Skip to main content

State-of-the-Art Chemical Analyses: Xenobiotics, Plant Proteomics, and Residues in Plant Based Products

  • Chapter
  • First Online:
Organic Xenobiotics and Plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 8))

Abstract

Utilizing modern analytical tools, “x-omics” approaches (e.g., genomics, metabolomics, proteomics, etc.), and data mining techniques for comprehensive characterization of plant metabolism of xenobiotics can enhance our ability to assess environmental impacts. However, a solid understanding of metabolic pathways at the molecular level is required for targeted exploitation of species-specific detoxifying abilities of various plants. Characterization of phytotoxic pathways and dynamic molecular interactions in biological systems requires a systematic approach that can merge data from multiple analytical techniques. In this chapter, a brief review on recent advances in analytical instruments, particularly high ­performance mass spectrometers (MS) and allied techniques, and their impact on integrative biological studies in plant proteomics and botany are provided. Moreover, the importance of sample preparation, analyte separation, and standardization techniques are discussed. The significance of data correlation from high throughput and high resolution MS, multistage MS (MSn), “bottom-up” and ­“top-down” proteomics, determination of various stress responses, and identification of post-translational modifications in plants are also discussed. The conclusions provide a summary of the current instrumental limitations and anticipated future directions and challenges in plant system biology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alguacil MM, Roldan A, Torres MP (2009) Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environ Microbiol 11(10):2649–2659

    PubMed  CAS  Google Scholar 

  • Allen DK, Shachar-Hill Y, Ohlrogge JB (2007) Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry 68(16–18):2197–2210

    PubMed  CAS  Google Scholar 

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6(7):17–326

    Google Scholar 

  • Alomary A, Solouki T, Patterson HH, Cronan CS (2000) Elucidation of aluminum-fulvic acid Interactions by gas-phase hydrogen/deuterium (H/D) exchange and electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR). Environ Sci Technol 34(13):2830–2838

    CAS  Google Scholar 

  • Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y (2007) Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J 52(2):296–308

    PubMed  CAS  Google Scholar 

  • Anderson NL, Matheson AD, Steiner S (2000) Proteomics: applications in basic and applied biology. Curr Opin Biotechnol 11(4):408–412

    PubMed  CAS  Google Scholar 

  • Appel RD, Bairoch A (2004) Post-translational modifications: a challenge for proteomics and bioinformatics. Proteomics 4(6):1525–1526

    PubMed  CAS  Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36(5):652–663

    PubMed  CAS  Google Scholar 

  • Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28(1):93–120

    PubMed  CAS  Google Scholar 

  • Bahrman N, Petit RJ (1995) Genetic polymorphism in maritime pine (pinus pinaster ait.) assessed by two-dimensional gel electrophoresis of needle, bud and pollen proteins. J Mol Evol 41(2):231–237

    CAS  Google Scholar 

  • Barberr M, Bordolri RS, Sedgwick D, Tyler AN (1981) Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. J Chem Soc Chem Commun 7:325–327

    Google Scholar 

  • Barrera NP, Di Bartolo N, Booth PJ, Robinson CV (2008) Micelles protect membrane complexes from solution to vacuum. Science 321(5886):243–246

    PubMed  CAS  Google Scholar 

  • Bates PD, Ohlrogge JB, Pollard M (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282(43):31206–31216

    PubMed  CAS  Google Scholar 

  • Belov ME, Gorshkov MV, Udseth HR, Anderson GA, Smith RD (2000) Zeptomole-sensitivity electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry of proteins. Anal Chem 72(10):2271–2279

    PubMed  CAS  Google Scholar 

  • Benninghoven A, Jaspers D, Sichtermann W (1976) Secondary-ion emission of amino acids. Appl Phys 11(1):35–39

    CAS  Google Scholar 

  • Bernard S, Pujo-Menjouet L, Mackey MC (2003) Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys J 84(5):3414–3424

    PubMed  CAS  Google Scholar 

  • Berne BJ, Straub JE (1997) Novel methods of sampling phase space in the simulation of biological systems. Curr Opin Cell Biol 7(2):181–189

    CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101(2–3):157–170

    PubMed  CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van Tuinen D, Remacle J, Gianinazzi-Pearson V, Gianinazzi S (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23(1):122–137

    PubMed  CAS  Google Scholar 

  • Bilang J, Sturm A (1995) Cloning and characterization of a glutathione s-transferase that can be photolabeled with 5-azido-indole-3-acetic acid. Plant Physiol 109(1):253–260

    PubMed  CAS  Google Scholar 

  • Blow N (2009) Microfluidics: the great divide. Nat Meth 6(9):683–686

    CAS  Google Scholar 

  • Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24(2):168–200

    PubMed  CAS  Google Scholar 

  • Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7(7):1121–1130

    PubMed  CAS  Google Scholar 

  • Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P (2002) Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis: A genomic analysis. Plant Physiol 129:486–499

    PubMed  CAS  Google Scholar 

  • Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24(12):543–548

    PubMed  CAS  Google Scholar 

  • Bruce JE, Cheng X, Bakhtiar R, Wu Q, Hofstadler SA, Anderson GA, Smith RD (1994) Trapping, detection, and mass measurement of individual ions in a Fourier transform ion cyclotron resonance mass spectrometer. J Am Chem Soc 116(17):7839–7847

    CAS  Google Scholar 

  • Bruggeman FJ, Westerhoff HV, Boogerd FC (2002) BioComplexity: a pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philos Psychol 15(4):411–440

    Google Scholar 

  • Caldas NM, Oliveira SR, Gomes Neto JA (2009) Feasibility of internal standardization in the direct and simultaneous determination of As, Cu and Pb in sugar-cane spirits by graphite furnace atomic absorption spectrometry. Anal Chim Acta 636(1):1–5

    PubMed  CAS  Google Scholar 

  • Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27(4):354–377

    PubMed  CAS  Google Scholar 

  • Castoro JA, Wilkins CL (1993) Ultrahigh resolution matrix-assisted laser desorption/ionization of small proteins by Fourier transform mass spectrometry. Anal Chem 65(19):621–2627

    Google Scholar 

  • Catherine D, De Dominique V, Michel Z, Hervé T (1986) Technical improvements in two-­dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling ­proteins. Electrophoresis 7(1):52–54

    Google Scholar 

  • Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12(9):1647–1665

    PubMed  CAS  Google Scholar 

  • Cejas P, Casado E, Belda-Iniesta C, De Castro J, Espinosa E, Redondo A, Sereno M, Garcia-Cabezas MA, Vara JA, Dominguez-Caceres A, Perona R, Gonzalez-Baron M (2004) Implications of oxidative stress and cell membrane lipid peroxidation in human cancer. Cancer Causes Control 15(7):707–719

    PubMed  Google Scholar 

  • Chan J, Mao G, Lloyd C (2003) Proteomic analysis of plant microtubule-associated proteins. Cell Biol Int 27(3):181

    PubMed  CAS  Google Scholar 

  • Chen H, Gamez G, Zenobi R (2009) What can we learn from ambient ionization techniques? J Am Soc Mass Spectrom 20(11):1947–1963

    PubMed  Google Scholar 

  • Chung EW, Nettleton EJ, Morgan CJ, Gross M, Miranker A, Radford SE, Dobson CM, Robinson CV (1997) Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci 6(6):1316–1324

    PubMed  CAS  Google Scholar 

  • Cohen MJ, Karasek FW (1970) Plasma chromatography. A new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8(6):330–337

    CAS  Google Scholar 

  • Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283

    CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    PubMed  CAS  Google Scholar 

  • Cooper B, Eckert D, Andon NL, Yates JR, Haynes PA (2003) Investigative proteomics: identification of an unknown plant virus from infected plants using mass spectrometry. J Am Soc Mass Spectrom 14(7):736–741

    PubMed  CAS  Google Scholar 

  • Cooper HJ, Hakansson K, Marshall AG (2005) The role of electron capture dissociation in biomolecular analysis. Mass Spectrom Rev 24(2):201–222

    PubMed  CAS  Google Scholar 

  • Cozzolino D (2009) Near infrared spectroscopy in natural products analysis. Planta Med 75(7):746–756

    PubMed  CAS  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5(12):3162–3172

    PubMed  CAS  Google Scholar 

  • Deborah P (2009) Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics: Clin Appl 3(2):155–172

    Google Scholar 

  • Demirev PA (2004) Enhanced specificity of bacterial spore identification by oxidation and mass spectrometry. Rapid Commun Mass Spectrom 18(22):2719–2722

    PubMed  CAS  Google Scholar 

  • Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67(17):1907–1924

    PubMed  CAS  Google Scholar 

  • Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6(4):307–311

    PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R (2006a) Challenges and opportunities in proteomics data analysis. Mol Cell Proteomics 5(10):1921–1926

    PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R (2006b) Mass spectrometry and protein analysis. Science 312(5771):212–217

    PubMed  CAS  Google Scholar 

  • Dongre AR, Somogyi A, Wysocki VH (1996) Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J Mass Spectrom 31(4):339–350

    PubMed  CAS  Google Scholar 

  • Drake RR, Deng Y, Schwegler EE, Gravenstein S (2005) Proteomics for biodefense applications: progress and opportunities. Expert Rev Proteomics 2(2):203–213

    PubMed  CAS  Google Scholar 

  • Dumas-Gaudot E, Bestel-Corre G, Gianinazzi S (2001) Recent research developments. In: Pandalai SG (ed) Plant biology. Research Signpost, Trivandrum, India

    Google Scholar 

  • Durst F, Benveniste I, Lesot A, Salaon J-P, Werck-Reichhart D (1997) Regulation of enzymatic systems detoxifying Xenobiotics in plants

    Google Scholar 

  • Fang JY, Wan XC (2008) XPS analysis of tea plant leaf and root surface. Guang Pu Xue Yu Guang Pu Fen Xi 28(9):2196–2200

    PubMed  CAS  Google Scholar 

  • Farriol-Mathis N, Garavelli JS, Boeckmann B, Duvaud S, Gasteiger E, Gateau A, Veuthey AL, Bairoch A (2004) Annotation of post-translational modifications in the Swiss-Prot knowledge base. Proteomics 4(6):1537–1550

    PubMed  CAS  Google Scholar 

  • Fattahi A, Zekavat B, Solouki T (2010) H/D exchange kinetics: experimental evidence for formation of different b fragment ion conformers/isomers during the gas-phase peptide sequencing. J Am Soc Mass Spectrom 21(2):358–369

    PubMed  CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    PubMed  CAS  Google Scholar 

  • Fernandez-Lima FA, Becker C, McKenna AM, Rodgers RP, Marshall AG, Russell DH (2009) Petroleum crude oil characterization by IMS-MS and FTICR MS. Anal Chem 81(24):9941–9947

    PubMed  CAS  Google Scholar 

  • Fievre A, Solouki T, Marshall AG, Cooper WT (1997) High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption­/­ionization and electrospray ionization. Energy Fuels 11(3):554–560

    CAS  Google Scholar 

  • Finney LA, óHalloran TV (2003) Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors. Science 300(5621):931–936

    PubMed  CAS  Google Scholar 

  • Fisher LB (1968) Determination of the normal rate and duration of mitosis in human epidermis. Br J Dermatol 80(1):24–28

    PubMed  CAS  Google Scholar 

  • Founds SA (2009) Introducing systems biology for nursing science. Biol Res Nurs 11(1):73–80

    PubMed  Google Scholar 

  • Fournier F, Guo R, Gardner EM, Donaldson PM, Loeffeld C, Gould IR, Willison KR, Klug DR (2009) Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis. Acc Chem Res 42(9):1322–1331

    PubMed  CAS  Google Scholar 

  • Fournier JC, Codaccdoni P, Soulas G (1981) Soil adaptation to 2, 4-D degradation in relation to the application rates and the metabolic behavior of the degrading microflora. Chemosphere 10(8):977–984

    CAS  Google Scholar 

  • Freidberg F (1974) Effects of metal binding on protein structure. Q Rev Biophys 7:1–33

    Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of arabidopsis thaliana seed germination and priming. Plant Physiol 126(2):835–849

    PubMed  CAS  Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133(2):664–682

    PubMed  CAS  Google Scholar 

  • Garavelli JS (2003) The RESID database of protein modifications: 2003 developments. Nucleic Acids Res 31(1):499–501

    PubMed  CAS  Google Scholar 

  • Garavelli JS (2004) The RESID database of protein modifications as a resource and annotation tool. Proteomics 4(6):1527–1533

    PubMed  CAS  Google Scholar 

  • Gauthier JW, Trautman TR, Jacobson DB (1991) Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal Chim Acta 246:211–225

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Denarie J (1997) Red carpet genetic programmes for root endosymbioses. Trends Plant Sci 2(10):371–372

    Google Scholar 

  • Gillig KJ, Bluhm BK, Russell DH (1996) Ion motion in a Fourier transform ion cyclotron resonance wire ion guide cell. Int J Mass Spectrom Ion Processes 157(158):129–147

    Google Scholar 

  • Gillig KJ, Ruotolo B, Stone EG, Russell DH, Fuhrer K, Gonin M, Schultz AJ (2000) Coupling high-pressure MALDI with ion mobility/orthogonal time-of-flight mass spectrometry. Anal Chem 72(17):3965–3971

    PubMed  CAS  Google Scholar 

  • Gotloib L (2009) Mechanisms of cell death during peritoneal dialysis. A role for osmotic and oxidative stress. Contrib Nephrol 163:35–44

    PubMed  CAS  Google Scholar 

  • Grigorov MG (2006) Global dynamics of biological systems from time-resolved omics experiments. Bioinformatics 22(12):1424–1430

    PubMed  CAS  Google Scholar 

  • Guo S, Zhou Q, Lu T, Ding X, Huang X (2008) Spectroscopic studies of interactions involving horseradish peroxidase and Tb3+. Spectrochim Acta Part A: Mol Biomol 70(4):818–823

    Google Scholar 

  • Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82(11):3673–3677

    PubMed  CAS  Google Scholar 

  • Gye MC, Park S, Kim YS, Ahn HS (2001) Mobility shift assay of calcium-binding proteins of mouse epididymal spermatozoa. Andrologia 33(4):193–198

    PubMed  CAS  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5(4):950–960

    PubMed  CAS  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6(4):1451–1460

    PubMed  CAS  Google Scholar 

  • Han KK, Martinage A (1992) Post-translational chemical modification(s) of proteins. Int J Biochem 24(1):19–28

    PubMed  CAS  Google Scholar 

  • Harris CM (2001) on Waiting to exhale: meeting news from the Federation of Analytical Chemistry & Spectroscopy Societies (FACSS): PC/GC FT-ICR for Exhaled Breath Analysis. In: Solouki T, Szulejko JE, Fredrick BG, Lad RJ (eds) Anal Chem 73:658A–659A

    Google Scholar 

  • Harris GA, Nyadong L, Fernandez FM (2008) Recent developments in ambient ionization ­techniques for analytical mass spectrometry. Analyst 133(10):1297–1301

    PubMed  CAS  Google Scholar 

  • He C-Y, Zhang J-G, Duan A-G, Sun H-G, Fu L-H, Zheng S-X (2007) Proteins responding to drought and high-temperature stress in Pinus armandii Franch. Can J Bot 85(10):994–1002

    CAS  Google Scholar 

  • He F, Emmett MR, Hakansson K, Hendrickson CL, Marshall AG (2004) Theoretical and experimental prospects for protein identification based solely on accurate mass measurement. J Proteome Res 3(1):61–67

    PubMed  CAS  Google Scholar 

  • Heffner C, Silwal I, Peckenham JM, Solouki T (2007) Emerging technologies for identification of disinfection byproducts: GC/FT-ICR MS characterization of solvent artifacts. Environ Sci Technol 41(15):5419–5425

    PubMed  CAS  Google Scholar 

  • Henzel WJ, Watanabe C, Stults JT (2003) Protein identification: the origins of peptide mass ­fingerprinting. J Am Soc Mass Spectrom 14(9):931–942

    PubMed  CAS  Google Scholar 

  • Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96(7):2239–2314

    PubMed  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81(3):802–806

    PubMed  CAS  Google Scholar 

  • Jackson M, Solouki T, Hall SK, Szulejko JE (2009) Differentiation between pure cultures of streptococcus pyogenes and pseudomonas aeruginosa by FT-ICR-MS volatile analysis. Open Spectrosc J 3(5):21–25

    Google Scholar 

  • Jacobs DI, Van der Heijden R, Verpoorte R (2000) Proteomics in plant biotechnology and secondary metabolism research. Phytochem Anal 11(5):277–287

    CAS  Google Scholar 

  • Jespersen S, Niessen WMA, Tjaden UR, Jvd G, Litborn E, Lindberg U, Roeraade J, Hillenkamp F (1994) Attomole detection of proteins by matrix-assisted laser desorption/ionization mass spectrometry with the use of picolitre vials. Rapid Commun Mass Spectrom 8(8):581–584

    CAS  Google Scholar 

  • Jiang H, Qin Y, Hu B (2008) Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74(5):1160–1165

    PubMed  CAS  Google Scholar 

  • Jones AM (1994) Auxin-binding proteins. Annu Rev Plant Physiol Plant Mol Biol 45(1):393–420

    CAS  Google Scholar 

  • Jorrin-Novo JV, Maldonado AM, Echevarria-Zomeno S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72(3):285–314

    PubMed  CAS  Google Scholar 

  • Kameshita I, Fujisawa H (1997) Preparation and characterization of calmodulin-dependent protein kinase IV (CaM-kinase IV) free of CaM-kinase IV kinase from rat cerebral cortex. Anal Biochem 249:252–255

    PubMed  CAS  Google Scholar 

  • Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43(1):1–22

    PubMed  CAS  Google Scholar 

  • Kanu AB, Hill HH Jr (2008) Ion mobility spectrometry detection for gas chromatography. J Chromatogr A 1177(1):12–27

    PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136(4):4159–4168

    PubMed  CAS  Google Scholar 

  • Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 78:53–68

    CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal Chem 60(20):2299–2301

    PubMed  CAS  Google Scholar 

  • Karasek FW (1970) Plasma chromatograph. Res Dev 21(3):34–37

    CAS  Google Scholar 

  • Karasek FW (1974) Plasma chromatography. Anal Chem 46(8):710A–720A

    CAS  Google Scholar 

  • Kazazic S, Zhang HM, Schaub TM, Emmett MR, Hendrickson CL, Blakney GT, Marshall AG (2010) Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 21(4):550–558

    PubMed  CAS  Google Scholar 

  • Kelleher NL (2004) Top-down proteomics. Anal Chem 76(11):197A–203A

    PubMed  Google Scholar 

  • Kemper PR, Dupuis NF, Bowers MT (2009) A new, higher resolution, ion mobility mass spectrometer. Int J Mass Spectrom 287(1–3):46–57

    CAS  Google Scholar 

  • Kersten B, Agrawal GK, Iwahashi H, Rakwal R (2006) Plant phosphoproteomics: a long road ahead. Proteomics 6(20):5517–5528

    PubMed  CAS  Google Scholar 

  • Ketley JN, Habig WH, Jacoby WB (1975) Binding of nonsubstrate ligands to the glutathione s-transferases. J Biol Chem 250(22):8670–8673

    PubMed  CAS  Google Scholar 

  • Khalvati MA, Bartha B, Dupigny A, Schroder P (2010) Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. J Soils Sediments 10(1):54–64

    CAS  Google Scholar 

  • Kingdon KH (1923) A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phys Rev 21:408–418

    CAS  Google Scholar 

  • Knops M, Schuphan I, Schmidt B (1995) Biotransformation of 4-Nitrophenol by a fermenter grown cell suspension culture of soybean (glycine max): isolation and identification of conjugates. Plant Sci 109(2):215–224

    CAS  Google Scholar 

  • Köcher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Meth 4(10):807–815

    Google Scholar 

  • Kovarik ML, Jacobson SC (2009) Nanofluidics in lab-on-a-chip devices. Anal Chem 81(17):7133–7140

    PubMed  CAS  Google Scholar 

  • Kruger R, Wolschin F, Weckwerth W, Bettmer J, Lehmann WD (2007) Plant protein phosphorylation monitored by capillary liquid chromatography–element mass spectrometry. Biochem Biophys Res Commun 355(1):89–96

    PubMed  Google Scholar 

  • Kuzyk MA, Ohlund LB, Elliott MH, Smith D, Qian H, Delaney A, Hunter CL, Borchers CH (2009) A comparison of MS/MS-based, stable-isotope-labeled, quantitation performance on ESI-quadrupole TOF and MALDI-TOF/TOF mass spectrometers. Proteomics 9(12):3328–3340

    PubMed  CAS  Google Scholar 

  • Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57(7):1547–1551

    PubMed  CAS  Google Scholar 

  • Lamoureux GL, Rusness DG (1989) Glutathione: chemical, biochemical and medical aspects (Vol. IIIB). Wiley, New York

    Google Scholar 

  • Larson TR, Graham IA (2001) A novel technique for the sensitive quantification of acyl CoA esters from plant tissues. Plant J 25(1):115–125

    PubMed  CAS  Google Scholar 

  • Laskin J, Futrell JH (2003) Surface-induced dissociation of peptide ions: kinetics and dynamics. J Am Soc Mass Spectrom 14(12):1340–1347

    PubMed  CAS  Google Scholar 

  • Laskin J, Futrell JH (2005) Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom Rev 24(2):135–167

    PubMed  CAS  Google Scholar 

  • Laugesen S, Messinese E, Hem S, Pichereaux C, Grat S, Ranjeva R, Rossignol M, Bono JJ (2006) Phosphoproteins analysis in plants: a proteomic approach. Phytochemistry 67(20):2208–2214

    PubMed  CAS  Google Scholar 

  • Lei Z, Elmer AM, Watson BS, Dixon RA, Mendes PJ, Sumner LW (2005) A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula. Mol Cell Proteomics 4(11):1812–1825

    PubMed  CAS  Google Scholar 

  • Leskinen H, Suomela JP, Kallio H (2007) Quantification of triacylglycerol regioisomers in oils and fat using different mass spectrometric and liquid chromatographic methods. Rapid Commun Mass Spectrom 21(14):2361–2373

    PubMed  CAS  Google Scholar 

  • Li J, LeRiche T, Tremblay TL, Wang C, Bonneil E, Harrison DJ, Thibault P (2002a) Application of microfluidic devices to proteomics research: identification of trace-level protein digests and affinity capture of target peptides. Mol Cell Proteomics 1(2):157–168

    PubMed  CAS  Google Scholar 

  • Li Y, Jiang Y, Yan XP, Peng WJ, Wu YY (2002b) A flow injection on-line multiplexed sorption preconcentration procedure coupled with flame atomic absorption spectrometry for determination of trace lead in water, tea, and herb medicines. Anal Chem 74(5):1075–1080

    PubMed  CAS  Google Scholar 

  • Listowski I, Abramovitz M, Homma H, Niitsu Y (1988) Intracellular binding and transport of hormones and xenobiotics by glutathione s-transferases. Drug Metab Rev 19(3–4):305–318

    Google Scholar 

  • Little DP, Speir JP, Senko MW, óConnor PB, McLafferty FW (1994) Infrared multiphoton ­dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66(18):2809–2815

    PubMed  CAS  Google Scholar 

  • Litwack G, Ketterer B, Arias IM (1971) Ligandin: a hepatic protein which binds steroids, biliruben, carcinogens, and a number of exogenous organic anions. Nature 234(5330):466–467

    PubMed  CAS  Google Scholar 

  • Lobinski R, Schaumloffel D, Szpunar J (2006) Mass spectrometry in bioinorganic analytical chemistry. Mass Spectrom Rev 25(2):255–289

    PubMed  CAS  Google Scholar 

  • Long L, Yao Q, Ai Y, Deng M, Zhu H (2009) Detection of a novel bacterium associated with spores of the arbuscular mycorrhizal fungus Gigaspora margarita. Can J Microbiol 55(6):771–775

    PubMed  CAS  Google Scholar 

  • Loo JA, Quinn JP, Ryu SI, Henry KD, Senko MW, McLafferty FW (1992) High-resolution tandem mass spectrometry of large biomolecules. Proc Natl Acad Sci USA 89(1):286–289

    PubMed  CAS  Google Scholar 

  • Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov AI, Bogdanova A, Robinson M (2000) High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21(16):3427–3440

    PubMed  CAS  Google Scholar 

  • Luo Z, Heffner C, Solouki T (2009) Multidimensional GC-Fourier transform ion cyclotron resonance MS analyses: utilizing gas-phase basicities to characterize multicomponent gasoline samples. J Chromatogr Sci 47(1):75–82

    PubMed  CAS  Google Scholar 

  • Macek B, Waanders LF, Olsen JV, Mann M (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteomics 5(5):949–958

    PubMed  CAS  Google Scholar 

  • Macfarlane RD, Torgerson DF (1976) Californium-252 plasma desorption mass spectroscopy. Science 191(4230):920–925

    PubMed  CAS  Google Scholar 

  • Makarov A (1999a) Mass spectrometry. US Patent 5886346

    Google Scholar 

  • Makarov A (1999b) The Orbitrap: a novel high-performance electrostatic trap. In: Proceedings of the 48th ASMS conference on mass spectrometry and allied topics, Dallas, TX

    Google Scholar 

  • Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72(6):1156–1162

    PubMed  CAS  Google Scholar 

  • Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78(7):113–2120

    Google Scholar 

  • Malekpour A, Hajialigol S, Taher MA (2009) Study on solid-phase extraction and flame atomic absorption spectrometry for the selective determination of cadmium in water and plant samples with modified clinoptilolite. J Hazard Mater 172(1):229–233

    PubMed  CAS  Google Scholar 

  • Marcus RA (1988) On the theory of the state distribution of the reaction products and rates of unimolecular dissociations. Chem Phys Lett 144:2

    Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione s-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47(1):127–158

    PubMed  CAS  Google Scholar 

  • Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17(1):1–35

    PubMed  CAS  Google Scholar 

  • Marshall AG, Rodgers RP (2004) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37(1):53–59

    PubMed  CAS  Google Scholar 

  • Marshall AG, Rodgers RP (2008) Petroleomics: chemistry of the underworld. Proc Natl Acad Sci USA 105(47):18090–18095

    PubMed  CAS  Google Scholar 

  • Maruyama K, Mikawa T, Ebashi S (1984) Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem 95(2):511–519

    PubMed  CAS  Google Scholar 

  • Matallana-Surget S, Leroy B, Wattiez R (2010) Shotgun proteomics: concept, key points and data mining. Expert Rev Proteomics 7(1):5–7

    PubMed  CAS  Google Scholar 

  • McDaniel EW, Martin DW, Barnes WS (1962) Drift-tube mass spectrometer for studies of low-energy ion-molecule reactions. Rev Sci Instrum 33:1–7

    Google Scholar 

  • McLafferty FW, Breuker K, Jin M, Han X, Infusini G, Jiang H, Kong X, Begley TP (2007) Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J 274(24):6256–6268

    PubMed  CAS  Google Scholar 

  • Meeravali NN, Kumar SJ (2000) Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry. Fresenius J Anal Chem 366(3):313–315

    PubMed  CAS  Google Scholar 

  • Mesarovic MD (1968) Systems theory and biology. Springer, New York

    Google Scholar 

  • Mirsaleh-Kohan N, Robertson WD, Compton RN (2008) Electron ionization time-of-flight mass spectrometry: historical review and current applications. Mass Spectrom Rev 27(3):237–285

    PubMed  CAS  Google Scholar 

  • Mitulovic G, Mechtler K (2006) HPLC techniques for proteomics analysis-a short overview of latest developments. Brief Funct Genomics 5(4):249–260

    CAS  Google Scholar 

  • Mo M, Tse YC, Jiang L (2003) Organelle identification and proteomics in plant cells. Trends Biotechnol 21(8):331–332

    PubMed  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58(1):459–481

    PubMed  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16(12):3181–3195

    PubMed  CAS  Google Scholar 

  • Morgan DO (2007) The cell cycle: principles of control, Primers in biology. New Science Press Ltd, London

    Google Scholar 

  • Moyer SC, Budnik BA, Pittman JL, Costello CE, óConnor PB (2003) Attomole peptide analysis by high-pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. Anal Chem 75(23):6449–6454

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay R (2009) Microfluidics: on the slope of enlightenment. Anal Chem 81(11):4169–4173

    PubMed  CAS  Google Scholar 

  • Munson MSB, Field FH (1966) Chemical ionization mass spectrometry. I. General introduction. J Am Chem Soc 88(12):2621–2630

    CAS  Google Scholar 

  • Narin I, Tuzen M, Soylak M (2004) Comparison of sample preparation procedures for the determination of trace heavy metals in house dust, tobacco and tea samples by atomic absorption spectrometry. Ann Chim 94(11):67–873

    Google Scholar 

  • Nicol GR, Han M, Kim J, Birse CE, Brand E, Nguyen A, Mesri M, FitzHugh W, Kaminker P, Moore PA, Ruben SM, He T (2008) Use of an immunoaffinity-mass spectrometry-based approach for the quantification of protein biomarkers from serum samples of lung cancer patients. Mol Cell Proteomics 7(10):1974–1982

    PubMed  CAS  Google Scholar 

  • Oeljeklaus S, Meyer HE, Warscheid B (2009) Advancements in plant proteomics using quantitative mass spectrometry. J Proteomics 72(3):545–554

    PubMed  CAS  Google Scholar 

  • Ogura Y (1970) Hydrofluoric acid treatment on pasture grass ashes for atomic absorption analysis. Natl Inst Anim Health Q 10(3):171–172

    CAS  Google Scholar 

  • Ohno K, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22):4443–4453

    PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    PubMed  CAS  Google Scholar 

  • Orchard S, Salwinski L, Kerrien S, Montecchi-Palazzi L, Oesterheld M, Stumpflen V, Ceol A, Chatr-aryamontri A, Armstrong J, Woollard P, Salama JJ, Moore S, Wojcik J, Bader GD, Vidal M, Cusick ME, Gerstein M, Gavin AC, Superti-Furga G, Greenblatt J, Bader J, Uetz P, Tyers M, Legrain P, Fields S, Mulder N, Gilson M, Niepmann M, Burgoon L, De Las RJ, Prieto C, Perreau VM, Hogue C, Mewes HW, Apweiler R, Xenarios I, Eisenberg D, Cesareni G, Hermjakob H (2007) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnol 25(8):894–898

    PubMed  CAS  Google Scholar 

  • Ospelkaus S, Ni KK, Wang D, de Miranda MH, Neyenhuis B, Quemener G, Julienne PS, Bohn JL, Jin DS, Ye J (2010) Quantum-state controlled chemical reactions of ultracold potassium-­rubidium molecules. Science 327(5967):853–857

    PubMed  CAS  Google Scholar 

  • Outten CE, óHalloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526):2488–2492

    PubMed  CAS  Google Scholar 

  • Ouvry-Patat SA, Torres MP, Gelfand CA, Quek HH, Easterling M, Speir JP, Borchers CH (2009) Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer. In: Methods in molecular biology, vol 492

    Google Scholar 

  • Padliya ND, Cooper B (2006) Mass spectrometry-based proteomics for the detection of plant pathogens. Proteomics 6(14):4069–4075

    PubMed  CAS  Google Scholar 

  • Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8(2):787–797

    PubMed  CAS  Google Scholar 

  • Pappin DJ, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3(6):327–332

    PubMed  CAS  Google Scholar 

  • Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(3s):311–323

    PubMed  CAS  Google Scholar 

  • Peck SC (2003) Early phosphorylation events in biotic stress. Curr Opin Plant Biol 6(4):334–338

    PubMed  CAS  Google Scholar 

  • Peck SC (2006) Phosphoproteomics in Arabidopsis: moving from empirical to predictive science. J Exp Bot 57(7):1523–1527

    PubMed  CAS  Google Scholar 

  • Peck SC, Nuhse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13(6):1467–1475

    PubMed  CAS  Google Scholar 

  • Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27(6):661–699

    PubMed  CAS  Google Scholar 

  • Peters RJ, Bolck YJ, Rutgers P, Stolker AA, Nielen MW (2009) Multi-residue screening of veterinary drugs in egg, fish and meat using high-resolution liquid chromatography accurate mass time-of-flight mass spectrometry. J Chromatogr A 1216(46):8206–8216

    PubMed  CAS  Google Scholar 

  • Peterson AC, Quarmby ST, McAlister GC, Coon JJ (2009) Implementation of an EI/CI interface on a hybrid orbitrap system for ultra-high resolution GC-MS. In: Proceedings of the 57th ASMS conference on mass spectrometry and allied topics, Philadelphia, PA

    Google Scholar 

  • Pothan LA, Simon F, Spange S, Thomas S (2006) XPS studies of chemically modified banana fibers. Biomacromolecules 7(3):892–898

    PubMed  CAS  Google Scholar 

  • Previs MJ, VanBuren P, Begin KJ, Vigoreaux JO, LeWinter MM, Matthews DE (2008) Quantification of protein phosphorylation by liquid chromatography-mass spectrometry. Anal Chem 80(15):5864–5872

    PubMed  CAS  Google Scholar 

  • Price WD, Schnier PD, Jockusch RA, Strittmatter EF, Williams ER (1996) Unimolecular reaction kinetics in the high-pressure limit without collisions. J Am Chem Soc 118(43):10640–10644

    PubMed  CAS  Google Scholar 

  • Qian WJ, Camp DG, Smith RD (2004) High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Expert Rev Proteomics 1(1):87–95

    PubMed  CAS  Google Scholar 

  • Rappsilber J, Mann M (2002a) Is mass spectrometry ready for proteome-wide protein expression analysis? Genome Biol 3(80: COMMENT 2008

    Google Scholar 

  • Rappsilber J, Mann M (2002b) What does it mean to identify a protein in proteomics? Trends Biochem Sci 27(2):74–78

    PubMed  CAS  Google Scholar 

  • Reed GH, Poyner RR (1997) Mn+2 as a probe of divalent metal ion binding and function in Enzymes and other proteins. In: Sigl A, Sigl H (eds) Manganese and its role in biological processes. Marcel Dekker, New York, pp 183–207

    Google Scholar 

  • Rodriguez M, Schaper J (2005) Apoptosis: measurement and technical issues. J Mol Cell Cardiol 38(1):15–20

    PubMed  CAS  Google Scholar 

  • Romisch-Margl W, Schramek N, Radykewicz T (2007) 13CO2 as a universal metabolic tracer in isotopologue perturbation experiments. Phytochemistry 68(16–18):2273–2289

    PubMed  Google Scholar 

  • Rose JK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39(5):715–733

    PubMed  CAS  Google Scholar 

  • Rossignol M (2006) Proteomic analysis of phosphorylated proteins. Curr Opin Plant Biol 9(5):538–543

    PubMed  CAS  Google Scholar 

  • Ruotolo BT, GFt V, Thomson LM, Woods AS, Gillig KJ, Russell DH (2002) Distinguishing between phosphorylated and nonphosphorylated peptides with ion mobility-mass spectrometry. J Proteome Res 1(4):303–306

    PubMed  CAS  Google Scholar 

  • Salehpour M, Possnert G, Bryhni H (2008) Subattomole sensitivity in biological accelerator mass spectrometry. Anal Chem 80(10):3515–3521

    PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76(2–3):199–219

    Google Scholar 

  • Samra A, DumasGaudot E, GianinazziPearson V, Gianinazzi S (1996) Soluble proteins and polypeptide profiles of spores of arbuscular mycorrhizal fungi. Interspecific variability and effects of host (myc(+)) and non-host (myc(-)) - Pisum sativum root exudates. Agronomie 16(10):709–719

    Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132(2):209–219

    PubMed  CAS  Google Scholar 

  • Sandermann H Jr (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacokinetics 4(5):225–241

    CAS  Google Scholar 

  • Scarff CA, Thalassinos K, Hilton GR, Scrivens JH (2008) Travelling wave ion mobility mass spectrometry studies of protein structure: biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Commun Mass Spectrom 22(20):3297–3304

    PubMed  CAS  Google Scholar 

  • Schmidt B (2001) Metabolic profiling using plant cell suspension cultures. In: Christopher HJ, Hoagland RE, Zablotowicz RM (eds) Pesticide biotransformation in plants and microorganisms similarities and divergences, vol 777, ACS symposium series. American Chemical Society, Washington, DC, pp 40–56

    Google Scholar 

  • Schmidt B (2002) Metabolism of agrochemicals in plants and animals – recent developments and experimental approaches. IBC Life Sciences, London, UK

    Google Scholar 

  • Schnabel LV, Mohammed HO, Jacobson MS, Fortier LA (2004) Effects of platelet rich plasma and acellular bone marrow on gene expression patterns and DNA content of equine suspensory ligament explant cultures. Equine Vet J 40(3):260–265

    Google Scholar 

  • Schnable PS, Hochholdinger F, Nakazono M (2004) Global expression profiling applied to plant development. Curr Opin Plant Biol 7(1):50–56

    PubMed  CAS  Google Scholar 

  • Schultz CJ, Johnson KL, Currie G, Bacic A (2000) The classical Arabinogalactan protein gene family of Arabidopsis. Plant Cell 12(9):1751–1768

    PubMed  CAS  Google Scholar 

  • Scigelova M, Makarov A (2006) Orbitrap mass analyzer–overview and applications in proteomics. Proteomics 6(Suppl 2):16–21

    PubMed  Google Scholar 

  • Shen Y, Tolic N, Masselon C, Pasa-Tolic L, Camp DG, Hixson KK, Zhao R, Anderson GA, Smith RD (2004) Ultrasensitive proteomics using high-efficiency on-line micro-SPE-nanoLC-nanoESI MS and MS/MS. Anal Chem 76(1):144–154

    PubMed  CAS  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci 176(1):99–104

    CAS  Google Scholar 

  • Shi SD, Hendrickson CL, Marshall AG (1998) Counting individual sulfur atoms in a protein by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry: experimental resolution of isotopic fine structure in proteins. Proc Natl Acad Sci USA 95(20):11532–11537

    PubMed  CAS  Google Scholar 

  • Shin J, Lee W (2008) Structural proteomics by NMR spectroscopy. Expert Rev Proteomics 5(4):589–601

    PubMed  CAS  Google Scholar 

  • Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA 96(4):1750–1755

    PubMed  CAS  Google Scholar 

  • Simon-Sylvestre G, Fournier JC (1979) Effects of pesticides on the soil microflora. Adv Agron 31:1–92

    CAS  Google Scholar 

  • Singh RJ (2002) Plant cytogenetics, 2nd edn. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55(1):555–590

    PubMed  CAS  Google Scholar 

  • Smith RD, Cheng X, Bruce JE, Hofstadler SA, Anderson GA (1994) Trapping, detection and reaction of very large single molecular ions by mass spectrometry. Nature 369:137–139

    CAS  Google Scholar 

  • Smith RD, Shen Y, Tang K (2004) Ultrasensitive and quantitative analyses from combined separations-mass spectrometry for the characterization of proteomes. Acc Chem Res 37(4):269–278

    PubMed  CAS  Google Scholar 

  • Solouki T, Emmett MR, Guan S, Marshall AG (1997) Detection, number, and sequence location of sulfur-containing amino acids and disulfide bridges in peptides by ultrahigh-resolution MALDI FTICR mass spectrometry. Anal Chem 69(6):1163–1168

    PubMed  CAS  Google Scholar 

  • Solouki T, Fort RC Jr, Alomary A, Fattahi A (2001) Gas phase hydrogen deuterium exchange reactions of a model peptide: FT-ICR and computational analyses of metal induced conformational mutations. J Am Soc Mass Spectrom 12(12):272–1285

    Google Scholar 

  • Solouki T, Freitas MA, Alomary A (1999) Gas-phase hydrogen/deuterium exchange reactions of fulvic acids: an electrospray ionization Fourier transform ion cyclotron resonance mass ­spectral study. Anal Chem 71(20):719–4726

    Google Scholar 

  • Solouki T, Gillig KJ, Russell DH (1994) Detection of high-mass biomolecules in Fourier ­transform ion cyclotron resonance mass spectrometry: theoretical and experimental investigations. Anal Chem 66(9):583–1587

    Google Scholar 

  • Solouki T, Marto JA, White FM, Guan S, Marshall AG (1995) Attomole biomolecule mass analysis by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance. Anal Chem 67(22):139–4144

    Google Scholar 

  • Solouki T, Pasa-Tolic L, Jackson GS, Guan S, Marshall AG (1996) High-resolution multistage MS, MS2, and MS3 matrix-assisted laser desorption/ionization FT-ICR mass spectra of peptides from a single laser shot. Anal Chem 68(21):718–3725

    Google Scholar 

  • Solouki T, Russell DH (1992) Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry. Proc Natl Acad Sci USA 89(13):701–5704

    Google Scholar 

  • Solouki T, Szulejko JE (2007) Bimolecular and unimolecular contributions to the disparate self-chemical ionizations of alpha-pinene and camphene isomers. J Am Soc Mass Spectrom 18(11):026–2039

    Google Scholar 

  • Solouki T, Szulejko JE, Bennett JB, Graham LB (2004a) A preconcentrator coupled to a GC/FTMS: advantages of self-chemical ionization, mass measurement accuracy, and high mass resolving power for GC applications. J Am Soc Mass Spectrom 15(8):1191–1200

    PubMed  CAS  Google Scholar 

  • Solouki T, Szulejko JE, Luo Z (2004b) Multidimensional GC Fourier transform ion cyclotron resonance mass spectrometry: resolving complex mixtures. In: Proceedings of the 52nd ASMS conference on mass spectrometry and allied topics, Nashville, TN

    Google Scholar 

  • Sommer H, Thomas HA, Hipple JA (1951) Measurement of e/m by cyclotron resonance. Phys Rev 82(5):697–702

    CAS  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem (International Edition in English) 45(44):7336–7356

    CAS  Google Scholar 

  • Spain JIM, Van Veld PA (1983) Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol 45(2):428–435

    PubMed  CAS  Google Scholar 

  • Stewart II, Thomson T, Figeys D (2001) 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrom 15(24):2456–2465

    PubMed  CAS  Google Scholar 

  • Strobel FH, Solouki T, White MA, Russell DH (1991) Detection of femtomole and sub-femtomole levels of peptides by tandem magnetic sector/reflectron time-of-flight mass spectrometry and matrix-assisted laser desorption ionization. J Am Soc Mass Spectrom 2(1):91–94

    CAS  Google Scholar 

  • Strupat K, Karas M, Hillenkamp F (1991) 2, 5-Dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int J Mass Spectrom Ion Processes 111:89–102

    CAS  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974

    PubMed  CAS  Google Scholar 

  • Swisher BA (1987) Use of plant cell culture in pesticide metabolism studies. In: LeBaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds) Biotechnology in agricultural chemistry, vol 334, ACS symposium series. American Chemical Society, Washington DC, pp 18–40

    Google Scholar 

  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101(26):9528–9533

    PubMed  CAS  Google Scholar 

  • Szpunar J (2000) Bio-inorganic speciation analysis by hyphenated techniques. Analyst 125(5):963–988

    PubMed  CAS  Google Scholar 

  • Szpunar J, Lobinski R, Prange A (2003) Hyphenated techniques for elemental speciation in biological systems. Appl Spectrosc 57(3):102A–112A

    CAS  Google Scholar 

  • Szulejko JE, Luo Z, Solouki T (2006) Simultaneous determination of analyte concentrations, gas-phase basicities, and proton transfer kinetics using Gas Chromatography/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (GC/FT-ICR MS). Int J Mass Spectrom 257(1–3):16–26

    CAS  Google Scholar 

  • Szulejko JE, Solouki T (2002) Potential analytical applications of interfacing a GC to an FT-ICR MS: fingerprinting complex sample matrixes. Anal Chem 74(14):3434–3442

    PubMed  CAS  Google Scholar 

  • Tagliaro F, Pascali J, Fanigliulo A, Bortolotti F (2010) Recent advances in the application of CE to forensic sciences: a update over years 2007–2009. Electrophoresis 31(1):251–259

    PubMed  CAS  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153

    CAS  Google Scholar 

  • Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, de Vienne D, Zivy M (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20(10):2013–2026

    PubMed  CAS  Google Scholar 

  • Thurman EM, Ferrer I, Zweigenbaum JA (2006) High-resolution and accurate mass analysis of xenobiotics in food. Anal Chem 78(19):6703–6708

    Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71(4):391–411

    PubMed  CAS  Google Scholar 

  • Torstensson NTL, Stark J, Goransson B (1975) The effect of repeated applications of 2, 4-D and MCPA on their breakdown in soil. Weed Res 15(3):159–164

    CAS  Google Scholar 

  • Trimpin S, Clemmer DE (2008) Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal Chem 80(23):9073–9083

    PubMed  CAS  Google Scholar 

  • Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197

    PubMed  CAS  Google Scholar 

  • Viglio S, Fumagalli M, Ferrari F, Iadarola P (2010) MEKC: a powerful tool for the determination of amino acids in a variety of biomatrices. Electrophoresis 31(1):93–104

    PubMed  CAS  Google Scholar 

  • Vitamvas P, Kosova K, Prasil IT (2007) Proteome analysis in plant stress research. Czech J Genetics Plant Breed 43(1):1–6

    CAS  Google Scholar 

  • Von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111(2872):23–29

    Google Scholar 

  • Wang TCL, Ricca TL, Marshall AG (1986) Extension of dynamic range in Fourier transform ion cyclotron resonance mass spectrometry via stored waveform inverse Fourier transform excitation. Anal Chem 58(14):2935–2938

    PubMed  CAS  Google Scholar 

  • Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24(14):2369–2375

    PubMed  CAS  Google Scholar 

  • Wang W, Tai F, Chen S (2008) Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J Sep Sci 31(11):2032–2039

    PubMed  CAS  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27(13):2782–2786

    PubMed  CAS  Google Scholar 

  • Wei ZG, Wong JW, Zhao HY, Zhang HJ, Li HX, Hu F (2007) Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry. Biol Trace Elem Res 118(2):146–158

    PubMed  CAS  Google Scholar 

  • Wen X, Wu P, Chen L, Hou X (2009) Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 650(1):33–38

    PubMed  CAS  Google Scholar 

  • Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57(3):675–679

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    PubMed  CAS  Google Scholar 

  • Williams DK Jr, Muddiman DC (2007) Parts-per-billion mass measurement accuracy achieved through the combination of multiple linear regression and automatic gain control in a Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 79(13):5058–5063

    PubMed  CAS  Google Scholar 

  • Williams RJP (2001) Chemical selection of elements by cells. Coord Chem Rev 216:583–595

    Google Scholar 

  • Wilson DJ, Konermann L (2005) Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device. Anal Chem 77(21):6887–6894

    PubMed  CAS  Google Scholar 

  • Winter D, Seidler J, Ziv-Lehrman S, Shiloh Y, Lehmann WD (2009) Simultaneous identification and quantification of proteins by differential 16O/18O labeling and UPLC-MS/MS applied to mouse cerebellar phosphoproteome following rradiation. Anticancer Res 29(12):4949–4958

    PubMed  CAS  Google Scholar 

  • Wysocki VH, Joyce KE, Jones CM, Beardsley RL (2008) Surface-induced dissociation of small molecules, peptides, and non-covalent protein complexes. J Am Soc Mass Spectrom 19(2):190–208

    PubMed  CAS  Google Scholar 

  • Xing T, Ouellet T, Miki BL (2002) Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci 7(5):224–230

    PubMed  CAS  Google Scholar 

  • Yew PR (2001) Ubiquitin-mediated proteolysis of vertebrate G1-and S-phase regulators. J Cell Physiol 187(1):1–10

    PubMed  CAS  Google Scholar 

  • Zabrouskov V, Giacomelli L, van Wijk KJ, McLafferty FW (2003) A new approach for plant proteomics: characterization of chloroplast proteins of Arabidopsis thaliana by top-down mass spectrometry. Mol Cell Proteomics 2(12):1253–1260

    PubMed  CAS  Google Scholar 

  • Zer H, Ohad I (2003) Light, redox state, thylakoid-protein phosphorylation and signaling gene expression. Trends Biochem Sci 28(9):467–470

    PubMed  CAS  Google Scholar 

  • Zer H, Vink M, Shochat S, Herrmann RG, Andersson B, Ohad I (2003) Light affects the ­accessibility of the thylakoid light harvesting complex II (LHCII) phosphorylation site to the membrane protein kinase(s). Biochemistry 42(3):728–738

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zhao Z, Xue Y (2009) Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol 60:21–42

    PubMed  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374(3):538–542

    PubMed  CAS  Google Scholar 

  • Zhu H, Snyder M (2002) “Omic” approaches for unraveling signaling networks. Curr Opin Cell Biol 14(2):173–179

    PubMed  CAS  Google Scholar 

  • Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations: a nonergodic process. J Am Chem Soc 120:3265–3266

    CAS  Google Scholar 

Download references

Acknowledgements

Partial Financial support from the Institute for Therapeutic Discovery and United States Civilian Research Development Foundation (US CRDF) is gratefully acknowledged. Authors would like to thank Sabina Solouki for her assistance with the editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touradj Solouki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Solouki, T., Khalvati, M.A., Miladi, M., Zekavat, B. (2011). State-of-the-Art Chemical Analyses: Xenobiotics, Plant Proteomics, and Residues in Plant Based Products. In: Schröder, P., Collins, C. (eds) Organic Xenobiotics and Plants. Plant Ecophysiology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9852-8_12

Download citation

Publish with us

Policies and ethics