Skip to main content

The Influence of Environment and Metabolic Capacity on the Size of a Microorganism

  • Chapter
  • First Online:
The Minimal Cell

Abstract

The environment a microorganism inhabits dictates the metabolic ­capacity necessary for it to survive, and ultimately the minimum size which an organism can achieve. Nutrient rich environments such as those experienced by parasitic bacteria can accommodate organisms with restricted metabolic capacities with relatively few genes, perhaps as few as 250. Nutrient poor environments, such as those experienced by autotrophs, provide only minerals and gases and require high biosynthetic capacity to synthesize all cellular carbon from CO2. This high biosynthetic capacity requires at most 1,500 (an actual value) and perhaps as few as 750 genes. Calculations show that as theoretical minimal cell size is decreased, the cellular volume devoted to the DNA required to encode the minimum gene ­complement becomes a limiting factor in further reduction. Assuming composition of 50% water, 20% protein, 10% ribosomes and 10% DNA, a spherical cell with minimum biosynthetic capacity (250 genes) would be at least 172 nm in ­diameter. A cell with high biosynthetic capacity (750 genes) of the same composition would be at least 248 nm in diameter. It is concluded that cells with biochemical ­requirements for growth, metabolism and reproduction similar to those of known organisms cannot be smaller than 172 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blattner FR, Plunkett G III, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ et al (1996) Complete genome sequence of the Methanogenic Archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Carbone A (2006) Computational prediction of genomic functional cores specific to different microbes. J Mol Evol 63:733–746

    Article  CAS  PubMed  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T et al (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  CAS  PubMed  Google Scholar 

  • Eguchi M, Nishikawa T, Macdonald K et al (1996) Responses to stress and nutrient availability by the marine Ultramicrobacterium Sphingomonas sp. Strain RB2256. Appl Environ Microbiol 62:1287–1294

    CAS  PubMed  Google Scholar 

  • Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Gribaldo S, Brochier-Armanet C (2009) Happy together: genomic insights into the unique Nanoarchaeum/Ignicoccus association. J Biol 8:7

    Article  PubMed  Google Scholar 

  • Fraser CM, Gocayne JD, White O et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N et al (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    Article  CAS  PubMed  Google Scholar 

  • Golden DC, Ming DW, Morris RV et al (2004) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am Mineral 89:681–695

    CAS  Google Scholar 

  • Huber H, Hohn MJ, Rachel R et al (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Kajander EO, Kuronen I, Akerman KK et al (1997). Nanobacteria from blood: the smallest culturable autonomously replicating agent on Earth. Instruments, methods, and missions for the investigation of extraterrestrial microorganisms. SPIE, San Diego, CA, USA

    Google Scholar 

  • Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25:107–110

    Article  CAS  PubMed  Google Scholar 

  • Liolios K, Mavromatis K, Tavernarakis N et al (2008) The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 36:D475–D479

    Article  CAS  PubMed  Google Scholar 

  • Loveland-Curtze J, Miteva VI, Brenchley JE (2009) Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042 m deep Greenland glacial ice. Int J Syst Evol Microbiol 59:1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Martel J, Young JD (2008) Purported nanobacteria in human blood as calcium carbonate nanoparticles. Proc Natl Acad Sci USA 105:5549–5554

    Article  CAS  PubMed  Google Scholar 

  • McCliment EA, Voglesonger KM, O’Day PA et al (2006) Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage. Environ Microbiol 8:114–125

    Article  CAS  PubMed  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL et al (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930

    Article  CAS  PubMed  Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93:10268–10273

    Article  CAS  PubMed  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H et al (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  CAS  PubMed  Google Scholar 

  • Neidhardt FC (1996) Chemical composition of Escherichia coli. In: Neidhardt FC, Umbarger HE (eds) Escherichia coli and Salmonella, cellular and molecular biology, vol 1, pp 13–16. America Society for Microbiology, Washington DC

    Google Scholar 

  • Raoult D, Forterre P (2008) Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol 6:315–319

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci 361:1837–1842, discussion 1842–1843

    Article  CAS  PubMed  Google Scholar 

  • Tamames J, Gil R, Latorre A et al (2007) The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol 7:181

    Article  PubMed  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA et al (2002) Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol 68:3663–3672

    Article  CAS  PubMed  Google Scholar 

  • Waters E, Hohn MJ, Ahel I et al (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research carried out in the authors’ laboratory was funded by the US National Science Foundation and the US Department of Energy

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Lancaster, W.A., Adams, M.W.W. (2011). The Influence of Environment and Metabolic Capacity on the Size of a Microorganism. In: Luisi, P., Stano, P. (eds) The Minimal Cell. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9944-0_6

Download citation

Publish with us

Policies and ethics