Skip to main content

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 6))

Abstract

Since 1940 the use of synthetic pesticides has led to considerable progress in agriculture and human health. In particular synthetic pesticides were used to protect crops and to fight against disease vectors. As a result it has been possible to feed most of the world population by increasing yields. Beside the beneficial effects for farmers by making their work easier and reducing harvest losses; and benefial effects for humanity by providing abundant food with improved sanitary quality, the intensive use of pesticides has given rise to serious health issues. Indeed pesticides can be very toxic and are responsible of farming diseases such as cancers and neurodegenerative diseases. Besides, with the increase of their efficiency and their selectivity, pesticides become also more and more expensive for farmers. However, in developed countries, there is a rapid change from subsistence farming to intensive farming, which is able to feed more people.

In the past the regulatory framework for pesticide use was less restricting and this led to cases of abuse. In addition, our societies were less aware of the risks of pesticide use for the environment. A major issue is the persistence of pesticides in soils and waters. Indeed pesticides are biocides. Their lack of selectivity could lead to an important risk for living organisms and humans by contamination of drinking water and food. The presence of these biocides or their metabolites in soil, water, plants and even the atmosphere, together with their potential pharmacodynamic properties, can have harmful effects on the environment and on human health. In countries belonging to the European Union, regulations aim to reduce risks at the lowest level, but it is not the case everywhere. Some problems should now be overcome.

Phytoremediation can reduce pollution and decrease the impact of pesticides on the environment. Two examples of substances are discussed in this review to illustrate the risk for the environment and remediation by plants to reduce it. First, the review focused on 1,1,1-trichloro-2,2,bis(p-chlorophenyl)ethane (DDT),an organochlorine insecticide used with a large success against human disease vectors or in crop protection against some coleopterans such as potato beetles. Its intensive use had contaminated huge areas in the world. Now, it is classified as a persistent organic pollutant (POP), due to its too slow degradation. Plants and associated microorganisms can degrade DDT but metabolites, dichlorodiphenyldichloroethylen (DDE), and dichlorodiphenyldichloroethan (DDD) are of identical persistence. The uptake by plants is very weak, and plant use could not resolve the DDT pollution. The second example is atrazine, an herbicide of the s-triazine group. It was largely used in crops such as maize. Now, atrazine and some metabolites are mainly pollutants of hydraulic networks. It is suspected to be an endocrine disruptor. Plants can help to reduce atrazine pollution by accelerating its microbial degradation but some degradative compounds, deethylatrazine (DEA) or deisopropylatrazine (DIA), polluted also water. However, plants could be useful to reduce water pollution because they can reduce run-off of atrazine derivates. Both examples showed the direct action of plants on pesticides by their capacity to take up, accumulate or detoxify organic substances or by their indirect action by stimulation of soil microbial activity in the breakdown of organic compounds.

The use of plants is then presented in the form of examples describing their capacity to prevent pesticide pollution and the use of buffer zones between fields and hydraulic networks. The efficiency of vegetative filter strips (VFS) to protect water from pesticide run-off contamination leads the authorities to require them in good farming practice. Plants could be also used in the depuration of farming wastes. Macrophyte-planted constructed wetlands are efficient to purify farming wastes but their setting is critical.

The variety of contaminated biotopes, as the number of pesticides to depurate, is large. This means that the plant choice must be done among many plants. High variability of plant tolerance does make choice more difficult. Three types of plants are particularly useful: graminae in buffer zones, trees such as poplar or willow in riparian zones or in phytoremediation processes due to large evapotranspiration capacities, and aquatic plants for waste depuration processes. The difficulties to find a polyvalent wild plant, lead to search for new methods to select plants more efficiently. The new genetic engineering technologies are a few developed because they can prove possible to broaden the scope even more. The conclusion consists of a brief glimpse of benefits of the use of plants and their limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATZ:

Atrazine: 2-chloro-4-(aminoethyl)-6-(aminoisopropyl)-s-1,3,5-triazine

BAF:

Bioconcentration factor (ratio of total plant concentration vs. soil concentration)

CHC:

Clay-humic complex

DEA:

Deethylatrazine

DIA:

Deisopropylatrazine

DIDA:

Didealkylatrazine

HO-A:

Hydroxyatrazine

DDD:

Dichlorodiphenyldichloroethan

DDE:

Dichlorodiphenyldichloroethylen

DDMU:

1-Chloro-2,2-bis(p-chlorophenyl)ethane

DDT:

1,1,1-Trichloro-2,2,bis(p-chlorophenyl)ethane

SDDT:

Sum of DDT and its metabolites

DIMBOA:

2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one

GUS:

Groundwater Ubiquity Score

GST:

Glutathione transferase

HCH:

Hexachlorocyclohexane

Koc :

The partition coefficient of the compound in organic matter vs. water

OCPs:

Organochlorine pesticides

PCP:

Pentachlorophenol

RCF:

Root concentration factor (ratio of root concentration vs. soil concentration)

TSCF:

Transpiration stream concentration factor (ratio from xylem concentration vs. soil concentration)

VFS:

Vegetative filter strip.

References

  • Abhilash PC, Jamil S, Singh V, Singh A, Singh N, Srivastava SC (2008) Occurrence and distribution of Hexachlorocyclohexane isomers in vegetation samples from a contaminated area. Chemosphere 72:79–86

    Article  CAS  PubMed  Google Scholar 

  • Aigner EJ, Leone AD, Falconer RL (1998) Concentration and enantiomeric ratios of organochlorine pesticides in soil from u.s. corn belt. Environ Sci Technol 32:1162–1168

    Article  CAS  Google Scholar 

  • Alexander M (1999) Bioavailability: Aging, Sequestering and Complexing. In: Biodegradation and Bioremediation, 2nd edn. Academic, San Diego, pp 157–167

    Google Scholar 

  • Alvey S, Crowley DE (1996) Survival and activity of an atrazine-mineralizing bacterial consortium in rhizosphere soil. Environ Sci Technol 30:1596–1603

    Article  CAS  Google Scholar 

  • Amaya-Chavez A, Martinez-Tabche L, Lopez-Lopez E, Galar-Martinez M (2006) Methyl parathion toxicity to and removal efficiency by Typha latifolia in water and artificial sediments. Chemosphere 63:1124–1129

    Article  CAS  PubMed  Google Scholar 

  • Anderson TA, Coats JR (1995) Screening of rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor. J Environ Sci Health B30:7473–7484

    Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Barriuso E, Houot S (1996) Rapid mineralization of the S-triazine ring of atrazine in soils in relation to soil management. Soil Biol Biochem 28:1341–1348

    Article  CAS  Google Scholar 

  • Bennett ER, Moore MT, Cooper CM, Smith S Jr, Shields FD Jr, Drouillard KG, Schulz R (2005) Vegetated agricultural drainage ditches for the mitigation of pyrethroid associated runoff. Environ Toxicol Chem 24:2121–2127

    Article  CAS  PubMed  Google Scholar 

  • Bittsanszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    Article  CAS  PubMed  Google Scholar 

  • Borin M, Passoni M, Thiene M, Tempesta T (2010) Multiple function of buffer strips in farming areas. Eur J Agronomy 32:103–111

    Article  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. In: Sparks DL (ed) Advances in Agronomy, vol 66. Academic, San Diego, pp 1–102

    Google Scholar 

  • Bowmer KH (1991) Atrazine persistence and toxicity in two irrigated soils of Australia. Aust J Soil Res 29:339–350

    Article  CAS  Google Scholar 

  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in phragmites Australis (Cav.) Trin. Ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975

    Article  CAS  PubMed  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pest Sci 13:495–504

    Article  CAS  Google Scholar 

  • Brix H, Schierup HH (1989) The use of aquatic macrophytes in water pollution control. Ambio 18:100–107

    Google Scholar 

  • Calvelo-Pereira R, Camps-Arbestain M, Rodrigez GB, Macias F, Monterroso C (2006) Behaviour of Α-, Β-, Γ-, Δ-Hexachlorocyclohexane in the Soil-Plant System of a Contaminated Site. Environ Pollut 144:210–217

    Article  CAS  PubMed  Google Scholar 

  • Calvelo-Pereira R, Monterroso C, Macias F, Camps-Arbestain M (2008) Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with cynara scolymus l. and erica sp. Plants grown in a contaminated site. Environ Pollut 155:350–358

    Article  CAS  Google Scholar 

  • Carmo ML, Procopio SO, Pires FR, Cargnelutti FA, Barroso ALL, Silva GP, Carmo EL, Braz GB, Silva WFP, Braz AJBP, Pacheco LP (2008) Plant selection for phytoremediation of soils contaminated with picloram. Planta Daninha 26:301–313

    Google Scholar 

  • Chaudry Q, Schröder P, Werck-Reichhart D, Grajek W, Marecik R (2002) Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ Sci Pollut Res 9:4–7

    Article  Google Scholar 

  • Chu WK, Wong MH, Zhang J (2006) Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oriza sativa L.: I. Whole plant study. Enviro Geochem Health 28:159–168

    Article  CAS  Google Scholar 

  • Cousins IT, Mackay D (2001) Strategies for including vegetation compartments in multimedia models. Chemosphere 44:643–654

    Article  CAS  PubMed  Google Scholar 

  • Crowe AS, Smith JE (2007) Distribution and persistence of DDT in soil at a sand dune- marsh environment: Point Pelee, Ontario, Canada. Can J Soil Sci 87:315–327

    CAS  Google Scholar 

  • Cunningham JJ, Kemp WM, Lewis MR, Stevenson JC (1984) Temporal responses of the macrophyte Potamogeton perfoliatus L., and its associated autotrophic community to atrazine exposure in estuarine microcosms. Estuaries 7:519–530

    Article  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Remediation of contaminated soils and sludges by green plants. In: Hinsee RE, Means JL, Burris DR (eds) Bioremediation of Inorganics. Bettelle, Colombus

    Google Scholar 

  • Dabrowski JM, Bollen A, Bennett ER, Schulz R (2005) Pesticide interception by emergent aquatic macrophytes: Potential to mitigate spray-drift input in agricultural streams. Agric Ecosyst Environ 111:340–348

    Article  CAS  Google Scholar 

  • Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870

    Article  CAS  PubMed  Google Scholar 

  • Davoli E, Benfenati E, Bagnati R, Fanelli R (1987) Analysis of atrazine in underground waters at part per trillion levels as an early warning method for contamination and for soil distribution studies. Chemosphere 16:1425–1430

    Article  CAS  Google Scholar 

  • De Snoo GR, De Wit PJ (1998) Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. Ecotoxicol Environ Saf 41:112–118

    Article  PubMed  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Duke SO (ed) (1996) Herbicide-resistant crops. CRC, Boca Raton

    Google Scholar 

  • Dupont S, Khan SU (1993) Bound and extractable 14C residues in canola (Brassica napus) plants treated with radiolabelled atrazine. Weed Res 33:9–16

    Article  CAS  Google Scholar 

  • Dzantor EK, Chekol T, Vough LR (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sci Health A35:1645–1661

    Article  CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Owen W (1989) The comparative metabolism of the s-triazine herbicides atrazine and terbutryne in suspension cultures of potato and wheat. Pest Biochem Physiol 34:246–254

    Article  CAS  Google Scholar 

  • Ferrey ML, Koskinen WC, Blanchette RA, Burnes TA (1994) Mineralization of alachlor by lignin-degrading fungi. Can J Microbiol 40:795–798

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JS, McFarlane JC, Pfleeger T, Wickliff C (1990) Influence of root exposure concentration on the fate of nitrobenzene in soybean. Chemosphere 20:513–523

    Article  CAS  Google Scholar 

  • Flocco CG, Carranza MP, Carvajal LG, Loewy RM, Pechen de D’Angelo AM, Giuletti AM (2004) Removal of azinphos methyl by alfalfa plants (Medicago sativa L.) in a soil-free system. Sci Total Environ 327:31–39

    Article  CAS  PubMed  Google Scholar 

  • Forson DD, Storfer A (2006) Atrazine increases ranavirus susceptibility in the tiger salamander, Ambystoma tigrinum. Ecol Appl 16:2325–2332

    Article  PubMed  Google Scholar 

  • Furgal C, Kalhok S, Loring E, Smith S. (2003) Northern Contaminants Program. Canadian Arctic Contaminants Assessment Report II. Minister of Indian Affairs and Northern Development, Canada, ON, Ottawa.

    Google Scholar 

  • Gao J, Garrison W, Hoehamer C, Masur CS, Wolfe NL (2000) Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48:6114–6120

    Article  CAS  PubMed  Google Scholar 

  • Garmouna M, Teil MJ, Blanchard M, Chevreuil M (1998) Spatial and temporal variations of herbicide (triazines and phenylureas) concentrations in the catchment basin of the Marne river (France). Sci Total Environ 224:93–107

    Article  Google Scholar 

  • Gonzalez M, Miglioranza KSB, Aizpún de Moreno JE, Moreno VJ (2005) Evaluation of conventionally and organically produced vegetables for high lipophilic organochlorine pesticide (OCP) residues. Food Chem Toxicol 43:261–269

    Article  CAS  PubMed  Google Scholar 

  • Goswami KP, Green RE (1971) Microbial degradation of the herbicide atrazine and its 2- hydroxy analog in submerged soils. Environ Sci Technol 5:426–429

    Article  CAS  Google Scholar 

  • Gullner G, Gyulai G, Bittsanszky A, Kiss J, Heszky L, Kömives T (2005) Enhanced Inducibility of Glutathione S-Transferase Activity by Paraquat in Poplar Leaf Discs in the Presence of Sucrose. Phyton 45:39–44

    CAS  Google Scholar 

  • Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ Toxicol Chem 8:339–357

    Article  CAS  Google Scholar 

  • Hand LH, Kuet SF, Lane MCG, Maund SJ, Warinton JS, Hill IR (2001) Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments. Environ Toxicol Chem 20:1740–1745

    CAS  PubMed  Google Scholar 

  • Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Honk A (2002) Feminization of male frogs in the wild. Water-born herbicide threatens amphibian populations in part of the United States. Nature 419:895–896

    Article  CAS  PubMed  Google Scholar 

  • Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Honk A (2003) Atrazine-Induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ Health Perspect 111:568–575

    Article  CAS  PubMed  Google Scholar 

  • Hewitt AJ (2000) Spray drift: impact of requirements to protect the environment. Crop Protect 19:623–627

    Article  Google Scholar 

  • Higson FK (1991) Degradation of xenobiotics by white rot fungi. Rev Environ Contam Toxicol 122:111–154

    CAS  PubMed  Google Scholar 

  • Houot S, Topp E, Yassir A, Soulas G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32:615–625

    Article  CAS  Google Scholar 

  • Inui H, Ohkawa H (2005) Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes. Pest Manag Sci 61:286–291

    Article  CAS  PubMed  Google Scholar 

  • Inui H, Shiota N, Ido Y, Hirose S, Kawagashi H, Ohkawa Y, Ohkawa H (2001) Herbicide metabolism and tolerance in the transgenic rice plants expressing human CYP2C9 and CYP2C19. Pest Biochem Physiol 71:156–169

    Article  CAS  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment Wetlands. CRC, Boca Raton

    Google Scholar 

  • Karthikeyan R, Davis LC, Erickson LE, Al-Khatib K, Kulakow PA, Barnes PL, Hutchinson SL, Nurzhanova AA (2004) Potential for Plant-based remediation of Pesticide-Contaminated Soil and Water Using nontarget plants such as trees, shrubs, and grasses. Crit Rev Plant Sci 23:91–101

    Article  CAS  Google Scholar 

  • Kaufmann DD, Kearney PC (1970) Microbial degradation of s-triazine herbicides. Residue Rev 32:235–265

    Google Scholar 

  • Kawagashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Phytoremediation oh the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J Agric Food Chem 54:2985–2991

    Article  CAS  Google Scholar 

  • Kettle WD, deNoyelles F, Heacock BD, Kadoum AM (1987) Diet and reproductive success of bluegill recovered from experimental ponds treated with atrazine. Bull Environ Contam Toxicol 38:47–52

    Article  CAS  PubMed  Google Scholar 

  • Klöppel H, Kördel W, Stein B (1997) Herbicide transport by surface runoff and herbicide retention in a filter strip rainfall and runoff simulation studies. Chemosphere 35:129–141

    Article  Google Scholar 

  • Kömives T, Gullner G (2000) Phytoremediation. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York, Basel, pp 437–452

    Google Scholar 

  • Kömives T, Gullner G, Rennenberg H, Casida JE (2003) Ability of poplar (Populus spp.) to detoxify chloroacetanilide herbicides. Water Air Soil Pollut 3:277–283

    Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of cyanobacteria for degradation of organic pollutants. Appl Environ Microbiol 61:234–238

    CAS  PubMed  Google Scholar 

  • Larsen DP, deNoyelles F, Stay F, Shiroyama T (1986) Comparisons of single-species, microcosm and experimental pond responses to atrazine exposure. Environ Toxicol Chem 5:179–190

    Article  CAS  Google Scholar 

  • Laurent F, Ratahahao E (2003) Distribution of [14C]-imidacloprid in sunflowers (Helianthus annuus, L) following seed treatment. J Agric Food Chem 51:8005–8010

    Article  CAS  PubMed  Google Scholar 

  • Li H, Sheng G, Sheng W, Xu O (2002) Uptake of trifluralin and lindane from water by ryegrass. Chemosphere 48:335–341

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein EP, Schulz KR, Skrentny RF, Stitt PA (1965) Insecticidal residues in cucumbers and alfalfa grown on aldrin- or heptachlor-treated soils. J Econ Entomol 58:742–746

    CAS  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, George MF (2008) Bioremediation of atrazine- contaminated soil by forage grasses: transformation, uptake, and detoxification. J Environ Qual 37:196–206

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Wang Z, Ma S, Chen Y (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co- contaminated soil. Sci Total Environ 368:814–822

    Article  CAS  PubMed  Google Scholar 

  • Linders J, Mensink H, Stephenson G, Wauchope D, Racke K (2000) Foliar interception and retention values after pesticide application: a proposal for standardized values for environmental risk assessment. Pure Appl Chem 72:2199–2218

    Article  CAS  Google Scholar 

  • Liste H-H, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14

    Article  CAS  PubMed  Google Scholar 

  • Luckeydoo LM, Fausey NR, Brown LC, Davis CB (2002) Early development of vascular vegetation of constructed wetlands in northwest Ohio receiving agricultural waters. Agric Ecosyst Environ 88:89–94

    Article  Google Scholar 

  • Lunney AI, Zeeb BA, Reimer KJ (2004) Uptake of DDT wheathered in vascular plants: potential for phytoremediation. Environ Sci Technol 38:6147–6154

    Article  CAS  PubMed  Google Scholar 

  • Lynch TR, Johnson HE, Adams WJ (1982) The fate of atrazine and a hexachlorobiphenyl isomer in naturally-derived model stream ecosystems. Environ Toxicol Chem 1:179–192

    Article  CAS  Google Scholar 

  • Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391

    Article  CAS  PubMed  Google Scholar 

  • Mattina MJI, Iannucci-Berger W, Dykas L (2000) Chlordane uptake and its translocation in food crops. J Agric Food Chem 48:1909–1915

    Article  CAS  PubMed  Google Scholar 

  • McKone TE, Ryan RB (1989) Human exposure of chemicals through food chains: an uncertainty analysis. Environ Sci Technol 23:1154–1163

    Article  CAS  Google Scholar 

  • Mersie W, Seybold CA, McNamee CM, Huang J (1999) Effectiveness of switchgrass filter strips in removing dissolved atrazine and metolachlor from runoff. J Environ Qual 28:816–821

    Article  CAS  Google Scholar 

  • Mersie W, Seybold CA, McNamee CM, Huang J (2003) Abating endosulfan from runoff using vegetative filter strips: the importance of plant species and flow rate. Agric Ecosyst Environ 97:215–223

    Article  CAS  Google Scholar 

  • Miglioranza KSB, de Moreno JUA, Moreno VJ (2004) Organochlorine pesticides sequestered in the aquatic macrophyte Schoenoplectus californicus (C.A. Meyer) Soják from a shallow lake in Argentina. Water Res 38:1765–1772

    Article  CAS  PubMed  Google Scholar 

  • Mills T, Arnold B, Sivakumaran S, Northcott G, Vogeler I, Robinson B, Norling C, Leonil D (2006) Phytoremediation and long-term site management of soil contaminated with pentachlorophenol (PCP) and heavy metals. J Environ Manage 79:232–241

    Article  CAS  PubMed  Google Scholar 

  • Moore MT, Bennett ER, Cooper CM, Smith S Jr, Farris JL, Drouillard KG, Schulz R (2006) Influence of vegetation in mitigation of methyl parathion runoff. Environ Pollut 142:288–294

    Article  CAS  PubMed  Google Scholar 

  • Moore A, Waring CP (1998) Mechanistic Effects of a Triazine Pesticide on Reproductive Endocrine Function in Mature Male Atlantic Salmon (Salmo salar L.) Parr. Pest Biochem Physiol 62:41–50

    Article  CAS  Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart (2003) Plant cytochromes P450: Tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162

    Article  CAS  PubMed  Google Scholar 

  • Moshiri GA (ed) (1993) Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Boca Raton

    Google Scholar 

  • Munoz I, Montserrat R, Guasch H, Navarro E, Sabater S (2001) Effects of atrazine on periphyton under grazing pressure. Aquat Toxicol 55:239–249

    Article  CAS  PubMed  Google Scholar 

  • Nair DR, Burken JG, Lucht LA, Schnoor JL (1993) Mineralization and uptake of triazine Pesticide in soil-plant systems. J Environ Eng 119:842–854

    Article  CAS  Google Scholar 

  • Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70:1414–1421

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S, Geissler K, Steinberg C (1999) Activity of phase I and phase II detoxication enzymes in different cormus Parts of Phragmites australis. Ecotoxicol Environ Saf 42:62–66

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S, Schroder P, Sandermann H (2000) Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry 54:267–273

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pothuluri JV, Cerniglia CE (1994) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Chaudhry GR (ed) Biological degradation and bioremediation of toxic chemicals. Dioscorides, Portland, pp 92–124

    Google Scholar 

  • Radosevich M, Traina SJ, Hao Y-L, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61:297–302

    CAS  PubMed  Google Scholar 

  • Raveton M, Ravanel P, Kaouadji M, Bastide J, Tissut M (1997) The chemical transformation of atrazine in corn seedlings. Pest Biochem Physiol 58:199–208

    Article  CAS  Google Scholar 

  • Rogan WJ, Chen A (2005) Health risks and benefits of bis(4-chlorophenyl)-1, 1, 1- trichloroethane (DDT). Lancet 366:763–773

    Article  CAS  PubMed  Google Scholar 

  • Rosa N, Cheng HH (1973) Uptake of DDT by Nicotiana tabacum. Can J Plant Sci 51:400–402

    Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H, Scheel D, van Der Trenck T (1983) Metabolism of environmental chemicals by plants-copolymerization into lignin. J Appl Polym Sci Appl Polym Symp 37:407–420

    CAS  Google Scholar 

  • Shimizu K-I, Murayama H, Nagai A, Shimada A, Hatamachi T, Kodama T, Kitayama Y (2005) Degradation of hydrophobic organic pollutants by titania pillared fluorine mica as a substrate specific photocatalyst. Appl Catal B Environ 55:141–148

    Article  CAS  Google Scholar 

  • Simonich S, Hites RA (1997) Relationships between socioeconomic indicators and concentrations of organochlorine pesticides in tree bark. Environ Sci Technol 31:999–1003

    Article  CAS  Google Scholar 

  • Singh N, Megharaj M, Kookana RS, Naidu R, Sethunathan N (2004) Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere 56:257–263

    Article  CAS  PubMed  Google Scholar 

  • Solomon K, Keith R, David B, Baker R, Richards P, Dixon KR (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76

    Article  CAS  Google Scholar 

  • Stearman GK, George DB, Carlson K, Lansford S (2003) Pesticide Removal from container nursery runoff in constructed wetland cells. J Environ Qual 32:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Su Y-H, Zhu Y-G (2005) Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution. Environ Sci Pollut Res 12:21–27

    Article  CAS  Google Scholar 

  • Tao S, Xu FL, Wang XJ, Liu WX, Gong ZM, Fang JY, Zhu LZ, Luo YM (2005) Organochloride pesticides in agricultural soil and vegetables from Tianjin, China. Environ Sci Technol 39:2494–2499

    Article  CAS  PubMed  Google Scholar 

  • Tingle C H, Shaw D R, Boyette M, Palmer E W (1997) Utilizing vegetative filter strips of varying widths to reduce herbicides in runoff water, Pro. South. Weed Sci. Soc. 50 Meet, 27

    Google Scholar 

  • Trapp S, Miglioranza KSB, Mosbaek H (2001) Sorption of lipophilic organic compounds to wood and implications for their environmental fate. Environ Sci Technol 35:1561–1566

    Article  CAS  PubMed  Google Scholar 

  • Trejo-Hernandez MR, Lopez-Munguia A, Ramirez RQ (2001) Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochem 36:635–639

    Article  CAS  Google Scholar 

  • Tsao DT (2003) Overview of phytotechnologies. In: Scheper T, Tsao DT (eds) Advances in biochemical Engineering/Biotechnology, vol 78, Phytoremediation. Springer, Berlin, pp 1–50

    Google Scholar 

  • Tucker B, Radtke C, Kwon S-I, Anderson AJ (1995) Suppression of bioremediation by Phanerochaete chrysosporium by soil factors. J Hazard Mater 41:251–265

    Article  CAS  Google Scholar 

  • Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): Ubiquity, persistance, and risks. Environ Health Perspect 110:125–128

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2007) Fate of RDX and TNT in agronomic plants. Environ Pollut 148:148–154

    Article  CAS  PubMed  Google Scholar 

  • Volk TA, Abrahamson LP, Nowak CA, Smart LB, Tharakan PJ, White EH (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioeng 30:715–727

    Article  Google Scholar 

  • Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:390A–396A

    CAS  Google Scholar 

  • Wang X, Wu N, Guo J, Chu X, Tian J, Yao B, Fan Y (2008) Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase. Biochem Biophys Res Commun 365:453–458

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • White JC, Mattina MJI, Eitzer BD, Iannucci-Berger W (2002) Tracking chlordane compositional and chiral profiles in soil and vegetation. Chemosphere 47:639–646

    Article  CAS  PubMed  Google Scholar 

  • White JC, Wang X, Gent MPN, Iannucci-Berger W, Eitzer BD, Schultes NP, Arienzo M, Mattina MI (2003) Subspecies-level variation in the phytoextraction of weathered p, p′-DDE by Cucurbita pepo. Environ Sci Technol 37:4368–4373

    Article  CAS  PubMed  Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21:607–635

    Article  CAS  Google Scholar 

  • Wilson PC, Whitwell T, Klaine SJ (2000) Phytotoxicity, uptake, and distribution of 14C- simazine in Acorus gramenius and Potederia cordata. Weed Sci 48:701–709

    Article  CAS  Google Scholar 

  • Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Biores Technol 97:1050–1054

    Article  CAS  Google Scholar 

  • Xia H, Wu L, Tao Q (2001) Water hyacinth accelerating the degradation of malathion in aqueous solution. China Environ Sci 21:553–555

    CAS  Google Scholar 

  • Yanze-Kontchou C, Gschwind N (1995) Mineralization of the herbicide atrazine in soil inoculated wit a Pseudomonas strain. J Agric Food Chem 43:2291–2294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Laurent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pascal-Lorber, S., Laurent, F. (2011). Phytoremediation Techniques for Pesticide Contaminations. In: Lichtfouse, E. (eds) Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation. Sustainable Agriculture Reviews, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0186-1_4

Download citation

Publish with us

Policies and ethics