Ralstonia solanacearum in resistant and susceptible tomato cultivars. Phytopathology 89: 1233–1239.

    Article  CAS  Google Scholar 

  • McIntosh AH, Skowronski BS, Maramorosch K (1974) Rapid identification of Spiroplasma citri and its relation to other yellows agent. Phytopathol Z 80: 150–156.

    Article  Google Scholar 

  • McManus PS, Jones AC (1996) Detection of Erwinia amylovora by nested PCR and PCR-dot blot and reverse blot hybridization. Acta Hortic 411: 87–90.

    Google Scholar 

  • Mello APOA, Bedendo IP, Camargo LEA (2006) Source heterogeneity in the 16S rDNA of tomato big bud phytoplasma belonging to group 16SrIII. J Phytopathol 154: 245–249.

    Article  CAS  Google Scholar 

  • Meng XQ, Umesh KC, Davis RM, Gilbertson R (2004) Development of PCR-based assays for detecting Xanthomonas campestris pv. carotae. Plant Dis 88: 1226–1234.

    Article  CAS  Google Scholar 

  • Merighi M, Sandrini A, Landini S, Ghini S, Girotti S, Malaguti S, Bazzi (2000) Chemiluminescent and colorimetric detection of Erwinia amylovora by immunoenzymatic determination of PCR amplicons from plasmid pEA29. Plant Dis 84: 49–54.

    Article  CAS  Google Scholar 

  • Mguni CM, Mortensen CN, Keswani CL, Hockenhull J (1999) Detection of the black rot pathogen Xanthomonas campestris pv. campestris and other xanthomonads in Zimbabwean and imported Brassica seed. Seed Sci Technol 27: 447–454.

    Google Scholar 

  • Mills D, Russell BW (2003) Parameters for specific detection of Clavibacter michiganensis subsp. sepedonicus in potato stems and tubers by multiplexed PCR-ELISA. Am J Potato Res 80: 223–234.

    Article  CAS  Google Scholar 

  • Mills D, Russell BW, Hanus JW (1997) Specific detection of Clavibacter michiganensis subsp. sepedonicus by amplification of three unique DNA sequences isolated by subtraction hybridization. Phytopathology 87: 853–861.

    Article  PubMed  CAS  Google Scholar 

  • Milne RG (1992) Immuno-electron microscopy of plant viruses and phytoplasmas. Adv Dis Vector Res 9: 283–312.

    Article  Google Scholar 

  • Milne RG, Ramasso E, Lenzi R, Masenga V, Sarindu N, Clark MF (1995) Pre- and post-embedding immunogold labeling and electron microscopy in plant host tissues of three antigenically unrelated MLOs: primula yellows, tomato big bud and bermudagrass white leaf. Eur J Plan Pathol 101: 57–67.

    Article  Google Scholar 

  • Mitchell RE, Young H (1978) Identification of chlorosis inducing toxin of Pseudomonas glycinea as coronatine. Phytochemistry 17: 20–28.

    Article  Google Scholar 

  • Mitrev S, Kovačevic B (2006) Characterization of Xanthomonas axonopodis pv. vesicatoria isolated from peppers in Macedonia. J Plant Pathol 88: 321–324.

    CAS  Google Scholar 

  • Miyoshi T, Sawada H, Tachibana Y, Matsuda I (1998) Detection of Xanthomonas campestris pv. citri by PCR using primers from the spacer region between the 16S and 23S rRNA genes. Ann Phytopathol Soc Jpn 64: 249–254.

    Article  CAS  Google Scholar 

  • Moline HE (1985) Differentiation of postharvest soft rotting bacteria with two-dimensional polyacrylamide gel electrophoresis. Phytopathology 75: 549–553.

    Article  CAS  Google Scholar 

  • Moretti C, Silvestri FM, Rossini E, Natalini G, Buonaurio R (2007) A protocol for rapid identification of Brennaria nigrifluens among bacteria isolated from bark cankers in Persian walnut plants. J Plant Pathol 89: 211–218.

    Google Scholar 

  • Mosqueda-Cano G, Herrera-Estrella L (1997) A simple and efficient PCR method for the specific detection of Pseudomonas syringae pv. phaseolicola in the bean seeds. World J Microbiol Biotechnol 13: 463–467.

    Article  CAS  Google Scholar 

  • MrázL, Pánková I, Petrzik K, Šíp M (1999) Erwinia and Pseudomonas bacteria can be reliably screened by an improved serological agglutination test. J Phytopathol 147: 429–431.

    Article  Google Scholar 

  • Musetti R, Favalli MA (2004) Microscopy techniques applied to the study of phytoplasma diseases: traditional and innovative methods. www.formatex.org/microscopy2/papers/72-80.pdf

  • Myrie W, Harrison N, Dollet M, Been B (2007) Molecular detection and characterization of phytoplasmas associated with coconut palms in Jamaica. Bull Insectol 60: 159–160.

    Google Scholar 

  • Myung I-S, Hyn J-W, Cho W-D (2006) Detection of Xanthomonas axonopodis pv. citri on Satsuma Mandrin orange fruits using phage technique in Korea. Plant Pathol J 22: 314–317.

    Article  Google Scholar 

  • Myung I-S, Nam K-W, Kwon H-M (2001) Dispersal of citrus bacterial canker caused by Xanthomonas axonopodis pv. citri in nursery plots of Unshiu orange. Plant Pathol J 19: 205–209.

    Google Scholar 

  • Najar A, Bouachem S, Danet JL, Saillard C, Garnier M, Bové JM (1998) Presence of Spiroplasma citri, the pathogen responsible for citrus stubborn disease and its vector leafhopper Circulifer haemotoceps in Tunisia: contamination of both C. haemotoceps and C. opacipennis. Fruits (Paris) 53: 391–396.

    Google Scholar 

  • Nakamura H, Yoshikawa N, Takahashi T, Sahashi N, Kubono T, Shoji T (1996) Evaluation of primer pairs for the reliable diagnosis of paulownia witches’ broom disease using a polymerase chain reaction. Plant Dis 80: 302–305.

    Article  CAS  Google Scholar 

  • Nakashima K, Hayashi T (1995) Extrachromosomal DNAs of rice yellow dwarf and sugarcane white leaf phytoplasmas. Ann Phytopathol Soc Jpn 61: 451–462.

    Article  CAS  Google Scholar 

  • Nakashima K, Kato S, Iwanami S, Murata N (1991) Cloning and detection of chromosomal and extrachromosomal DNA from mycoplasma-like organisms that cause yellow dwarf disease of rice. Appl Environ Microbiol 57: 3570–3575.

    PubMed  CAS  Google Scholar 

  • Narayanasamy P (2001) Plant Pathogen Detection and Disease Diagnosis, Second Edition, Marcel Dekker, New York.

    Google Scholar 

  • Narayanasamy P (2008) Molecular Biology in Plant Pathogenesis and Disease Management, Volumes 1, 2, and 3, Springer, Heidelberg, Germany.

    Google Scholar 

  • Naumann K, Karl H, Zielke R, Schmidt A, Griesbach E (1988) Comparative analysis of bean seeds on the incidence of causal agent of halo blight Pseudomonas syringae pv. phaseolicola by different identification methods. Zentr Mikrobiol 143: 487–498.

    Google Scholar 

  • Navrátil M, Válova P, Fialová R, Priblova J, Špak J, Kubelkova D, Karešová R (2001) Occurrence of phytoplasmas in red and white currant in the Czech Republic. Acta Hortic 656: 119–124.

    Google Scholar 

  • Nicolaisen M, Bertaccini A (2007) An oligonucleotide microarray-based assay for identification of phytoplasma 16S ribosomal groups. Plant Pathol 56: 332–336.

    Article  CAS  Google Scholar 

  • Niepold F (1999) A simple and fast extraction procedure to obtain amplifiable DNA from Ralstonia solanacearum and Clavibacter michiganensis subsp. michiganensis-inoculated potato tubers to conduct a polymerase chain reaction (PCR). J Phytopathol 147: 249–256.

    Article  CAS  Google Scholar 

  • Nipah JO, Jones, P, Dickinson MJ (2007) Detection of lethal yellowing phytoplasma in embroys from coconut palms infected with Cape St. Paul wilt disease in Ghana. Plant Pathol 56:777–784

    Google Scholar 

  • Nishiyama K, Sakai R, Ezuka A, Ichihara A, Shiraishi K, Sakamura S (1977) Phytotoxic effect of coronatine in haloblight lesions of Italian ryegrass. Ann Phytopathol Soc Jpn 42: 219.

    Article  Google Scholar 

  • Norman DJ, Yuen JMF (1998) A distinct pathotype of Ralstonia (Pseudomonas) solanacearum race 1, biovar 1 entering Florida in pothos (Epiremnum aureum) cuttings. Can J Plant Pathol 20: 171–175.

    Article  Google Scholar 

  • Oh CS, Heu SG, Choi YC (1999) Sensitive and pathovar-specific detection of Xanthomonas campestris pv. glycines by DNA hybridization and analysis. Plant Pathol J 15:58–61

    Google Scholar 

  • Okuda M, Matsumoto M, Tanaka Y, Subandiyah S, Iwananu T (2005) Characterization of the tuftB-secE-nusG-rplKAJL-rpo gene cluster of the citrus greening organism and detection by loop-mediated isothermal amplification. Plant Dis 89: 705–711.

    Article  CAS  Google Scholar 

  • Olsen M, Bigelow D, Pryor B, Ramussen S (2002) Detection of Xanthomonas translucens on barley seed. In Ottmann M (ed), Forage and Grain, A College of Agriculture and Life Sciences Report Series P-132. Publ. No. AZ1301. University of Arizona, College of Agriculture and Life Sciences, Cooperative Extension, Tucson, AZ, pp. 1–3.

    Google Scholar 

  • Opgenorth DC, Smart CD, Louws PJ, Bruijn FJ, de Kirkpatrick BC (1996) Identification of Xanthomonas fragariae field isolates by rep-PCR genomic fingerprinting. Plant Dis 80: 868–873.

    Article  Google Scholar 

  • Ou SH (1985) Rice Diseases, Second Edition, CMI, Surrey, UK.

    Google Scholar 

  • Ovod VV, Knirel YA, Samson R, Krohn KJ (1999) Immunochemical characterization and taxonomic evaluation of the O-polysaccharides of the lipopolysaccharides of Pseudomonas syringae serogroup 01 strain. J Bacteriol 181: 6937–6947.

    PubMed  CAS  Google Scholar 

  • Ozakman M, Schaad NW (2004) A real-time BIO-PCR assay for the detection of Ralstonia solanacearum race 3, biovar 2, in asymptomatic potato tubers. Can J Plant Pathol 26: 232–239.

    Google Scholar 

  • Ozdemir Z (2005) Development of a multiplex PCR assay for concurrent detection of Clavibacter michiganensis subsp. michiganensis and Xanthomonas axonopodis pv. vesicatoria. Plant Pathol J 4: 133–137.

    Article  Google Scholar 

  • Paltrinieri S, Bertaccini A (2007) Detection of phytoplasmas in plants grown from different batches of seed potatoes. Bull Insectol 60: 379–380.

    Google Scholar 

  • Pan YN, Grisham MP, Burner DM, Damann KE Jr, Wei Q (1998) A polymerase chain reaction protocol for the detection of Clavibacter xyli subsp. xyli, the causal bacterium of sugarcane ratoon stunting disease. Plant Dis 82: 285–290.

    Article  CAS  Google Scholar 

  • Paret ML, de Silva AS, Alvarez AM (2009) Bioindicators for Ralstonia solanacearum race 4: plants in the Zingiberaceae and Costaceae families. Aust Plant Pathol 38: 6–12.

    Article  Google Scholar 

  • Park DS, Hyun JW, Park YJ, Kim JS, Kang HW, Hahn JH, Go SJ (2006) Sensitive and specific detection of Xanthomonas axonopodis pv. citri by PCR using pathovar specific primers based on hrp W gene sequences. Microbiol Res 161: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Park DS, Shim JK, Kim JS, Lim CK, Shreshtha R, Hahn JH, Kim HG (2009) Sensitive and ­specific detection of Xanthomonass campestris pv. vesicatoria by PCR using pathovar-specific primers based on rhs family gene sequences. Microbiol Res 164: 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Park YJ, Lee BM, Ho-Hahn J, Lee GB, Park DS (2004) Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequences. Microbiol Res 159: 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Pasichnyk LA (2000) Antigenic properties of bacteria of pathovars of Pseudomonas syringae affecting cereals. Mikrobiol Z 62: 18–22.

    PubMed  CAS  Google Scholar 

  • Pastrik KH, Elphinstone JG, Pukall R (2002) Sequence analysis and detection of Ralstonia solanacearum by multiplex PCR amplification of 16S–23S ribosomal intergenic spacer region with internal positive control. Eur J Plant Pathol 108: 831–842.

    Article  CAS  Google Scholar 

  • Pataky JK, Block CC, Michener PM, Shepherd LM, McGee DC, White DG (2004) Ability of an ELISA-based seed health test to detect Erwinia stewartii in maize seed treated with fungicides and insecticides. Plant Dis 88: 633–640.

    Article  CAS  Google Scholar 

  • Patel MK, Dhande GM, Kulkarni YS (1951) Studies on some species of Xanthomonas. Ind Phytopathol 4: 123–140.

    Google Scholar 

  • Peacock SJ, de Silva GD, Justice A, Cowland CE, Moore CE, Winerals CG, Day NP (2002) Comparison of multilocus sequence typing and pulsed-field gel electrophoresis as tools for typing Staphylococcus aureus isolates in a microepidemiological setting. J Clin Microbiol 40: 3764–3770.

    Article  PubMed  CAS  Google Scholar 

  • Peñyalver R, García A, Ferrer A, Bertolini E, López MM (2000) Detection of Pseudomonas savastanoi pv. savatanaoi in olive plants by enrichment and PCR. Appl Environ Microbiol 66: 2673–2677.

    Article  PubMed  Google Scholar 

  • Permar TA, Gottwald TR (1989) Specific recognition of a Xanthomonas campestris Florida citrus nursery strain by a monoclonal antibody probe in a microinfiltration enzyme immunoassay. Phytopathology 79: 780–783.

    Article  Google Scholar 

  • Pilkington LJ, Gibb KS, Gurr GM, Fletcher MJ, Nikandrow A, Elliott E, van de Ven R, Read DMY (2003) Detection and identification of a phytoplasma from lucerne with Australian lucerne yellows disease. Plant Pathol 52: 754–762.

    Article  CAS  Google Scholar 

  • Pollini CP, Giunchedi L, Bissani R (1997) Immunoenzymatic detection of PCR products for the identification of phytoplasmas in plants. J Phyotpathol 145: 371–374.

    Article  Google Scholar 

  • Pooler MR, Myung IS, Bentz J, Sherald J, Hartung JS (1997) Detection of Xylella fastidiosa in potential insect vectors by immunogenetic separation and nested polymerase chain reaction. Lett Appl Microbiol 25: 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Pradel KS, Ullrich CI, Santa Cruz S, Opar Ka KJ (1999) Symplastic continuity in Agrobacterium tumefaciens-induced tumors. J Exp Bot 50: 183–192.

    CAS  Google Scholar 

  • Přibylova J, Petrzik K, Špak J (2009) The first detection of ‘Candidatus Phytoplasma trifolii’ in Rhododendron hybridum. Eur J Plant Pathol DOI 10.1007/s.10658-008-9391-1

    Google Scholar 

  • Priou S, Gutarra L, Aley P (1999) Highly sensitive detection of Ralstonia solanacearum in latently infected potato tubers by post-enrichment enzyme-linked immunosorbent assay on nitrocellulose membrane. Bull OEPP 29: 117–125.

    Article  Google Scholar 

  • Prossen D, Hatziloukas E, Panopoulos NJ, Schaad NW (1991) Direct detection of the halo blight pathogen Pseudomonas syringae pv. phaseolicola in bean seeds by DNA amplification. Phytopathology 81: 1159.

    Google Scholar 

  • Puopolo G, Raio A, Zoina A (2007) Early detection of Agrobacterium tumefaciens in symptomless artificially inoculated chrysanthemum and peach plants using PCR. J Plant Pathol 89: 185–190.

    CAS  Google Scholar 

  • Purcell AH, Saunders SR, Hendson M, Grebus ME, Henry MJ (1999) Causal role of Xylella ­fastidiosa in oleander leaf scorch disease. Phytopathology 89: 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Wanner LA, Christ BJ (2008) Using the TxtAB operon to quantify pathogenic Streptomyces in potato tubers and soil. Phytopathology 98: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein F, Nachtigall M, Boll E (1999) Production and characterization of monoclonal ­antibodies against Xanthomonas campestris pv. campestris. Beit Zucht Bunde Zucht Kultur 5: 4–6.

    CAS  Google Scholar 

  • Rademaker JLW, Janse D (1994) Detection and identification of Clavibacter michiganensis subsp. sepedonicus and C. michiganens subsp. michiganensis by nonradioactive hybridization, polymerase chain reaction and restriction enzyme analysis. Can J Microbiol 40: 1007–1018.

    Article  CAS  Google Scholar 

  • Rademaker JLW, Norman RL, Forster RL, Louws FJ, Schultz MH, de Bruijn FJ (2006) Classification and identification of Xanthomonas translucens isolates including those pathogenic to ornamental asparagus. Phytopathology 96: 876–884.

    Article  PubMed  CAS  Google Scholar 

  • Rajeshwari N, Shylaja MD, Krishnappa M, Shetty HS, Mortensen CN, Mathur SB (1998) Development of ELISA for the detection of Ralstonia solanacearum in tomato: its application in seed health testing. World J Microbiol Biotechnol 14: 697–704.

    Article  Google Scholar 

  • Rico A, López R, Asensio C, Aizpún T, Asensio-S-Manzanera MC, Murillo J (2003) Nontoxigenic strains of Pseudomonas syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93: 1553–1559.

    Article  PubMed  CAS  Google Scholar 

  • Robéne-Soustrade I, Laurent P, Gagnevin L, Jouen E, Pruvost O (2006) Specific detection of Xanthomonas axonopodis pv. diffenbachiae in anthurium (Anthurium andreanum) tissues by nested PCR. Appl Environ Microbiol 72: 1072–1078.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues JLM, Silva-Stencio ME, de Souza AN, Lopes JRS, Tsai SM (2006) In situ probing of Xylella fastidiosa in honeydew of a xylem sap-feeding insect using 16S rRNA-targeted fluorescent oligonucleotides. Environ Microbiol 8: 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues JLM, Silva-Stencio ME, Gomes JE, Lopes JRS, Tsai sM (2003) Detection and diversity assessment of Xylella fastidiosa in field-collected plant and insect samples by using 16S rRNA and gyrB sequences. Appl Environ Microbiol 69: 4249–4255.

    Article  PubMed  Google Scholar 

  • Romeiro RS, Silva HSA, Beriam LOS, Rodrigues Neto J, Carvalho MG de (1999) A bioassay for the detection of Agrobacterium tumefaciens in soil and plant material. Summ Phytopathol 25: 359–362.

    Google Scholar 

  • Rott P, Davis MJ, Baudin P (1994) Serological variability in Xanthomonas albilineans, causal agent of leaf scald disease of sugarcane. Plant Pathol 43: 344–359.

    Article  Google Scholar 

  • Sachadyn P, Kur J (1997) A new PCR system for Agrobacterium tumefaciens detection based on amplification of T-DNA fragment. Acta Microbiol Polo 46: 145–156.

    CAS  Google Scholar 

  • Saeed EM, Roux J, Cousin MT (1993) Studies on polyclonal antibodies for the detection of MLOs associated with faba bean (Vicia faba L.) using different ELISA methods and dot blot. J Phytopathol 137: 33–43.

    Article  CAS  Google Scholar 

  • Sagaram US, DeAngelis KM, Trivedi P, Andersen GL, Lu S-N, Wang N (2009) Bacterial diversity analysis of huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Appl Environ Microbiol 75: 1566–1574.

    Article  PubMed  CAS  Google Scholar 

  • Samuitiene M, Navalinskiene M (2006) Molecular detection and characterization of phytoplasma infecting Celosia argentea L. plants in Lithuania. Agron Res 4: 345–348.

    Google Scholar 

  • Sayler RJ, Cartwright RD, Yang Y (2006) Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. Plant Dis 90: 603–610.

    Article  CAS  Google Scholar 

  • Scally M, Schuenzel EL, Stouthamer RA, Nunney L (2005) Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation of clonal diversity. Appl Environ Microbiol 71: 8491–8499.

    Article  PubMed  CAS  Google Scholar 

  • Schaad NW, Azad H, Peet RC, Panopoulos NJ (1989) Identification of Pseudomonas syringae pv. phaseolicola by a DNA hybridization probe. Phytopathology 79: 903.

    Article  Google Scholar 

  • Schaad NW, Berthier-Schaad Y, Knorr D (2007) A high throughput membrane BIO-PCR technique for ultra-sensitive detection of Pseudomonas syringae pv. phaseolicola. Plant Pathol 56: 1–8.

    Article  CAS  Google Scholar 

  • Schaad NW, Berthier-Schaad Y, Sechler A, Knorr D (1999) Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and an automated real-time fluorescence detection system. Plant Dis 83: 1095–1100.

    Article  CAS  Google Scholar 

  • Scaad NW, Cheong SS, Tamaki E, Hatziloukas E, Panopoulos NJ (1995a) A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 95: 243–248.

    Article  Google Scholar 

  • Schaad NW, Cheong SS, Tamaki S, Hatziloukas E, Panopoulos NJ ( 1995b) A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola from wheat seeds. Phytopathology 85: 260–263.

    Article  Google Scholar 

  • Schaad NW, Forster RL (1985) A semi-selective agar medium for isolating Xanthomonas campestris pv. translucens from wheat seeds. Phytopathology 75: 260–263.

    Article  Google Scholar 

  • Schaad NW, Jones JB, Chun W (2002a) Laboratory Guide for Identification of Plant Pathogenic Bacteria. American Phytopathol Society, St. Paul, MN.

    Google Scholar 

  • Schaad NW, Opgennorth D, Gaush P (2002b) Real-time polymerase chain reaction for one-hour on site diagnosis of Pierce’s disease of grape in early season asymptomatic vines. Phytopathology 92: 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Schaad NW, Takatsu A, Dianese JC (1978) Serological identification of strains of Pseudomonas solanacearum in Brazil. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Angers, France, 1, pp. 295–300.

    Google Scholar 

  • Schmidt T (1994) Fingerprinting bacterial genomes using ribosomal RNA genes and operons. Meth Mol Cell Biol 5: 3–12.

    CAS  Google Scholar 

  • Schneider B, Ahrens U, Kirkpatrick BC, Seemüller E (1993) Classifiction of plant pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. J Gen Microbiol 139: 519–527.

    CAS  Google Scholar 

  • Schneider B, Seemüller E (1994) Studeis on taxonomic relationships of mycoplasma-like organisms by Southern blot analysis. J Phytopathol 141: 173–185.

    Article  Google Scholar 

  • Schneider B, Torres E, Martin MP, Schroder M, Behnke HD, Seemüller E (2005) ‘Candiatus Phytoplasma pini’, a novel taxon from Pinus silvestris and Pinus halepensis. Int J Syst Evol Microbiol 55: 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Schneider BJ, Zhao JL, Orser CS (1993) Detection of Clavaibacter michiganensis subsp. sepedonicus by DNA amplification. FEMS Microbiol Lett 109: 207–212.

    PubMed  CAS  Google Scholar 

  • Scholberg P, O’Gorman D, Bedford K, Levesque CA (2005) Development of DNA macroarray for detection and monitoring of economically important apple diseases. Phytopathology 89: 1143–1150.

    Google Scholar 

  • Schubert TS, Rivui SA, Sun XA, Gottwald TR, Graham JH, Dixon WN (2001) Meeting the challenge of eradicating citrus canker in Florida again. Plant Dis 85: 340–356.

    Article  Google Scholar 

  • Schumann GL (1991) Plant Diseases: Their Biology and Social Impact. American Phytopathological Society, St. Paul, MN.

    Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNA by pulsed field gradient gel elelctrophoresis. Cell 37: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz RE (1968) Indexing of greening and excortis through fluorescent marker substance. Proc 4th Conf Citrus Virol Univ Florida, pp. 118–123.

    Google Scholar 

  • Seal SE, Taghavi M, Fegan N, Hayward AC, Fegan M (1999) Determination of Ralstonia (Pseudomonas) solanacearum rDNA subgroups by PCR tests. Plant Pathol 48: 115–120.

    Article  CAS  Google Scholar 

  • Sechler A, Schuenzel EL, Cooke S, Donnua S, Thaveechai N, Postnikova E, Stone AL, Schneider WL, Damsteegt D, Schaad NW (2009) Cultivation of ‘Candiatus Liberibacter asiaticus’, ‘Ca. L. africanus’ and ‘Ca. L. americanus’ associated with Huanglongbing. Phytopathology 99: 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Secor GA, Rivera VV, Abad JA, Lee I-M, Clover GRG, Liefting LW, Li X, De Boer SH (2009) Association of ‘Candidatus Liberibacter solanacearum’ with Zebra Chip disease of potato established by graft and psyllid transmission, electron microscopy and PCR. Plant Dis 93: 574–583.

    Article  CAS  Google Scholar 

  • Seddas A, Meignoz R, Daire X, Boudon-Padieu E (1996) Generation and characterization of monoclonal antibodies to flavescence dorée phytoplasma: serological relationships and differences in electroblot immunoassay profiles of flavescence dorée and elm yellows phytoplasmas. Eur J Plant Pathol 102: 757–764.

    Article  Google Scholar 

  • Seo ST, Furuya N, Lim CK, Takanami Y, Tsuchiya K (2003) Phenotypic and genetic characterization of Erwinia carotovora from mulberry (Morus spp.) Plant Pathol 52: 140–146.

    Article  CAS  Google Scholar 

  • Seo ST, Tsuchiya K, Murakami R (2004) Characterization and differentiation of Erwinia carotovora strains from mulberry trees. J Gen Plant Pathol 70: 120–123.

    Article  CAS  Google Scholar 

  • Shan ZH, Liao BS, Tan YJ, Li D, Lei Y, Shen MZ (1997) ELISA technique used to detect latent infection of groundnut by bacterial wilt (Pseudomonas solanacearum). Oilcrops China 19: 45–47.

    Google Scholar 

  • Shao J, Jomantiene R, Dally EL, Zhao Y, Lee I-M, Nuss DL, Davis RE (2006) Phylogeny and characterization of phytoplasmal NusA and use of the nusA gene in detection of group 16SrII strains. J Plant Pathol 88: 193–201.

    CAS  Google Scholar 

  • Shigaki R, Nelson SC, Alvarez AM (2000) Symptomless spread of blight-inducing strains of Xanthomonas campestris pv. campestris on cabbage seedlings in misted seed beds. Eur J Plant Pathol 106: 339–346.

    Article  Google Scholar 

  • Siddique ABM, Guthrie JN, Walsh KB, White DT, Scott PT (1998) Histopathology and within-plant distribution of the phytoplasma associated with Australian papaya dieback. Plant Dis 82: 1112–1120.

    Article  Google Scholar 

  • Sinclair WA, Griffiths HM, Davis RE, Lee I-M (1992) Detection of ash yellows mycoplasma-like organisms in different tree organs and in chemically preserved specimens by cDNA probe vs DAPI. Plant Dis 76: 154–158.

    Article  CAS  Google Scholar 

  • Sinclair WA, Iuli RT, Dyer AT, Larsen AD (1989) Sampling and histological procedures for diagnosis of ash yellows. Plant Dis 73: 432–435.

    Article  Google Scholar 

  • Singh U, Trevors CM, De Boer SH, Janse JD (2000) Fimbrial-specific monoclonal antibody-based ELISA for European potato strains of Erwinia chrysanthemi and comparison to PCR. Plant Dis 84: 443–448.

    Article  CAS  Google Scholar 

  • Sinha RC (1988) Serological detection of mycoplasma-like organisms from plants affected with yellows disease. In: Hiruki C (ed), Tree Mycoplasmas and Mycoplasma Diseases, University of Alberta Press, Edmonton, AB, pp. 143–156.

    Google Scholar 

  • Sinha RC, Benhamou N (1983) Detection of mycoplasma-like organism antigens from aster yellows-diseased plants by two serological procedures. Phytopathology 73: 1199–1202.

    Article  Google Scholar 

  • Slack SK, Drennan, JL, Westra AAG, Gudmestad NC, Oleson AE (1996) Comparison of PCR, ELISA and DNA hybridization for the detection of Clavibacter michiganensis susbsp. sepedonicus in field-grown potatoes. Plant Dis 80:519–524

    Google Scholar 

  • Sledz W, Jafra S, Waleron M, Malinowska A, Lojkowska E (1999) Diagnostics of pectinolytic Erwinia isolated from infected potato plants and tubers by PCR. Petria 9: 73–76.

    Google Scholar 

  • Smith DS, De Boer SH (2009) Implementation of an artificial reaction control in a TaqMan method PCR detection of Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 124: 405–412.

    Article  CAS  Google Scholar 

  • Smith DS, De Boer SH, Gourley J (2008) An internal reaction control for routine detection of Clavibacter michiganensis subsp. sepedonicus using real-time TaqMan PCR-based assay. Plant Dis 92: 684–693.

    Article  CAS  Google Scholar 

  • Solomon JJ, Govindan Kutty MP (1991) Etiology-mycoplasma-like organisms. In: Nair MK, Nambiar KKN, Koshy PK, Jayasankar NP (eds), Coconut Root (wilt) Disease, CPCRI, Kasaragod, India, pp. 35–40.

    Google Scholar 

  • Špak J, Přibylová J, Kubelková D, Špaková V (2004) The presence of phytoplasma in black ­currant infected with the black currant reversion disease. J Phytopathol 152: 600–605.

    Article  Google Scholar 

  • Srinivasan N (1982) Simple diagnostic technique for plant diseases of mycoplasma etiology. Curr Sci 51: 883–885.

    Google Scholar 

  • Srinivasulu B, Narayanasamy P (1995) Serological detection of phyllody disease in sesamum and leafhopper Orosius albicinctus. J Mycol Plant Pathol 25: 154–157.

    Google Scholar 

  • Stöger A, Schaffer J, Ruppitsch W (2006) A rapid and sensitive method for direct detection of Erwinia amylovora in symptomatic and asymptomatic plant tissues by polymerase chain reaction. J Phytopathol 154: 469–473.

    Article  Google Scholar 

  • Streten C, Conde B, Herrington M, Moulden J, Gibb K (2005) Candidatus Phytoplasma ­australiense is associated with pumpkin yellow leaf curl disease in Queensland, Western Australia and the Northern Territory. Aust Plant Pathol 34: 103–105.

    Article  Google Scholar 

  • Sun X, Stall RE, Jones JB, Cubero J, Gottwald TR, Graham JH, Dixon WN, Schubert TS, Chaloux PH, Stromberg VK, Lacy GH, Sutton BD (2004) Detection and characterization of a new strain of citrus canker bacteria from Key/Mexican lime and Alemow in South Florida. Plant Dis 88: 1179–1188.

    Article  CAS  Google Scholar 

  • Takahashi Y, Omura T, Hibino H, Sato M (1996) Detection and identification of Pseudomonas syringae pv. atropurpurea by PCR amplification of specific fragments from an indigenous plasmid. Plant Dis 80: 783–788.

    Article  CAS  Google Scholar 

  • Tambong JT, Mwange KN, Bergeron M, Ding T, Mandy F, Reid LM, Zhu X (2008) Rapid detection and identification of the bacterium Pantoea stewartii in maize by TaqMan® real-time PCR targeting the cpsD gene. J Appl Microbiol 104: 1525–1537.

    Article  PubMed  CAS  Google Scholar 

  • Tatineni S, Sagaram US, Gowda S, Robertson CJ, Dawson WO, Iwanami T, Wang N (2008) In planta distribution of ‘Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology 98: 592–599.

    Article  PubMed  CAS  Google Scholar 

  • Taylor RK, Guilford PJ, Clark RG, Hale CN, Forster RLS (2001) Detection of Erwinia amylovora in plant material using novel polymerase chain reaction (PCR) primers. NZ J Crop Horti Sci 29: 35–43.

    Article  CAS  Google Scholar 

  • Taylor RK, Tyson JL, Fullerton RA, Hale CN (2002) Molecular detection of exotic phytopathogenic bacteria: a case study involving canker-like symptoms on citrus. NZ Plant Prot 55: 53–57.

    Google Scholar 

  • Teixeira DC, Saillard C, Eveilard S, Danet JL, Ayers AJ, Bové JM (2005) ‘Candidatus Liberibacter americanus’ sp. nov., associated with citrus huanglongbing (greening disease) in Sao Paulo, Brazil. Int Syst Bacteriol 55: 18857–18662.

    Google Scholar 

  • Thaveechai N, Schaad NW (1986) Immunochemical characterization of a subspecies-specific antigenic determinant of a membrane protein complex of Xanthomonas campestris pv. campestris. Phytopathology 76: 148–153.

    Article  CAS  Google Scholar 

  • Thomas S, Balasundaram M (2001) Purification of sandal spike phytoplasma for the production of polyclonal antibody. Curr Sci 80: 1489–1494.

    CAS  Google Scholar 

  • Torres E, Bertolini E, Cambra M, Monton C, Martin MP (2005) Real-time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Mol Cell Probes 19: 334–340.

    Article  PubMed  CAS  Google Scholar 

  • Toth IK, Hyman LJ, Wood JR (1999) A one-step PCR-based method for the detection of economically important soft rot Erwinia species in micropropagated potato plants. J Appl Microbiol 87: 158–166.

    Article  CAS  Google Scholar 

  • Toussaint V, Morris CE, Carisse O (2001) A new semi-selective medium for Xanthomonas campestris pv. vitians, the causal agent of bacterial spot of lettuce. Plant Dis 85: 131–136.

    Article  Google Scholar 

  • Tran-Nguyen LTT, Gibb KS (2007) Optimizing phytoplasma DNA purification for genome analysis. J Biomol Tech 18: 104–112.

    PubMed  CAS  Google Scholar 

  • Trindade LC, Marques E, Lopes DB, Ferreira MASV (2007) Development of a molecular method for detection and identification of Xanthomonas campestris pv. viticola. Summa Phytopathol 33: 16–23.

    Google Scholar 

  • Triplett LR, Zhao Y, Sundin GW (2006) Genetic differences between blight-causing Erwinia species with differing host specificities identified by suppression subtractive hybridization. Appl Environ Microbiol 72: 7359–7364.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo GE, Saettler AW (1979) A combined semi-selective medium and serology test for the detection of Xanthomonas blight bacteria in bean seed. J Seed Sci Technol 4: 35–41.

    Google Scholar 

  • Tsuchiya K, d’Ursel CCM (2004) Development of a sensitive ELISA using three monoclonal antibodies against lipopolysaccharides to detect Xanthomonas campestris pv. vesicatoria, the causal agent of bacterial spot of tomato and pepper. J Gen Plant Pathol 70: 21–26.

    Article  CAS  Google Scholar 

  • Tsuchiya K, d’Uresel CCM, Nozu Y (2004) Production and preliminary characterization of monoclonal antibodies raised against Xanthomonas campestris pv. mangiferaeindicae. J Gen Plant Pathol 70: 27–33.

    Article  CAS  Google Scholar 

  • Tsuchiya K, Yano K, Horita M, Morita Y, Kawada Y, d’Ursel CM (2005) Occurrence and epidemic adaptation of new strains of Ralstonia solanacearum associated with Zingiberaceae plant under agro-ecosystem in Japan. In: Allen C, Prior Ph, Hayward AC (eds), Bacterial Wilt Disease and the Ralstonia solanacearum species complex, American Phytopathological Society, St. Paul, MN, pp. 463–469.

    Google Scholar 

  • Tsushima S, Narimatsu C, Mizuno A, Kimura R (1994) Cloned DNA probes for detection of Pseudomonas glumae causing bacterial grain rot of rice. Ann Phytopathol Soc Jpn 60: 576–584.

    Article  CAS  Google Scholar 

  • Tymon AM, Jones P, Harrison NA (1997) Detection and differentiation of African coconut phytoplasma: RFLP analysis of PCR-amplified 16S rDNA and DNA hybridization. Ann Appl Biol 131: 91–102.

    Article  CAS  Google Scholar 

  • Umesha S, Richardson PA, Kong P, Hong CX (2008) A novel indicator plant to test the hypersensitivity of phytopathogenic bacteria. J Microbiol Meth 72: 95–97.

    Article  CAS  Google Scholar 

  • Ura H, Matsumoto M, Iiyama K, Furuya N, Matsuyama N (1998) PCR-RFLP analysis for distinction of Burkholderia species, causal agents of various rice diseases. Proc Assoc Plant Prot Kyushu 44: 5–8.

    Article  CAS  Google Scholar 

  • Urabana Vičienė L, Jomantienė R, Valiūnas D, Davis RE (2004) Molecular detection of phytoplasmas in oats, barley and Triticosecale and their classification based on 16S rRNA gene polymorphisms. Zemes Ukio Mokslai 4: 15–19.

    Google Scholar 

  • Urabana Vičienė D, Valiūnas D, Jomatienė R (2006) Detection of aster yellows group (subgroup 16SrI-B) phytoplasma in oats based on nested PCR and RFLP in Lithuania. Agron Res 4: 417–420.

    Google Scholar 

  • Urasaki N, Kawano S, Mukai H, Uemori T, Takeda O, Sano T (2008) Rapid and sensitive detection of ‘Candiatus Liberibacter asiaticus’ by cycleave isothermal and chimeric primer-initiated amplification of nucleic acids. J Gen Plant Pathol 74: 151–155.

    Article  CAS  Google Scholar 

  • Valiūnas D, Samuitiene M, Navalinskiene, Davis RE (2008) Identification of viral and phytoplasmal agents causing diseases in Gaillardia Foug plants in Lithuania. Agron Res 6: 109–118.

    Google Scholar 

  • Van der Vliet GME, Schepers P, Schukkink RAF, van Gemen B, Klaster PR (1994) Assessment of mycobacterial viability by RNA amplification. Antimicrob Agents Chemotherap 38: 1959–1965.

    Article  Google Scholar 

  • Van der Wolf JM, Hyman LJ, Jones DAC, Grevesse C, Beckhoven JRCM, van Vuurde JWL, Pérombelon MCM (1996) Immunomagnetic separation of Erwinia carotovora subsp. atroseptica from potato peel extracts to improve detection sensitivity on a crystal violet pectate medium or by PCR. J Appl Bacteriol 80: 487–495.

    Article  PubMed  Google Scholar 

  • Van der Wolf JM, Schoen CD (2004) Bacterial Pathogens: Detection and Identification Methods, Marcel Dekker, New York.

    Google Scholar 

  • Van der Wolf JM, Van Beckhoven JRCM, De Haan EG, Van den Bovenkamp GW, Leone GOM (2004) Specific detection of Ralstonia solanacearum 16S rRNA sequences by AmpliDet RNA. Eur J Plant Pathol 110: 25–33.

    Article  Google Scholar 

  • Van Vuurde JWL, Van den Bovenkamp GW (1981) Routine methods for the detection of halo-blight (Pseudomonas phaseolicola) in beans. Report on the 17th International Workshop on Seed Pathology, International Seed Testing Association, Zurich, Switzerland, p. 22.

    Google Scholar 

  • Veena MS, van Vuurde JWL (2002) Indirect immunofluorescence colony staining method for detecting bacterial pathogens of tomato. J Microbiol Meth 49: 11–17.

    Article  CAS  Google Scholar 

  • Veera C, Milne RG (1994) Immunosorbent electron microscopy and gold label antibody decoration of MLOs from crude preparations of infected plants and insects. Plant Pathol 43: 190–199.

    Article  Google Scholar 

  • Verdier V, Mosquera G, Assigbetse K (1998) Detection of the cassava bacterial blight pathogen Xanthomonas axonopodis pv. manihotis by polymerase chain reaction. Plant Dis 82: 79–83.

    Article  CAS  Google Scholar 

  • Verniere C, Devaux M, Pruvost O, Couteau A, Luisetti J (1991) Studies on the biochemical and physiological variations among strains of Xanthomonas campestris pv. citri, the causal agent of citrus bacterial canker disease. Fruits 46: 162–170.

    Google Scholar 

  • Verniere C, Pruvost O, Civerolo EL, Gambin O, Jacquemoud-Collet JP, Luisetti J (1993) Evaluation of the Biolog substrate utilization system to identify and assess metabolic variation among strains of Xanthomonas campestris pv. citri. Appl Environ Microbiol 59: 243–249.

    PubMed  CAS  Google Scholar 

  • Verreault H, Lafond M, Asselin A, Banville G, Bellemare G (1998) Characterization of two DNA clones specific for identification of Corynebacterium sepedonicum. Can J Microbiol 34: 993.

    Article  Google Scholar 

  • Vicente JG, Everett B, Roberts SJ (2006) Identification of isolates that cause a leaf spot disease of Brassicas as Xanthomonas campestris pv. raphani and pathogenic and genetic comparison with related pathovars. Phytopathology 96: 735–745.

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan R (1997a) Detection of ratoon stunting disease (RSD) bacterium by ELISA. Madras Agric J 84: 374–377.

    Google Scholar 

  • Viswanathan R (1997b) Detection of phytoplasma associated with grassy shoot disease by ELISA techniques. Z Pflanzenkrank 104: 9–16.

    Google Scholar 

  • Viswanathan R (2000) Detetcion of phytoplasmas causing grassy shoot disease in sugarcane by immunofluorescence technique. Ind Phytopathol 53: 475–477.

    Google Scholar 

  • Wakimoto S (1957) A simple method for comparison of bacterial populations in a large number of samples by phage technique. Ann Phytopathol Soc Jpn 22: 159–163.

    Article  Google Scholar 

  • Wakimoto S (1960) Classification of strains of Xanthomonas oryzae on the basis of their susceptibility against bacteriophages. Ann Phytopathol Soc Jpn 25: 193–198.

    Article  Google Scholar 

  • Walcott RR, Gitaitis RD (2000) Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis 84: 470–474.

    Article  CAS  Google Scholar 

  • Walcott RR, Gitaitis RD, Castro AC (2003) Role of blossom in watermelon seed infection by Acidovorax avenae subsp. citrulli. Phytopathology 93: 528–534.

    Article  PubMed  CAS  Google Scholar 

  • Walcott RR, Gitaitis RD, Castro AC, Sanders FH Jr, Diaz-Perez JC (2002) Natural infestation of onion seed by Pantoea anantis causal agent of center rot. Plant Dis 86: 106–111.

    Article  CAS  Google Scholar 

  • Walcott RR, Langston DB Jr, Sanders FH, Gitaitgis RD (2000) Investigating intraspecific variation of Acidovorax avenae subsp. citrulli using DNA fingerprinting and whole cell fatty acid analysis. Phytopathology 90: 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Hiruki C (2001) Molecular characterization and classification of phytoplasmas associated with canola yellows and a new phytoplasma strain associated with dandelions. Plant Dis 85: 76–79.

    Article  CAS  Google Scholar 

  • Wang K, Hiruki C (2005) Distinctions between phytoplasmas at the subgroup level detected by heteroduplex mobility assay. Plant Pathol 54: 625–633.

    Article  CAS  Google Scholar 

  • Wang ZK, Luo HH, Yi SZ (1997) Application of DIA (dot immunobinding assay) for rapid detection of Xanthomonas axonopodis pv. citri. J Southwest Agric Univ 19: 529–532.

    Google Scholar 

  • Ward LJ, De Boer SH (1984) Specific detection of Erwinia carotovora subsp. atroseptica with digoxigenin-labeled DNA probe. Phytopathology 74: 180–186.

    Google Scholar 

  • Ward LJ, De Boer SH (1990) A DNA probe specific for serologically diverse strains of Erwinia carotovora. Phytopathology 80: 665.

    Article  CAS  Google Scholar 

  • Warokka JS, Jones P, Dickinson MJ (2006) Detection of phytoplasmas associated with Kalimantan wilt disease of coconut by the polymerase chain reaction. J Liitri 12: 154–160.

    Google Scholar 

  • Webb DR, Bonfiglioli RG, Carraro L, Osler R, Symons RH (1999) Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology 89: 894–901.

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Davis RE, Lee I-M, Zhao Y (2007) Computer simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57: 1855–1867.

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Opgenorth DC, Davis RE, Chang CJ, Summers CG, Zhao Y (2006) Characterization of a novel adhesion-like gene and design of a real-time PCR for rapid sensitive and specific detection of Spiroplasma kunkelii. Plant Dis 90: 1233–1238.

    Article  CAS  Google Scholar 

  • Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead DE (2000) Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl Environ Microbiol 66: 2853–2858.

    Article  PubMed  CAS  Google Scholar 

  • Wu WC, Lee ST, Kuo HP, Wang LY (1993) Use of phase for identifying the citrus canker bacterium Xanthomonas campestris pv. citri in Taiwan. Plant Pathol 42: 389–395.

    Article  Google Scholar 

  • Wullings BA, Beuningen AR, van Janse JD, Akkermans ADL (1998) Detection of Ralstonia solanacearum which causes brown rot of potato by fluorescent in situ hybridization with 23S rRNA-targeted probes. Appl Environ Microbiol 64: 4546–4554.

    PubMed  CAS  Google Scholar 

  • Xiao W, Le Z, Fu-Shou X, Li-Han Z, Guan-Lin X (2007) Immunocapture PCR method for detecting Acidovorax avenae subsp. citrulli from watermelon. Chin J Agric Biotechnol 4: 173–183.

    Article  CAS  Google Scholar 

  • Xie GL, Mew TW (1998) A leaf inoculation method for the detection of Xanthomonas oryzae pv. oryzicola. Plant Dis 82: 1007–1011.

    Article  Google Scholar 

  • Yakrus M, Schaad NW (1979) Serological relationships among strains of Erwinia chrysanthemi. Phytopathology 69: 517–522.

    Article  Google Scholar 

  • Yamada T, Kawasaki T, Nagata S, Fujiwara A, Usami S, Fujie M (2007) New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153: 2630–2639.

    Article  PubMed  CAS  Google Scholar 

  • Yashitola J, Krishanaveni D, Reddy APK, Sonti RV (1997) Genetic diversity within populations of Xanthomonas oryzae pv. oryzae in India. Phytopathology 87: 760–765.

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Takikawa Y, Gardan L, Stead DE (1992) Changing concepts in the taxonomy of plant pathogenic bacteria. Annu Rev Phytopathol 30: 67–105.

    Article  Google Scholar 

  • Yu J, Wayadande AC, Fletcher J (2000) Spiroplasma citri surface protein p89 implicated in adhesion to cells of vector Circulifer tenellus. Phytopathology 90: 716–722.

    Article  PubMed  CAS  Google Scholar 

  • Zaccardelli M, Spasiano A, Bazzi C, Merighi M (2005) Identification and in planta detection of Pseudomonas syringae pv. tomato using PCR amplification of hrpZpst. Eur J Plant Pathol 111: 85–90.

    Article  CAS  Google Scholar 

  • Zhang Y, Merighi M, Bazzi C, Geider K (1998) Genomic analysis by pulsed field gel electrophoresis of Erwinia amylovora strains from the Mediterranean region including Italy. J Plant Pathol 80: 225–232.

    CAS  Google Scholar 

  • Zhao W-J, Chen H-Y, Zhu S-F, Xia M-X, Tan T-W (2007) One-step detection of Clavibacter michiganensis subsp. michiganensis in symptomless tomato seeds using a TaqMan probe. J Plant Pathol 89: 349–351.

    CAS  Google Scholar 

  • Zhao Y, Damicone JP, Bender CL (2002) Detection, survival and sources of inoculum for bacterial diseases of leafy crucifers in Oklahoma. Plant Dis 86: 883–888.

    Article  Google Scholar 

  • Zhu H, Gao JL, Li QX, Hu GX (1988) Detection of Xanthomonas oryzae in rice by monoclonal antibodies. J Jiangsu Agric Coll 9: 41–43.

    Google Scholar 

  • Zreik L, Carle P, Bové JM, Garnier M (1995) Characterization of the mycoplasma-like organism associated with witches’ broom disease of lime and proposition of a Candidatus taxon for the organism, ‘Candidatus Phytoplasma aurantifolia’. Int J Syst Bacteriol 45: 449–453.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Appendices

Appendix 1: Media for Isolation of Bacterial Plant Pathogens

A. General Media

Brinkerhoff’s medium (Brinkerhoff 1960)

Dextrose

20 g

K2HPO4

50 g

Calcium carbonate

10 g

Agar

15 g

Water

1 l

Dye’s medium (Dye 1962)

Glucose

10 g

K2HPO4

2 g

Ammonium phosphate

1 g

MgSO4

0.2 g

NaCl or KCl

0.2 g

Water

1 l

King’s B agar medium (Matsuyama et al. 1998)

Peptone

20 g

K2HPO4

1.5 g

MgSO4.7H2O

1.5 g

Agar

15 g

Glycerol solution (1%)

1,000 ml

PH

7.2

Medium 523 (Kado 1971)

Sucrose

10 g

Casein acid hydrolysate

8 g

Yeast extract

4 g

KH2PO4

50 g

Magnesium sulfate

0.3 g

Agar

15 g

Water

1 l

Nutrient broth

Bactopeptone

5 g

Beef extract

3 g

Water

1 l

Potato–peptone–glucose–agar (PPGA) medium

Potato extract

500 ml

Bactopeptone

5 g

Glucose

5 g

NaCl

3 g

Na2HPO4

3 g

K2HPO4

0.5 g

Agar

18 g

Water

500 ml

Tetrazolium medium (TTC) (Kelman 1954)

Dextrose

10 g

Peptone

10 g

Cis amino acids

1 g

Agar

18 g

Water

1 l

Wakimoto’s medium (Wakimoto 1960)

Potato

200 g

Surcrose

15 g

Peptone

5 g

Na2HPO4.12 H2O

2 g

Calcium nitrate

0.5 g

Water

1 l

B. Semi-selective/selective media

Cefazolin trehalose agar (CTA) medium (Fessehaie et al. 1999)

K2HPO4

3 g

Na2HPO4

1 g

MgSO4.7H2O

0.3 g

NH4Cl

1 g

D (+)-trehalose

9 g

D (+)-glucose

1 g

Yeast extract

1 g

Cefazolin

0.025 g

Lincomycin

0.0012 g

Phosphomycin

0.0025 g

Cycloheximide

0.25 g

Agar

14 g

Distilled water

1 l

MMG semiselective medium (Toussaint et al. 2001)

Maltose

10 g

Tryptone

5 g

K2HPO4

2.75 g

Trace elements

0.02–1 mg

Methyl green (1% aqueous solution)

2 ml

Amoxicillin

32 mg

Cephalothin

32 mg

Cycloheximide

50 mg

Agar

15 g

Distilled water

1 l

MSCFF medium (Maringoni et al. 2006)

Peptone

5 g

Meat extract

3 g

Sucrose

5 g

Agar

15 g

Skim milk powder

5 g

Congo red

0.05 g

Chlorothalonil

0.01 g

Thiophanate methyl

0.01 g

Nalidixic acid

0.01 g

Nitrofurantoin

0.01 g

Oxacillin

0.001 g

Sodium azide

0.001 g

Distilled water

1 l

PCCG medium (Hara et al. 1995; Ito et al. 1998)

Potato semisynthetic agar (PSA) medium

Potato decoction from

300 g

Peptone

5 g

Sucrose

15 g

Ca(NO3)2

0.5 g

Na2HPO4.12H2O

2 g

Agar

18 g

PCCG medium

 

PSA

1,000 ml

Gella gum

18 g

Crystal violet

5 mg

Polymyxin B

4 × 105 units

Chloramphenicol

7.5 mg

Cycloheximide

50 mg

Tetrazolium chloride

2.5 mg

T-5 Semi-selective agar medium (Gaitaitis et al. 1997)

NaCl

5 g

Ammonium phosphate

1 g

K2HPO4

1 g

MgSO4.7H2O

0.2 g

d-tartaric acid

3 g

Phenol red

0.01 g

Agar

20 g

Water

1 liter

After autoclaving add

Bacitracin

10 mg

Vaniomycin

6 mg

Cycloheximide

75 mg

Novobiocin

45 mg

Penicillin G

5 mg

Adjust pH to 7.4

XTS selective medium (Schaad and Forster 1985)

Nutrient agar (Difco)

23 g

Glucose

5 g

Add the following antibiotics after autoclaving:

Cycloheximide (stock solution of 100 mg/ml in 75% ethanol)

200 mg

Gentamycin (stock solution of 10mg/ml in 75% ethanol)

8 mg

Cephalexin (stock solution of 10 mg/l in 75% ethanol)

10 mg

Appendix 2: Detection of Acidovorax avenae subsp. citrulli (Aac) by Pulsed-Field Gel Electrophoresis (PFGE) (Walcott et al. 2000; Burdman et al. 2005)

  1. 1.

    Grow the target bacteria (Aac) on nutrient agar (NA) at 28°C for 48 h; suspend the cells in a buffer containing 100 mM EDTA and 100 mM NaCl, pH 8 and adjust the bacterial cells to an OD600 of 0.3 (approximately 5 × 108 cfu/ml at 600 nm using a colorimeter).

  2. 2.

    Centrifuge the suspension at 10,780 × g for 2 min; resuspend the pellet in 300 μl of the buffer used earlier (step 1) and add 60 μl of 10 mg/ml lysozyme solution.

  3. 3.

    Prepare agarose plugs as follows: mix 500 μl of molten low-melting point ­agarose (10 mM Tris, pH 8, 10 mM MgCl2, 10 mM EDTA, pH 8 and 2% (w/v) Sea Plaque GTG agarose (FMC BioProducts, Rockland, USA) with cell suspensions and pipette the mixture into disposable plastic plug-molds (Bio-Rad Laboratories, USA).

  4. 4.

    Solidify the agar plugs at 4°C for 20 min; cut the agar plugs into 5 × 5 × 1 mm pieces; rinse four times with 1 ml of sterile 1 × TAE (30-min rinses); replace 1 × TAE (40 mM Tris, 40 mM acetic acid and 1 mM EDTA) with 200 μl of 1 × restriction enzyme (SpeI, New England Biolabs, USA), buffer B (Promega Corp, USA) and incubate the plugs at 25°C for 15 min.

  5. 5.

    Replace restriction buffer with 200 μl of fresh restriction buffer containing 1 μl of SpeI and incubate at 37°C overnight.

  6. 6.

    Replace the restriction buffer with 500 μl of lysing solution without proteinase K; incubate at 55°C for 2 h; replace the lysing solution with fresh lysing solution ­without proteinase K and incubate the agarose plugs at 25°C for an additional 2 h.

  7. 7.

    Load the agarose plugs into wells of a 1% (w/v) pulsed-field certified agarose (BioRad Laboratories) gel (15 × 15 cm 1% Seakem Gold agarose); seal the molten low-melting-point agarose and use concatemeric lambda DNA (New England Biolabs) as a molecular marker.

  8. 8.

    Incubate the loaded gel in 0.5 × Tris-borate-EDTA (TBE) buffer (45 mM Tris; 45 mM boric acid and 1 mM EDTA, pH 8) for 30 min prior to electrophoresis and perform electrophoresis on a contour-clamped homogeneous electric field gel electrophoresis unit (CHEF-DRIII, Bio-Rad Laboratories) for 22 h at 6V/cm in 0.5 × TBE buffer at 14°C with initial and final switch times of 5 and 45 s respectively.

  9. 9.

    Stain the gels with a solution of 0.5 μg of ethidium bromide per ml for 30 min and capture the images under ultraviolet (at 295 nm) transillumination using a Kodak DC-40 digital camera.

  10. 10.

    Perform two independent PFGEs for each isolate for comparison of results for similarity/variation.

Appendix 3: Detection of Bacterial Pathogens by Slide Agglutination Test (Lyons and Taylor 1990)

2.3.1 Preparation of Somatic Antigen

  1. 1.

    Harvest the growth of target bacteria from 20 petriplates into 100 ml distilled water; centrifuge at 12,000 × g for 30 min; resuspend the bacterial cells in 50 ml cold acetone added with constant stirring to a total volume of 200 ml; centrifuge at 250 × g for 5 min; resuspend the bacterial cells in 10 ml cold acetone; lyophilize and store at −20°C.

  2. 2.

    Transfer approximately 2 g lyophilized bacterial cells to 100 ml cold distilled water; stir well; add slowly 100 ml 1 N trichloroacetic acid; stir the mixture for 18 h in the cold and centrifuge at 12,000 × g for 30 min at 4°C.

  3. 3.

    Collect the supernatant; neutralize with saturated sodium hydroxide; add four volumes of cold 95% ethanol (−20°C) and mix thoroughly.

  4. 4.

    Centrifuge at 200 × g for 10 min; remove the white floccular precipitate after discarding the supernatant; dissolve the precipitate in 5 ml distilled water; add 20 ml cold 95% ethanol; centrifuge at 200 × g for 5 min; resuspend the precipitate in 5 ml cold 95% ethanol; lyophilize and store dried powder at −20°C.

2.3.2 Production of Antiserum

  1. 1.

    Immunize New Zealand white rabbits with 0.5 ml of thick suspension of bacterial cells (108 –109 /ml) in saline or 10 mg of dried somatic antigen in 0.5 ml sterile distilled water emulsified with 0.5 ml Freund’s incomplete adjuvant intramuscularly, after bleeding for obtaining normal control serum; ­provide a second injection after 7 days and a third one, if necessary; collect the antiserum after bleeding; mix the antiserum with equal part of glycerol and store at 2–4°C.

2.3.3 Production of Staphylococcus aureus Reagent

  1. 1.

    Grow the authentic Cowan 1 strain of S. aureus on nutrient agar at 37°C for 24–48 h; prepare a cloudy suspension of bacterial cells (103 –107 ) in glycerol broth containing 1.6 g nutrient broth (Difco), 30 ml glycerol and 170 ml distilled water; transfer 1–2 ml aliquots to sterile storage containers; add an equal volume of sterile 3 mm hollow glass beads (Creative Beadcraft Ltd, Amersham, UK) and place the containers directly at −80°C without pre-cooling.

  2. 2.

    Thaw one container; transfer the contents to 10 ml nutrient broth; distribute the culture uniformly by shaking well to 40 nutrient agar plates and incubate at 37°C for 72 h.

  3. 3.

    Harvest the bacteria from the plates by flooding with phosphate-buffered saline (PBS) containing 0.02% sodium azide and gently scrapping surface of plates with a glass streaker.

  4. 4.

    Centrifuge for 30 min at 300 × g; resuspend the deposit, after discarding the supernatant, in 20 ml 1.5% formaldehyde solution; mix well for 90 min; heat at 80°C for 30 min and cool rapidly to room temperature.

  5. 5.

    Wash twice by centrifugation; resuspend in PBS containing 0.05% sodium azide and mix with PBS containing 0.05% sodium azide at the rate of one volume of packed cells to nine volumes of buffer.

  6. 6.

    Sonicate the suspenstion gently for 30 s to eliminate clumps and store at 2–4°C until required for use.

2.3.4 Conjugation of Working Reagent

  1. 1.

    Use 170 μl antiserum (1:1 mixture with glycerol), 4 ml PBSA, 830 μl S. aureus reagent and 100 μl filtered saturated alcoholic basic fuchsin 100 μl and store this preparation at 2–4°C.

2.3.5 Slide Agglutination Test

  1. 1.

    Mix the conjugated working agent and the target organism either from pure ­culture or infected plant tissue extracts for several seconds on a glass microscope slide (Multitest slides) using a sterile wood toothpick; use 7 μl conjugated ­working reagent + sufficient bacteria to produce a thin suspension or5 μl plant extract + 5 μl conjugated reagent for mixing on the slide.

  2. 2.

    Maintain positive and negative controls with homologous bacteria and test reagent alone respectively.

  3. 3.

    Observe for the formation of granular agglutination indicating the positive reaction.

Appendix 4: Detection of Xanthomonas campestris pv. vesicatoria by Enzyme-Linked Immunosorbent Assay (ELISA) Formats (Tsuchiya and d’Ursel 2004)

2.4.1 Preparation of Bacterial Cells (Antigen)

  1. 1.

    Grow the target bacterial species on suitable (YPA) medium ­containing 7 g yeast extract, 16 g agar, 1 l distilled water, pH 7.2 by incubating at 28°C for 2 days; collect the bacteria with 10 ml of 0.01 M phosphate-buffered saline (PBS), pH 7.2 and wash the cells with PBS three times by centrifugations at 10,000 × g for 10 min.

  2. 2.

    Weigh the wet cell precipitates; adjust the stock concentration of 10 mg/ml and prepare the standard cell suspension spectrophotometrically to about 108 cfu/ml.

2.4.2 Preparation of Plant Samples

  1. 1.

    Collect the leaves with symptoms at random in the fields; cut them separately; treat them as described below, maintaining healthy controls.

  2. 2.

    Collect leaves from inoculated plants; wash them by successively soaking them in water, 30 s in 70% EtOH and then 5 min in 0.5% NaClo and rinse thoroughly with sterile distilled water.

  3. 3.

    Excise two disks for each sample with a 10 mm diameter cork borer; homogenize in 1 ml of 0.1 M phosphater buffer, pH 7.0 with a tissue grinder; transfer to 1 ml microcentrifuge tubes; centrifuge for 1 s at 5,000 rpm; store the supernatant at 4°C and adjust the fractions for coating with 1 M sodium carbonate buffer, pH 9.6 just before use.

2.4.3 ABC-Enzyme-Linked Immunosorbent Assay

  1. 1.

    For noncompetitive immunoassay, coat 96-well plates first with samples (200 μl/well) suspended in 0.1 M carbonate buffer at 37°C for 4 h and wash three times with PBS buffer and also in subsequent steps as described below:

  2. 2.

    Block unspecific reactive sites with a solution of 1% skim milk powder for 2 h at room temperature (RT); add monoclonal antibodies (MAbs) (100 μl/well); incubate at RT and wash.

  3. 3.

    Characterize the MAbs by following one of the two methods described below:

    For avidin/biotin peroxidase-conjugate (ABC) method, use an ABC Kit (Vector Laboratories, USA) with 2,2′-azino-di-3-ethyl-benzothiazoline-b-sulfonic acid (ABTS) (Boehringer, Germany) as substrate for peroxidase (Amax + 405 nm)

    For the second method, incubate with goat anti-mouse immunoglobulin M (IgM) peroxidase conjugate (Chemi-ConInternational, USA) for 30 min; add a solution of 0.04% O-phenylenediamine dihydrochloride (OPD) (Amax = 492 nm) and 0.12% hydrogen peroxidase in 0.5 M phosphate–citrate buffer pH 5, as substrate.

  4. 4.

    Competitive immunoassay allows reaction between MAbs and the samples diluted in PBS for 4 h in microcentrifuge tubes at RT; dispense in duplicates to the antigen precoated 96-will plate; determine the amount of MAbs retained on the wells as per the second method described above (step 3).

Appendix 5: Detection of Erwinia chrysanthemi Using Fimbria-Specific Antibody in ELISA Technique (Singh et al. 2000)

2.5.1 Production of Antiserum

  1. 1.

    Immunize New Zealand white rabbit for producing polyclonal antibodies (PAbs) with glutaraldehyde-fixed cells of target bacterial species intramuscularly; provide five injections at 2-week intervals; collect the blood by cardiac puncture and separate the antiserum.

  2. 2.

    Immunize the mice for producing monoclonal antibodies (MAbs) by intraperitoneal injection of glutaraldehyde-fixed bacterial cells.

  3. 3.

    Fuse the splenocytes from immunized mice with FOX-NY cells using 50% polyethylene glycol (PG) and dimethyl sulphoxide as fusogens.

  4. 4.

    Use Dulbeccos modified Eagles Medium supplemented with hypoxanthine, aminopterin and thymidine to select suitable hybridomas for screening for specificity of reaction.

2.5.2 Screening Hybridomas for Specific MAbs

  1. 1.

    Wash 24-h old pathogen cells from pure cultures; suspend them in 0.01 M ­phosphate buffered saline (PBS), pH 7.2 and adjust the cell population to an OD of 1.0 at 620 nm.

  2. 2.

    Transfer 100 μl bacterial cells diluted to 1:1 in 0.1 M carbonate buffer, pH 9.6 to each of the microplate well and incubate overnight at 4°C.

  3. 3.

    Block the monspecific sites with 5% skim milk powder for 20 min; wash and add hybridoma fluid containing MAbs.

  4. 4.

    Carry out all incubations (one h at 37°C) and washing steps as in standard ELISA protocol.

  5. 5.

    Detect the reactive MAbs using goat ant-mouse antibodies conjugated with ­alkaline phosphatase and p-nitrophenol phosphate at 0.5 mg/ml in 1 M diethanolamine buffer, pH 9.8 and incubate for 45–60 min.

  6. 6.

    Determine the color intensity at 405 nm using an ELISA reader.

2.5.3 Detection of Target Pathogen in Plant Tissues

  1. 1.

    Prepare the 1% plant extracts using the sample buffer consisting of 2 g KH2PO4. 11.5 g Na2HPO4, 0.14 g disodium EDTA, 0.02 g thimerosal and 0.2 g lysozyme in 100 ml water.

  2. 2.

    Coat the microtiter wells with PAbs (1:5,000 dilution of raw serum in 0.1 M carbonate buffer, pH 9.6).

  3. 3.

    Transfer the plant extracts to each well to capture the antigen by PAbs present in the wells.

  4. 4.

    Follow the steps as per standard ELISA procedure.

Appendix 6: Detection of Erwinia chrysanthemi by Immunogold Labeling and Electron Microscopy Technique (Singh et al. 2000)

2.6.1 Immunogold Labeling

  1. 1.

    Collect the target bacterial cells from a 24-h old culture; suspend in PBS at a concentration of 1.0 OD at 620 nm; mix with an equal volume of hybridoma 6A6 culture fluid and incubate at 4°C overnight.

  2. 2.

    Wash the cells three times in PBS; suspend them in 200 μl of PBS and add 15 μl of gold beads conjugated with goat anti-mouse immunoglobulin G and immunoglobulin M (IgG + IgM, Bio/Can Scientific, Canada) and incubate the mixture for 1 h at room temperature with agitation.

  3. 3.

    Wash the cells with PBS three times and resuspend in 200 μl PBS.

2.6.2 Electron Microscopy

  1. 1.

    Place the bacterial cell suspension on copper-coated electron microscope grids at 25 μl/ grid and air dry.

  2. 2.

    Stain with 1% phosphotungstic acid and view under the electron microscope.

Appendix 7: Detection of Clavibacter michiganensis subsp. michiganensis by Flow Cytometry (Chitaara et al. 2006)

2.7.1 Labeling of Target Bacterial Cells

  1. 1.

    Grow the target pathogen on 1% glucose-nutrient agar medium (Oxoid) for 24 h at 25°C; harvest the bacterial cells; resuspend in 0.2 M sodium phosphate buffer (SP1), pH 7.4; adjust the OD at 620 nm to approximately to 0.35 to give 106 –107 cfu/ml concentration.

  2. 2.

    Prepare nonviable bacterial cells by exposing the bacterial cells to 80°C for 30 min.

  3. 3.

    Mix the viable (non-treated) and non-viable (heat-treated) cells in different ratios: 100/0, 80/20, 50/50, 20/80, 0/100 respectively.

  4. 4.

    Incubate the bacterial cells in SP1 for 1 h at 28°C in the presence of 10 μM cFDA (carboxy-fluorescein diacetate), 10 μM Calcein AM (Calcein acetoxy methyl ester) separately or in combination with 10 μM PI (propidium iodide) for double labeling; incubate the samples stained with PI alone for 20 min at room temperature.

  5. 5.

    Centrifuge the suspension at 11,000g; wash; resuspend in SP1, pH 7.4 and place them on ice till required.

2.7.2 Flow cytometric Analysis

  1. 1.

    Analyze individual cells using a FACS Calibur flow cytometer (Becton-Dickinson Benelux NV, Belgium) equipped with an air-cooled argon ion laser (excitation wave length 488 nm) operated at 15 mW.

  2. 2.

    Use a logarithmic amplification of the incoming signal and a sample analysis time of approximately 2 min.

  3. 3.

    Quantify based on the flow rate that is determined to be 4.8 μl/min.

  4. 4.

    Use non-treated (viable) cells as negative controls for Calcein AM and cFDA and heat-treated (non-viable) unstained cells for PI.

  5. 5.

    Sort out the bacterial cells labeled with Calcein AM, cFDA or PI based on the green and red fluorescence of cells at 530 and >670 nm respectively.

  6. 6.

    Note the high green fluorescence signals from Calcein AM- and cFDA-stained cells (viable) and high red fluorescence signal from PI-stained cells (non-viable).

Appendix 8: Detection of Erwinia amylovora by Polymerase Chain Reaction (PCR) (Stöger et al. 2006)

2.8.1 Extraction of DNA

  1. 1.

    Cut wood slices from naturally infected or inoculated plant samples; place 0.5–0.7 cm slices/leaf discs into 1.5-ml collection tube; add extraction solution of REDExtract-N-AmpTM Plant PCR Kit and incubate at 95°C for 10 min; follow all steps as per the manufacturer’s recommendations.

  2. 2.

    Dilute the extract with 100 μl of dilution buffer; mix by vortexing and use 4 μl of the diluted extract for PCR.

  3. 3.

    Adopt the modified procedure for enhancement of sensitivity; place the wood slices (instead of leaf discs) into 1.5-ml collection tube; add 150 μl extraction solution supplemented with 0.1% Triton X-100 (v/v) and 0.05% Nonidet NP-40 and incubate at 95°C for 30 min.

  4. 4.

    Transfer 50 μl of the extract to a new tube; dilute it with 50 μl dilution buffer and store at 2–8°C till use.

  5. 5.

    Prepare a 1:30 dilution (v/v) of extract with a 1: 1 mixture of extraction: dilution solution and use 4 μl of diluted extract for PCR.

2.8.2 Polymerase Chain Reaction

  1. 1.

    Perform all steps as per manufacturer’s instructions by providing the following PCR conditions: 95°C for 5 min; 35 cycles each of 95°C for 15 s, 53°C for 30 s and 72°C for 45 s and final step at 72°C for 10 min.

  2. 2.

    Analyze amplified PCR products on 1.5% agarose gels stained with ethidium bromide and photographed.

Appendix 9: Detection of Xanthomonas campestris pv. vesicatoria (Xcv) by PCR Assay (Park et al. 2009)

2.9.1 PCR Amplification

  1. 1.

    Use the primers XCVF and XCVR designed using the sequences of rhs family gene of Xcv to amplify a product of 517-bp.

  2. 2.

    Perform the PCR amplification using a PTC-225TM thermocycler (MJ Research, USA) in a final volume of 50 μl containing 10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2, 0.01 % gelatin, 0.2 mM of each dNTP, 10 pM of each primer and 2 Units of Taq polymerase (PromegaTM, USA) and approximately 50 ng of genomic DNA of test microorganism.

  3. 3.

    Provide the following conditions: 25 cycles, each consisting of 60 s at 94°C, 30 s at 58°C and 60 s at 72°C with initial denaturation of 5 min at 94°C and final extension of 10 min at 72°C.

  4. 4.

    Resolve an aliquot of 8 μl of PCR product on a 1.0% agarose gel, stained with ethidium bromide and visualized on a UV transilluminator.

2.9.2 Dot Blot Analysis

  1. 1.

    Spot aliquots of 100 ng of each sample of DNA isolated from test pathogen (Xcv) onto Hybond-N+ nylon membrane (Amersham Pharmacia Biotech UK).

  2. 2.

    Label the PCR product of Xcv as probe with 32 P dCTP using random primed method as per manufacturer’s recommendations(LaddermanTM Labeling Kit, Takara, Japan).

  3. 3.

    Perform prehybridization and hybridization in hybridization buffer consisting of 0.75 M NaCl, 75 mM sodium citrate, 0.5% SDS, 0.1% BSA, 0.1% FiColl, 0.1% polyvinyl pyrrolidone and 50 μg/ml denatured salmon sperm DNA at 65°C for 18 h.

  4. 4.

    Wash the filter twice for 10 min each in 2 × SSC containing 0.1% SDS at room temperature and twice for 15 min each, in 0.1 × SSC containing 0.1% SDS at 65°C.

  5. 5.

    Carry out autoradiography at - 70°C with CUR1 X-ray film (AGFA, Belgium).

Appendix 10: Detection of Xanthomonas axonopodis pv. citri (Xac) by Immuno-Capture (IC) and Nested (N)-PCR Assay (Hartung et al. 1996)

2.10.1 Magnetic Immunocapture of Target Pathogen Cells

  1. 1.

    Quantify the selected MAb (A1 for Xac) spectrophotometrically at 280 nm and incubate with paramagnetic Dynabeads M-280 precoated with sheep anti-mouse IgG (Dynal) overnight at 4°C with shaking at 125 rpm.

  2. 2.

    Coat 40 μl (0.4 mg) of beads with 4 or 0.04 μg of MAb (10 or 0.1 μg of MAb/106 beads) depending on the experiment; separate the bead-MAb complex from the solution by applying a magnet to the wall of the tubes; eliminated unbound MAb by four washes for 30 min/wash with two volumes of phosphate buffered saline (PBS) with 0.1 bovine serum albumin (BSA) and incubate the complex with 500 μl of serially diluted target bacterial suspensions (from 10 to 108 cells/ml of Tris-HCl buffer, pH 7.2) for at least 1 h at 4°C with gentle shaking.

  3. 3.

    Separate the immunocaptured bacterial cells magnetically from the solution; wash three times with PBS buffer; suspend the bacteria in 10 μl sterile water; boil the beads for 5 min and centrifuge at 13,000 × g briefly.

2.10.2 PCR Reactions

  1. 1.

    Use primers based on the sequence of 572-nt of Xac insert in the plasmid pFL1 (Cruchem, USA).

  2. 2.

    Use reaction buffer with 3 mM MgCl2, 0.5 μM each primer, 125 μM nucleotides and 1.25 units Taq polymerase per 25 μl of reaction.

  3. 3.

    Provide the following conditions for the first round of PCR: 35 cycles of 95°C for 30 s, 58°C for 60 s and 72°C for 60 s.

  4. 4.

    For nested (N)-PCR, use 1μl from the first reaction product as template with primers 94-3 bio (5′-biotin) and 94-4 lac for amplification of 315-bp product from DNA or cells of Xac.

  5. 5.

    Use 20 cycles at the same temperature profile mentioned above for the second round PCR.

  6. 6.

    Resolve the amplified products by electrophoresis through 2% NuSieve (FMC Bioproducts, USA) agarose (3:1) gels and staining with ethidium bromide.

Appendix 11Appendix 11: Detection of Xylella fastidiosa (Xf) in Xylem Exudates of Grapevine By IC-PCR Technique (Guo and Lu 2004)

2.11.1 Extraction of Xylem Exudates

  1. 1.

    Adopt the pressure chamber method as follows: collect 10–12 cm sections of infected and healthy shoots from vineyard between 09 and 10 AM; wrap them in moist paper towels and place them in plastic bags separately.

  2. 2.

    Extract the xylem fluids from the shoots or leaf petioles using a pressure chamber (PMS Instrument CO., USA) as per the manufacturer’s instructions; plate 1 μl xylem exudates onto PD3 medium and count the number of ­colonies after 3 weeks.

2.11.2 Preparation of Xf Suspension by Immunocapture Procedure

  1. 1.

    Add 100 μl of PBS-BSA (PBS plus 0.2% BSA) to 5–10 μl of xylem exudates; add 100 μl diluted whole rabbit serum (1/1,000 in PBS-BSA) and incubate the mixture for 45 min.

  2. 2.

    Centrifuge at 12,000 rpm for 5 min; reject the supernatant; add 5 μl of sheep anti-rabbt antibody-coated beads (Dynal, Oslo, Norway) to the pellet; incubate at 4°C for 45 min and wash the beads four or five times using PBS-BSA.

  3. 3.

    Recover the beads by centrifugation at 12,000 rpm and resuspend in 10 μl of sterile water.

  4. 4.

    Alternatively, centrifuge the xylem exudates at 12,000 rpm for 5 min; wash the pellet four or five times as described above and resuspend in 10 μl of sterile distilled water.

2.11.3 PCR Amplification

  1. 1.

    Use two oligonucleotide primer pairs XF766f/XF686r and RST31/RST33.

  2. 2.

    Perform PCR amplification using a volume of 25 μl containing 1 × reaction ­buffer, 1.5 mM MgCl2, 160 μM each dNTP, 2 μM of each primer, 1 U of Taq DNA polymerase (Promega, Madison, USA) and 2 μl of bacterial suspension as the DNA template.

  3. 3.

    Provide the following conditions using a DNA termocycler (MJ Research, USA): initial denaturing at 92°C for 5 min, followed by 35 PCR amplification cycles; denaturing at 92°C for 30 s, annealing at 50°C for 30 s, extension at 72°C for 1 min, final extension at 72°C for 8 min.

  4. 4.

    Resolve the PCR products on a 1.5% agarose gel; stain with ethidium bromide and photograph on a UV transilluminator (Polaroid Co., Cambridge, USA).

Appendix 12: Detection of Xanthomonas axonopodis pv. citri by Real Time PCR Assay (Mavrodieva et al. 2004)

2.12.1 Sample Preparation Using the IT 1-2-3 RAPID DNA Purification Kit

  1. 1.

    Collect the field samples from freshly infected lesions from leaves and fruits, in addition to uninfected samples; swip the leaves and fruits with moistened swabs provided with the kits; place the swabs inside tubes containing ceramic beads suspended in water provided with the kit and store the samples up to 1 week at 4°C prior to further processing.

  2. 2.

    Vortex the samples in 5 min in DNA extraction buffer provided in the kit; centrifuge and run the supernatant over a filtration spin column; wash the column once; elute the DNA in 100 μl of elution buffer and perform real-time PCR analysis.

2.12.2 Real-Time PCR Assay

  1. 1.

    Perform the assay on a mobile RAPID 7200 System (Idaho Technology, USA) using SYBR Green I (Molecular Probes, Eugene, UK) fluorescent dye detection system; run each sample in duplicates in glass capillary tubes (Roche Diaganostics, USA); include a negative (without target DNA) and positive (with target DNA) controls.

  2. 2.

    Add 2 μl of sample supernatant or purified DNA extracted from culture-grown cells or plant tissues to 18 μl of reaction mix containing 1 × PCR buffer with bovine serum albumin (BSA), 2mM MgCl2, 0.5 μM each primer, 0.2 mM dNTPs, 2 μl of 1:3,000 SYBR Green I and 0.8 units of Taq polymerase (Roche Diganostics).

  3. 3.

    For hot-start PCR, incubate Taq polymerase with TaqStart Antibody (Clontech, CA) 1:28 (v/v) for 10 min at room temperature before adding to the reaction mixture.

  4. 4.

    Provide conditions as per manufacturer’s recommendations.

  5. 5.

    Detect total SYBR Green fluorescence after each amplification cycle which ­provides a measure of PCR product formation; use a melting curve analysis as a second criterion to determine the presence or absence of target, as it helps in detecting false positive PCR product formation; each PCR product shows a characteristic peak at its melting temperature (Tm) maxium.

Appendix 13: Detection of Phytoplasmal Pathogens by Histological Techniques (Galvis et al. 2007)

2.13.1 DAPI Fluorescence Test

  1. 1.

    Fix the petioles (5–8 mm long) healthy and diseased leaves in 2.5% glutaraldehyde dissolved in 0.1 M phosphate buffer, pH 7.0 and store at 4°C till required for staining.

  2. 2.

    Rinse the petiole tissues with water to remove the excess fixative; immerse in 4′6-diamidino-2 phenylindole [(DAPI), Sigma] at 0.4 g/ml; mount the tissues into carrots and prepare sections (15–20 μm thick).

  3. 3.

    Examine the sections under epifluorescence microscope (Zeiss Jenamed) with a set of one BP365/11 excitation filter and an LP395 suppressor filter.

2.13.2 Transmission Electron Microscopy (TEM)

  1. 1.

    Cut the petioles of healthy and diseased leaves into 1 × 2 mm pieces and prefix in 2.5% glutaraldehyde (0.1 M phosphate buffer, pH 7.2) for 24 h.

  2. 2.

    Prepare sections (500 nm) with a diamond knife using an MT 6000 Sorvall Ultramicrotome; post-fix and precontrast in acetate; dehydrate in an ethanol series of 25, 50, 75, 90 and 100% (20 min each) and continue with pure acetone (20 min, three times).

  3. 3.

    Embed in Spurr’s resin (60°C for 8 h), after a 60-min infiltration with acetone-Spurr (1:1) to facilitate entry of resin into the tissues.

  4. 4.

    Mount the utrathin sections on copper grids (1 mesh) and observe on a JEOL 100 CX transimission electron microscope; note the presence of pleomorphic bodies in the phloem cells.

Appendix 14: Detection of Spiroplasma Infecting Carrot by Nested PCR Assay (Green et al. 1999; Lee et al. 2006)

2.14.1 Extraction of Pathogen DNA

  1. 1.

    Prepare plant tissues (leaf petioles and midribs, scion wood or root tissues) for total DNA extraction from samples of 0.5–0.6 g; place them in a sample bag (Agadia) suitable for use with a Homex 5 homogenizer–extractor and homogenize with 5 ml of CTAB extraction buffer consisting of 100 mM Tris, pH 8.0, 1.4 M NaCl, 50 mM EDTA, pH 8.0, 2.5% (w/v), CTAB, 1% ­polyvinyl ­pyrrolidone (PVP-40) and 0.2% 2-mercaptoethanol (added just before homogenization).

  2. 2.

    Transfer 0.5 ml homogenate to a 1.5 ml microcentrifuge tube; mix with 22 μl RNase A (20 mg/ml) and incubate at 65°C with gentle shaking (800 rpm) using an Eppendorf Thermomixer for 25–35 min.

  3. 3.

    Add 162 μl AP2 buffer (Qiagen), mix by inversion; place on ice for 5 min; ­transfer the entire contents to QIA shredder (Qiagen) column sitting in a 2-ml collection tube and microcentrifuge at a maximum speed for 2 min in an Eppendorf mcirocentrifuge.

  4. 4.

    Transfer the column flow through (450 μl) without disturbing the cell debris ­pellet to a new 1.5 ml microcentrifuge tube and mix by inversion with 225 μl of AP 3 buffer (Qiagen) and 450 μl of 95% ethanol.

  5. 5.

    Transfer 650 μl of the mixture to a DNeasy (Qiagen) column; microcentrifuge at 8,000 × g for 1 min; discard the flowthrough and repeat the microcentrifugation with the remaining sample.

  6. 6.

    Transfer the column to a clean 2-ml collection tube; add 500 μl of AW (Qiagen) buffer to the column; wash throughly by microcentrifugation at 8000 × g for 1 min; discard the flowthrough and add additional 500 μl of AW buffer to the column.

  7. 7.

    Microcentrifuge at maximum speed for 2 min; transfer the column to a new 1.5 ml microcentrifuge tube; elute the DNA with 100 μl of pre-warmed (60°C) AE (Qiagen) buffer and microcentrifuge at 8,000 × g for 1 min.

  8. 8.

    Heat the DNA extracts at 95°C for 5 min; place them on ice for 5–10 min and store at −80°C until needed for PCR analysis.

2.14.2 Nested PCR and RFLP Analysis for Phytoplasmas

  1. 1.

    Perform the first amplification using primer pair P1/16S-Sr, followed by R16F2n/R162n in the second amplification and maintain a negative control devoid of DNA templates in the reaction mix in all PCR assays.

  2. 2.

    Use an automotive thermocycler for 38 cycles of amplification with AmpliTaq Gold polymerase (Applied Systems); carry out the reaction in 25 μl reaction mixtures containing 1 μl undiluted nucleic acid preparation (100–200 ng), 200 μM of each dNTP, and 0.4 μM of each primer.

  3. 3.

    Maintain the following conditions: denaturation at 94°C for 1 min (11 min for the first cycle to activate AmpliTaq Gold polymerase), annealing for 2 min at 55°C and primer extension for 3 min (7 min in the final cycle) at 72°C.

  4. 4.

    Use 1 μl of diluted (1:30) PCR product from the amplification as a template in the reaction mixture (50 μl) for nested PCR format.

  5. 5.

    Electrophorese the products (5 μl) on a 1% agarose gel; stain in ethidium bromide and visualize with UV-transilluminator.

  6. 6.

    Digest the PCR product (6 μl) individually with restriction enzymes AluI, HhaI MseI and Sau3AI (New England Biolabs) according to the manufacturer’s instructions; separate the restriction products by electrophoresis through a 5% polyacrylamide gel for 1 h at 150v; stain with ethidium bromide and visualize with UV transilluminator.

2.14.3 Nested PCR and RFLP Analysis for Spiroplasmas

  1. 1.

    Use the primer pair ScR1F1/ScR16R1 in the first amplification followed by ScR16F1A/ScR16R2 in the second amplification.

  2. 2.

    Adopt PCR conditions as described for nested PCR format except the annealing temperature of 50°C.

  3. 3.

    Digest PCR products (1.5 kb) obtained from second amplification with MseI, AluI, HhaI and Hae III.

  4. 4.

    Use appropriate reference strain(s) for comparison with test samples.

  5. 5.

    Follow the rest of the steps as described above.

Appendix 15: Detection of Phytoplasmas by Oligonucleotide Microarray-Based Assay (Nicolaisen and Bertaccini 2007)

2.15.1 PCR Amplification

  1. 1.

    Perform all PCR amplification using Taq DNA polymerase (Promega) according to the manufacturer’s recommendations, providing the following conditions: 94°C for 2.5 min followed by 30 cycles of 94°C for 15 s, 62°C for 30s and 72°C fir 15 min and finally 72°C for 10 min.

2.15.2 Labeling of Hybridization Probes

  1. 1.

    Label the PCR products (1 μl PCR) for hybridization using the BioPrime Array CGH Labeling Kit (Invitrogen) with Cy-3 dCTP (Amersham Biosciences) according to the manufacturer’s instructions (volume reduced to one fourth of the recommended quantity to reduce the costs).

  2. 2.

    Purify labeling reactions using MinElute Reaction Clean up Kit (Qiagen) according to the manufacturer’s recommendations.

2.15.3 Printing and Post-processing of Oligonucleotide Arrays

  1. 1.

    Prepare a 384-well plate with 10 μl of 20 μM capture oligonucleotide (CO) ­solutions in 30% DMSO, 1.5 × SSC and 0.005% SDS and spot the samples with a QArray Minispotter (Genetix) on NextronE slides (Schott UK Ltd) using one aQu printing pin K2801 (Genetix) at 45% humidity.

  2. 2.

    Spot each oligonucleotide in quadruplicate in each of the 16 fields and post-process as per the manufacturer’s recommendations.

2.15.4 Microarray Hybridization

  1. 1.

    Attach a FAST Frame (Schleicher & Schuell) array grid with 16 wells to printed slides to allow 16 individual hybridization reactions on each slide.

  2. 2.

    Heat the labeling reactions in 80 μl of 10% formamide, 5 × SSC, 0.1% SDS and 0.1 μg/μl sheared salmon sperm DNA to 95°C for 3 min before each hybridization mix is applied to individual wells; cover the slides and place them in a moist chamber with saturated NaCl solution and incubate at 48°C overnight.

  3. 3.

    After detaching the array grid, wash the slides in a 2 × SSC, 0.1% SDS at 42°C for 5 min, repeat washing twice in 1 × SSC, 0.1% SDS for 1 min at room ­temperature and dry the slides using compressed oil-free air.

2.15.5 Microarray Scanning

  1. 1.

    Scan the hybridized arrays using an ArrayWoRx® Biochip Reader (Applied Precision) as per the manufacturer’s instructions with Cy3 settings (595 nm) and 1 s exposure; locate DNA spots on the array using ARRAYWoRx software and define the spots to be within a circle with a diameter of 200 μm.

  2. 2.

    Define a circumscribing square (300 μm) as a region of interest (ROI) and use it to determine local background of spots.

  3. 3.

    Process the results as mean pixel intensity within the defined spot area subtracted from local mean background as defined by the ROI.

Appendix 16: Detection of Clavibacter michiganensis subsp. michiganensis (Cmm) by Immunomagnetic Separation (IMS) – Plating Technique (de León et al. 2006)

2.16.1 Coating Magnetic Beads

  1. 1.

    Coat the immunomagnetic beads (IMBs) precoated with sheep anti-rabbit IgG (Dynabeads M-280, Dynal, Norway) with specific antisera for ­target pathogen (Cmm); wash the beads three times with phosphate buffer saline 0.1 M, pH 7.2 (PBS); collect the IMBs using magnetic particle concentrator (MPC-s, Dynal) and resuspend in PBS to have the desired concentration of IMBs.

  2. 2.

    Incubate the IMBs with anti-Cmm antiserum for 24 h at 4°C with gentle shaking as per the instruction of the manufacturer; wash three times with PBS containing 0.1% bovine serum albumin (PBS-BSA) and 0.05% Tween-20 to remove unattached antibodies and resuspend the beads in PBS-BSA to obtain a stock suspension (103 IMBs/ml) and store at 4°C.

2.16.2 Standardization of IMS Technique

  1. 1.

    Prepare required dilutions of the pathogen (Cmm)-specific antiserum; add aliquots of anti-Cmm-coated IMBs to 1 ml of Cmm suspension (5.7 × 103 cfu/ml) to obtain 105 IMBs/ml and incubate for 1 h at room temperature with gentle shaking.

  2. 2.

    Wash the IMBs three times with 1 ml of PBS-BSA containing 0.05% Tween X-20 for 10 min; resuspend in 1 ml of PBS and spread 0.1 ml of suspension on petriplates containing appropriate nutrient medium (YPGA); incubate for 5 days at 25°C and enumerate the pathogen (Cmm) colonies.

2.16.3 Isolation of Target Pathogen from Naturally Infected Seeds by IMS

  1. 1.

    Soak 2 g of seeds in 20 ml of PBS + 0.1% Tween X-20; gently shake in a rotary shaker for 15 min; incubate for 18 h at 4°C; remove the supernatant and keep it separately.

  2. 2.

    Deposit the seeds in an extraction bag provided with a synthetic intermediate mesh (Bioreba); crush the seeds with a pestle and resuspend in the same supernatant.

  3. 3.

    Inoculate the extract (large debris is retained in the extraction bag) with the pathogen to obtain different dilutions; plate 100 μl of seed extract on appropriate medium (YPGA) before and after IMS and examine the plates for the development of the target pathogen.

  4. 4.

    Perform the assays in quadruplicates.

Appendix 17: Detection of Xanthomonas campestris pv. carotae by PCR Assay (Meng et al. 2004)

2.17.1 Preparation of Seed-wash

  1. 1.

    Incubate 10 g seed samples (about 10,000 seeds) in 100 ml 0.85% NaCl at 4°C for 16–18 h in a 250 ml flask; add two drops of Tween 20; place the flasks on a rotary shaker (250 rpm) for 2 min and filter through four layers of sterilized cheese cloth.

  2. 2.

    Centrifuge the filtrate at 1,000 × g for 10 min; resuspend the pellet in 10 ml 0.85% NaCl; add 0.5 or 1 ml of the suspension to a 1.5 ml Eppendorf tube and centrifuge at 10,000 × g for 10 min and use the pellet for DNA extraction.

2.17.2 DNA Extraction from Seed-Wash

  1. 1.

    Use the CTAB method for extraction by resuspending the pellet in 800 μl of 2% CTAB buffer and use 2 μl of this extract in 50 μl PCR.

  2. 2.

    Use the PCR primer pair 3SF/9BF designed on the sequences common to all strains of the pathogen species for amplification of ∼350-bp target fragment.

Appendix 18: Detection of Acidovorax avenae subsp. citrulli by Immuno-capture PCR Assay (Xiao et al. 2007)

2.18.1 Selection of Antibodies and Primers

  1. 1.

    Select suitable polyclonal antibodies (Ab and Ab1) specific to target pathogen raised in New Zealand white rabbits.

  2. 2.

    Design specific primers (WFB1 and WFB2) based on the sequences of 16S rRNA gene from the standard strain of the pathogen.

2.18.2 Detection by Standard PCR Assay

  1. 1.

    Use aliquots of 25 μl PCR mixture containing 200 μmol/l of dNTP, 0.25 μmol/l of each primer (WFB1 and WFB2), 1 μmol/l of Taq DNA polymerase, 2.5 μl 10 × PCR buffer with MgCl2 and 2–4 μl of bacterial cell lysates as template.

  2. 2.

    Perform amplification in a thermal cycler providing the following conditions: initial denaturation at 95°C for 5 min followed by 30 cylcles of denaturation at 90°C for 30 s, primer annealing at 65°C for 30 s and elongation at 72°C for 30 s and incubation of tubes at 72°C for 5 min.

  3. 3.

    Resolve the PCR amplicons by electrophoresis on 1% agarose gels.

2.18.3 Detection by Immuno-capture (IC)-PCR Assay

  1. 1.

    Dilute the antiserum specific to the target pathogen to 1:2,000 with double sterilized distilled water; transfer 200 μl aliquots into each 0.25 ml Eppendorf tube and incubate for 3 h at 57°C.

  2. 2.

    Rinse thrice with washing buffer containing 0.01 mol/l phosphate-buffered saline (PBS) plus 0.2% Tween 20 (PBST); add 200 μl of 0.5% dried skimmed milk powder and incubate for 30 min at 37°C.

  3. 3.

    Add 200 μl bacterial cell lysates after removing the milk powder; incubate overnight at 4°C and rinse thrice with PBST followed by rinsing once with sterile distilled water.

  4. 4.

    All reagents except the template and all steps as in standard PCR protocol (Section B above) are to be adopted.

Appendix 19: Detection of Burkholderia glumae in Rice Seeds by Real-time PCR Assay (Sayler et al. 2006)

2.19.1 Preparation of Seed-wash

  1. 1.

    Wash 2 g seed samples ( approximately 20 seeds) in 2 ml distilled water ­containing 0.1% Tween-20; mix the aqueous suspensions on a rotary shaker at 150 rpm for 30 min and test 1 μl aliquots of wash solution in duplicates for each sample.

2.19.2 Real-time PCR Assay

  1. 1.

    Perform the assay using a Thermo-Fast 96-well reaction plate and Thermo-Fast Caps (AB gene Epsom, UK) in the Mx 3000 P real-time PCR machine (Stratagene Corporation, USA).

  2. 2.

    Transfer to each well a 25-μl reaction mixture containing 12.5 μl 2 × SYBR Green PCR Master Mix (Qiagen) and 12.5 μl primer (3 pmol each of forward and reverse primer and 1 μl of bacterial cells or seed wash/ plant extract).

  3. 3.

    Provide the following conditions for amplification: 95°C for 15 min; 40 cycles each of 95°C for 15 s, 60°C annealing for 30 s and 72°C for extension for 15 s, 95°C for 1 min and 55°C for 30 s.

  4. 4.

    Construct a standard curve to calculate the correlation between bacterial cell numbers and PCR Ct values by assaying a series of dilutions of bacterial culture; determine the bacterial cell number by turbidimetric assay using a spectrophotometer, followed by plate counting.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Narayanasamy, P. (2011). Detection of Bacterial and Phytoplasmal Pathogens. In: Microbial Plant Pathogens-Detection and Disease Diagnosis:. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9769-9_2

Download citation

Publish with us

Policies and ethics