Skip to main content

Linear Acoustics of Trabecular Bone

  • Chapter
  • First Online:
Bone Quantitative Ultrasound

Abstract

During the two recent decades, quantitative ultrasound (QUS) methods have been developed for in vivo diagnostics of trabecular bone. Mostly, trabecular bone QUS measurements are conducted in through-transmission and pulse-echo geometry. Since the first in vivo QUS measurements at the heel, the research efforts have also been focused on enabling QUS measurements at important fracture sites, such as proximal femur or lumbar vertebra. This chapter introduces the experimental QUS methods and reviews the recent developments in in vitro and in vivo measurement methods and results on linear acoustic properties of trabecular bone. Specifically, ultrasound parameters determined in through-transmission and pulse-echo measurements are introduced and their frequency dependency as well as feasibility for characterization of bone density, structure, composition and mechanical properties is reviewed. Finally, potential of QUS for clinical diagnostics of osteoporosis and prediction of bone fracture risk are discussed, with some suggestions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. M. Langton, S. B. Palmer, and R. W. Porter, “The measurement of broadband ultrasonic attenuation in cancellous bone,” Eng Med 13(2), 89–91 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. D. Hans, C. Durosier, J. A. Kanis, H. Johansson, A. M. Schott-Pethelaz, and M. A. Krieg, “Assessment of the 10-year probability of osteoporotic hip fracture combining clinical risk factors and heel bone ultrasound: the EPISEM prospective cohort of 12,958 elderly women,” J Bone Miner Res 23(7), 1045–1051 (2008).

    Article  PubMed  Google Scholar 

  3. D. Hans, P. Dargent-Molina, A. M. Schott, J. L. Sebert, C. Cormier, P. O. Kotzki, P. D. Delmas, J. M. Pouilles, G. Breart, and P. J. Meunier, “Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study,” Lancet 348(9026), 511–514 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. F. Eckstein, M. Matsuura, V. Kuhn, M. Priemel, R. Muller, T. M. Link, and E. M. Lochmuller, “Sex differences of human trabecular bone microstructure in aging are site-dependent,” J Bone Miner Res 22(6), 817–824 (2007).

    Article  PubMed  Google Scholar 

  5. J. R. Center, T. V. Nguyen, D. Schneider, P. N. Sambrook, and J. A. Eisman, “Mortality after all major types of osteoporotic fracture in men and women: an observational study,” Lancet 353(9156), 878–882 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. O. Riekkinen, M. A. Hakulinen, M. Timonen, J. Töyras, and J. S. Jurvelin, “Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies,” Ultrasound Med Biol 32(7), 1073–1083 (2006).

    Article  PubMed  Google Scholar 

  7. M. Gomez, F. Aguado, J. Manuel, J. M. Menendez, M. Revilla, L. F. Villa, J. Cortes, and H. Rico, “Influence of soft tissue (fat and fat-free mass) on ultrasound bone velocity: an in vivo study,” Invest Radiol 32(10), 609–612 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. P. O. Kotzki, D. Buyck, D. Hans, E. Thomas, F. Bonnel, F. Favier, P. J. Meunier, and M. Rossi, “Influence of fat on ultrasound measurements of the os calcis,” Calcif Tissue Int 54(2), 91–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. C. Chappard, E. Camus, F. Lefebvre, G. Guillot, J. Bittoun, G. Berger, and P. Laugier, “Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue,” J Clin Densitom 3(2), 121–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. A. Johansen and M. D. Stone, “The effect of ankle oedema on bone ultrasound assessment at the heel,” Osteoporos Int 7(1), 44–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. J. Töyras, H. Kröger, and J. S. Jurvelin, “Bone properties as estimated by mineral density, ultrasound attenuation, and velocity,” Bone 25(6), 725–731 (1999).

    Article  PubMed  Google Scholar 

  12. S. Cheng, C. F. Njeh, B. Fan, X. Cheng, D. Hans, L. Wang, T. Fuerst, and H. K. Genant, “Influence of region of interest and bone size on calcaneal BMD: implications for the accuracy of quantitative ultrasound assessments at the calcaneus,” Br J Radiol 75(889), 59–68 (2002).

    CAS  PubMed  Google Scholar 

  13. C. Y. Wu, C. C. Gluer, M. Jergas, E. Bendavid, and H. K. Genant, “The impact of bone size on broadband ultrasound attenuation,” Bone 16(1), 137–141 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. E. Diessel, T. Fuerst, C. F. Njeh, D. Hans, S. Cheng, and H. K. Genant, “Comparison of an imaging heel quantitative ultrasound device (DTU-one) with densitometric and ultrasonic measurements,” Br J Radiol 73(865), 23–30 (2000).

    CAS  PubMed  Google Scholar 

  15. J. Damilakis, A. Papadakis, K. Perisinakis, and N. Gourtsoyiannis, “Broadband ultrasound attenuation imaging: influence of location of region of measurement,” Eur Radiol 11(7), 1117–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. J. P. van den Bergh, C. Noordam, A. Ozyilmaz, A. R. Hermus, A. G. Smals, and B. J. Otten, “Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage,” Osteoporos Int 11(11), 967–976 (2000).

    Article  PubMed  Google Scholar 

  17. J. P. van den Bergh, C. Noordam, J. M. Thijssen, B. J. Otten, A. G. Smals, and A. R. Hermus, “Measuring skeletal changes with calcaneal ultrasound imaging in healthy children and adults: the influence of size and location of the region of interest,” Osteoporos Int 12(11), 970–979 (2001).

    Article  PubMed  Google Scholar 

  18. J. Damilakis, G. Papadokostakis, K. Perisinakis, T. G. Maris, and A. H. Karantanas, “Hip fracture discrimination by the Achilles Insight QUS imaging device,” Eur J Radiol 63(1), 59–62 (2007).

    Article  PubMed  Google Scholar 

  19. J. Damilakis, K. Perisinakis, and N. Gourtsoyiannis, “Imaging ultrasonometry of the calcaneus: dependence on calcaneal area,” Calcif Tissue Int 67(1), 24–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. C. Roux, B. Fournier, P. Laugier, C. Chappard, S. Kolta, M. Dougados, and G. Berger, “Broadband ultrasound attenuation imaging: a new imaging method in osteoporosis,” J Bone Miner Res 11(8), 1112–1118 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. P. Laugier, G. Berger, P. Giat, P. Bonnin-Fayet, and M. Laval-Jeantet, “Ultrasound attenuation imaging in the os calcis: an improved method,” Ultrason Imaging 16(2), 65–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. P. Laugier, B. Fournier, and G. Berger, “Ultrasound parametric imaging of the calcaneus: in vivo results with a new device,” Calcif Tissue Int 58(5), 326–331 (1996).

    CAS  PubMed  Google Scholar 

  23. G. Haiat, F. Padilla, R. Barkmann, S. Kolta, C. Latremouille, C. C. Gluer, and P. Laugier, “In vitro speed of sound measurement at intact human femur specimens,” Ultrasound Med Biol 31(7), 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. C. F. Njeh, C. W. Kuo, C. M. Langton, H. I. Atrah, and C. M. Boivin, “Prediction of human femoral bone strength using ultrasound velocity and BMD: an in vitro study,” Osteoporos Int 7(5), 471–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. M. A. Hakulinen, J. Töyras, S. Saarakkala, J. Hirvonen, H. Kröger, and J. S. Jurvelin, “Ability of ultrasound backscattering to predict mechanical properties of bovine trabecular bone,” Ultrasound Med Biol 30(7), 919–927 (2004).

    Article  PubMed  Google Scholar 

  26. M. A. Hakulinen, J. S. Day, J. Töyras, H. Weinans, and J. S. Jurvelin, “Ultrasonic characterization of human trabecular bone microstructure,” Phys Med Biol 51(6), 1633–1648 (2006).

    Article  PubMed  Google Scholar 

  27. K. A. Wear and B. S. Garra, “Assessment of bone density using ultrasonic backscatter,” Ultrasound Med Biol 24(5), 689–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. K. A. Wear, A. P. Stuber, and J. C. Reynolds, “Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus,” Ultrasound Med Biol 26(8), 1311–1316 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. B. K. Hoffmeister, D. P. Johnson, J. A. Janeski, D. A. Keedy, B. W. Steinert, A. M. Viano, and S. C. Kaste, “Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6–15 MHz,” IEEE Trans Ultrason Ferroelectr Freq Control 55(7), 1442–1452 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. B. K. Hoffmeister, C. I. Jones, III, G. J. Caldwell, and S. C. Kaste, “Ultrasonic characterization of cancellous bone using apparent integrated backscatter,” Phys Med Biol 51(11), 2715–2727 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. J. P. Karjalainen, J. Toyras, O. Riekkinen, M. Hakulinen, and J. S. Jurvelin, “Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone,” Ultrasound Med Biol 35(8), 1376–1384 (2009).

    Article  PubMed  Google Scholar 

  32. F. Padilla, F. Jenson, V. Bousson, F. Peyrin, and P. Laugier, “Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements,” Bone 42(6), 1193–1202 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. O. Riekkinen, M. A. Hakulinen, M. J. Lammi, J. S. Jurvelin, A. Kallioniemi, and J. Töyras, “Acoustic properties of trabecular bone-relationships to tissue composition,” Ultrasound Med Biol 33(9), 1438–1444 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. O. Riekkinen, M. A. Hakulinen, J. Töyräs, and J. S. Jurvelin, “Spatial variation of acoustic properties is related with mechanical properties of trabecular bone,” Phys Med Biol 52, 6961–6968 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. J. Karjalainen, O. Riekkinen, J. Töyräs, H. Kröger, and J. S. Jurvelin, “Ultrasonic assessment of cortical bone thickness in vitro and in vivo,” IEEE Trans Ultrason Ferroelectr Freq Control 55(10), 2191–2197 (2008).

    Article  PubMed  Google Scholar 

  36. K. A. Wear, “Autocorrelation and cepstral methods for measurement of tibial cortical thickness,” IEEE Trans Ultrason Ferroelectr Freq Control 50(6), 655–660 (2003).

    Article  PubMed  Google Scholar 

  37. M. Muller, D. Mitton, P. Moilanen, V. Bousson, M. Talmant, and P. Laugier, “Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius,” Med Eng Phys (2007).

    Google Scholar 

  38. M. Muller, P. Moilanen, E. Bossy, P. Nicholson, V. Kilappa, J. Timonen, M. Talmant, S. Cheng, and P. Laugier, “Comparison of three ultrasonic axial transmission methods for bone assessment,” Ultrasound Med Biol 31(5), 633–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. P. Moilanen, P. H. Nicholson, T. Karkkainen, Q. Wang, J. Timonen, and S. Cheng, “Assessment of the tibia using ultrasonic guided waves in pubertal girls,” Osteoporos Int 14(12), 1020–1027 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. M. Talmant, S. Kolta, C. Roux, D. Haguenauer, I. Vedel, B. Cassou, E. Bossy, and P. Laugier, “In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment,” Ultrasound Med Biol (2009).

    Google Scholar 

  41. K. A. Wear, “Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment,” J Acoust Soc Am 106(6), 3659–3664 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. J.-F. Chen and J. A. Zagzebski, “Frequency dependence of backscatter coefficient versus scatterer volume fraction,” IEEE Trans Ultrason Ferroelectr Freq Control 43(3), 345–353 (1996).

    Article  Google Scholar 

  43. K. A. Wear, “Ultrasonic scattering from cancellous bone: a review,” IEEE Trans Ultrason Ferroelectr Freq Control 55(7), 1432–1441 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. E. Bossy, P. Laugier, F. Peyrin, and F. Padilla, “Attenuation in trabecular bone: a comparison between numerical simulation and experimental results in human femur,” J Acoust Soc Am 122(4), 2469–2475 (2007).

    Article  PubMed  Google Scholar 

  45. M. A. Hakulinen, J. S. Day, J. Töyras, M. Timonen, H. Kröger, H. Weinans, I. Kiviranta, and J. S. Jurvelin, “Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2–6.7 MHz frequency range,” Phys Med Biol 50(8), 1629–1642 (2005).

    Article  PubMed  Google Scholar 

  46. F. Jenson, F. Padilla, and P. Laugier, “Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model,” Ultrasound Med Biol 29(3), 455–464 (2003).

    Article  PubMed  Google Scholar 

  47. R. A. Sigelmann and J. M. Reid, “Analysis and measurement of ultrasound backscattering from an ensemble of scatterers excited by sine-wave bursts,” J Acoust Soc Am 53, 1351–1355 (1973).

    Article  Google Scholar 

  48. M. O’Donnell and J. G. Miller, “Quantitative broadband ultrasonic backscatter: an approach to nondestructive evaluation in acoustically inhomogenous materials,” J Appl Phys 52(2), 1056–1065 (1981).

    Article  Google Scholar 

  49. P. H. Nicholson and M. L. Bouxsein, “Bone marrow influences quantitative ultrasound measurements in human cancellous bone,” Ultrasound Med Biol 28(3), 369–375 (2002).

    Article  PubMed  Google Scholar 

  50. T. A. Bigelow and W. D. O’Brien, Jr., “Scatterer size estimation using a generalized ultrasound attenuation compensation function to correct for focusing,” IEEE Ultrasonics Symposium Honolulu, 1026–1029 (2003).

    Google Scholar 

  51. M. L. Oelze and W. D. O’Brien, Jr., “Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media,” J Acoust Soc Am 111(5 Pt 1), 2308–2319 (2002).

    Article  PubMed  Google Scholar 

  52. J. G. Miller, J. E. Perez, and B. E. Sobel, “Ultrasonic characterization of myocardium,” Prog Cardiovasc Dis 28(2), 85–110 (1985).

    Article  CAS  PubMed  Google Scholar 

  53. F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans Ultrason Ferroelectr Freq Control 34(3), 319–329 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. B. K. Hoffmeister, J. A. Auwarter, and J. Y. Rho, “Effect of marrow on the high frequency ultrasonic properties of cancellous bone,” Phys Med Biol 47(18), 3419–3427 (2002).

    Article  PubMed  Google Scholar 

  55. B. K. Hoffmeister, S. A. Whitten, S. C. Kaste, and J. Y. Rho, “Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone,” Osteoporos Int 13(1), 26–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. K. A. Wear, “Characterization of trabecular bone using the backscattered spectral centroid shift,” IEEE Trans Ultrason Ferroelectr Freq Control 50(4), 402–407 (2003).

    Article  PubMed  Google Scholar 

  57. B. S. Garra, M. Locher, S. Felker, and K. A. Wear, “Measurements of ultrasonic backscattered spectral centroid shift from spine in vivo: methodology and preliminary results,” Ultrasound Med Biol 35(1), 165–168 (2009).

    Article  PubMed  Google Scholar 

  58. G. Haiat, F. Padilla, R. O. Cleveland, and P. Laugier, “Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens,” IEEE Trans Ultrason Ferroelectr Freq Control 53(1), 39–51 (2006).

    Article  PubMed  Google Scholar 

  59. K. A. Wear, “A method for improved standardization of in vivo calcaneal time-domain speed-of-sound measurements,” IEEE Trans Ultrason Ferroelectr Freq Control 55(7), 1473–1479 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. A. S. Aula, J. Töyras, M. Hakulinen, and J. S. Jurvelin, “Effect of bone marrow on acoustic properties of trabecular bone – 3D finite difference modeling study,” Ultrasound Med Biol 35(2), 308–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. J. Töyras, M. T. Nieminen, H. Kröger, and J. S. Jurvelin, “Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently,” Bone 31(4), 503–507 (2002).

    Article  PubMed  Google Scholar 

  62. O. Riekkinen, M. A. Hakulinen, J. Töyras, and J. S. Jurvelin, “Dual-frequency ultrasound–new pulse-echo technique for bone densitometry,” Ultrasound Med Biol 34(10), 1703–1708 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. J. Karjalainen, J. Töyras, T. Rikkonen, J. S. Jurvelin, and O. Riekkinen, “Dual-frequency ultrasound technique minimizes errors induced by soft tissue in ultrasound bone densitometry,” Acta Radiol 49, 1038–1041 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. C. M. Langton and C. F. Njeh, “The measurement of broadband ultrasonic attenuation in cancellous bone–a review of the science and technology,” IEEE Trans Ultrason Ferroelectr Freq Control 55(7), 1546–1554 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. P. Laugier, “Instrumentation for in vivo ultrasonic characterization of bone strength,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1179–1196 (2008).

    Article  PubMed  Google Scholar 

  66. S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. Laugier, “Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure,” Bone 30(1), 229–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. A. S. Aula, J. Toyras, M. A. Hakulinen, and J. S. Jurvelin, “Effect of bone marrow on acoustic properties of trabecular bone – 3D finite difference modeling study,” Ultrasound Med Biol 35(2), 308–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. M. Pakula, F. Padilla, and P. Laugier, “Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz,” J Acoust Soc Am 126(6), 3301–3310 (2009).

    Article  PubMed  Google Scholar 

  69. C. M. Langton, C. F. Njeh, R. Hodgskinson, and J. D. Currey, “Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation,” Bone 18(6), 495–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. C. F. Njeh and C. M. Langton, “The effect of cortical endplates on ultrasound velocity through the calcaneus: an in vitro study,” Br J Radiol 70(833), 504–510 (1997).

    CAS  PubMed  Google Scholar 

  71. C. Roux, V. Roberjot, R. Porcher, S. Kolta, M. Dougados, and P. Laugier, “Ultrasonic backscatter and transmission parameters at the os calcis in postmenopausal osteoporosis,” J Bone Miner Res 16(7), 1353–1362 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. F. Padilla, L. Akrout, S. Kolta, C. Latremouille, C. Roux, and P. Laugier, “In vitro ultrasound measurement at the human femur,” Calcif Tissue Int 75(5), 421–430 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. G. Haiat, F. Padilla, R. Barkmann, S. Dencks, U. Moser, C. C. Gluer, and P. Laugier, “Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur,” Calcif Tissue Int 77(3), 186–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. R. Barkmann, P. Laugier, U. Moser, S. Dencks, F. Padilla, G. Haiat, M. Heller, and C. C. Gluer, “A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur,” Bone 40(1), 37–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. S. Dencks, R. Barkmann, F. Padilla, G. Haiat, P. Laugier, and C. C. Gluer, “Wavelet-based signal processing of in vitro ultrasonic measurements at the proximal femur,” Ultrasound Med Biol 33(6), 970–980 (2007).

    Article  PubMed  Google Scholar 

  76. R. Barkmann, S. Dencks, P. Laugier, F. Padilla, K. Brixen, J. Ryg, A. Seekamp, L. Mahlke, A. Bremer, M. Heller, and C. C. Gluer, “Femur ultrasound (FemUS)-first clinical results on hip fracture discrimination and estimation of femoral BMD,” Osteoporos Int 21(6), 969–976 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. R. Barkmann, P. Laugier, U. Moser, S. Dencks, M. Klausner, F. Padilla, G. Haiat, M. Heller, and C. C. Gluer, “In vivo measurements of ultrasound transmission through the human proximal femur,” Ultrasound Med Biol (2008).

    Google Scholar 

  78. R. Barkmann, P. Laugier, U. Moser, S. Dencks, M. Klausner, F. Padilla, G. Haiat, and C. C. Gluer, “A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1197–1204 (2008).

    Article  PubMed  Google Scholar 

  79. P. H. Nicholson and R. Alkalay, “Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae,” Clin Biomech (Bristol, Avon) 22(6), 623–629 (2007).

    Google Scholar 

  80. U. Tarantino, G. Cannata, D. Lecce, M. Celi, I. Cerocchi, and R. Iundusi, “Incidence of fragility fractures,” Aging Clin Exp Res 19(4 Suppl), 7–11 (2007).

    PubMed  Google Scholar 

  81. A. Cranney, S. A. Jamal, J. F. Tsang, R. G. Josse, and W. D. Leslie, “Low bone mineral density and fracture burden in postmenopausal women,” Cmaj 177(6), 575–580 (2007).

    PubMed  Google Scholar 

  82. J. E. Adams, “Quantitative computed tomography,” Eur J Radiol 71(3), 415–424 (2009).

    Article  PubMed  Google Scholar 

  83. H. H. Bolotin, “DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling,” Bone 41(1), 138–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. D. Marshall, O. Johnell, and H. Wedel, “Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures,” BMJ 312(7041), 1254–1259 (1996).

    CAS  PubMed  Google Scholar 

  85. M. L. Bouxsein, L. Palermo, C. Yeung, and D. M. Black, “Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the study of osteoporotic fractures,” Osteoporos Int 13(5), 358–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. J. Huopio, H. Kröger, R. Honkanen, J. Jurvelin, S. Saarikoski, and E. Alhava, “Calcaneal ultrasound predicts early postmenopausal fractures as well as axial BMD. A prospective study of 422 women,” Osteoporos Int 15(3), 190–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. A. Stewart, V. Kumar, and D. M. Reid, “Long-term fracture prediction by DXA and QUS: a 10-year prospective study,” J Bone Miner Res 21(3), 413–418 (2006).

    Article  PubMed  Google Scholar 

  88. A. Moayyeri, S. Kaptoge, N. Dalzell, S. Bingham, R. N. Luben, N. J. Wareham, J. Reeve, and K. T. Khaw, “Is QUS or DXA better for predicting the 10-year absolute risk of fracture?,” J Bone Miner Res (2009).

    Google Scholar 

  89. F. Marin, J. Gonzalez-Macias, A. Diez-Perez, S. Palma, and M. Delgado-Rodriguez, “Relationship between bone quantitative ultrasound and fractures: a meta-analysis,” J Bone Miner Res 21(7), 1126–1135 (2006).

    Article  PubMed  Google Scholar 

  90. H. Dobnig, J. C. Piswanger-Solkner, B. Obermayer-Pietsch, A. Tiran, A. Strele, E. Maier, P. Maritschnegg, G. Riedmuller, C. Brueck, and A. Fahrleitner-Pammer, “Hip and nonvertebral fracture prediction in nursing home patients: role of bone ultrasound and bone marker measurements,” J Clin Endocrinol Metab 92(5), 1678–1686 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. I. Guessous, J. Cornuz, C. Ruffieux, P. Burckhardt, and M. A. Krieg, “Osteoporotic fracture risk in elderly women: estimation with quantitative heel US and clinical risk factors,” Radiology 248(1), 179–184 (2008).

    Article  PubMed  Google Scholar 

  92. K. T. Khaw, J. Reeve, R. Luben, S. Bingham, A. Welch, N. Wareham, S. Oakes, and N. Day, “Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study,” Lancet 363(9404), 197–202 (2004).

    Article  PubMed  Google Scholar 

  93. M. A. Krieg, J. Cornuz, C. Ruffieux, G. Van Melle, D. Buche, M. A. Dambacher, D. Hans, F. Hartl, H. J. Hauselmann, M. Kraenzlin, K. Lippuner, M. Neff, P. Pancaldi, R. Rizzoli, F. Tanzi, R. Theiler, A. Tyndall, C. Wimpfheimer, and P. Burckhardt, “Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or = 70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study,” J Bone Miner Res 21(9), 1457–1463 (2006).

    Article  PubMed  Google Scholar 

  94. C. C. Gluer, R. Eastell, D. M. Reid, D. Felsenberg, C. Roux, R. Barkmann, W. Timm, T. Blenk, G. Armbrecht, A. Stewart, J. Clowes, F. E. Thomasius, and S. Kolta, “Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study,” J Bone Miner Res 19(5), 782–793 (2004).

    Article  PubMed  Google Scholar 

  95. B. Frediani, C. Acciai, P. Falsetti, F. Baldi, G. Filippou, C. Siagkri, A. Spreafico, M. Galeazzi, and R. Marcolongo, “Calcaneus ultrasonometry and dual-energy X-ray absorptiometry for the evaluation of vertebral fracture risk,” Calcif Tissue Int 79(4), 223–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. R. Hollaender, F. Hartl, M. A. Krieg, A. Tyndall, C. Geuckel, C. Buitrago-Tellez, M. Manghani, M. Kraenzlin, R. Theiler, and D. Hans, “Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study,” Ann Rheum Dis 68(3), 391–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. J. J. Kaufman, G. Luo, and R. S. Siffert, “A portable real-time ultrasonic bone densitometer,” Ultrasound Med Biol 33(9), 1445–1452 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka S. Jurvelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Karjalainen, J.P., Riekkinen, O., Töyräs, J., Jurvelin, J.S. (2011). Linear Acoustics of Trabecular Bone. In: Laugier, P., Haïat, G. (eds) Bone Quantitative Ultrasound. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0017-8_10

Download citation

Publish with us

Policies and ethics