Skip to main content

Hemodynamics

  • Chapter
  • First Online:
Computation of Viscous Incompressible Flows

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1928 Accesses

Abstract

Since our primary interest has been in human space flight, biomedical performance of humans during space flight and post-flight recovery, especially for long-duration missions, has been an important aspect of space exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpers, B. J., Berry, R. G., Paddison, R. M.: Anatomical studies of the circle of Willis in normal brain. Arch. Neurol. Psychiatry, 81, 409–418 (1959)

    Google Scholar 

  • Baldwin, J. T., Tarbell, J. M., Deutsch, S., Geselowitz, D. B.: Mean flow velocity patterns within a ventricular assist device (VAD). Trans. Am. Soc. Artif. Intern. Organs, 35, 425–433 (1989)

    Google Scholar 

  • Berger, S. A., Jou, L.-D.: Flow in stenotic vessels. Ann. Rev. Fluid Mech., 32, 347–382 (2000)

    Article  MathSciNet  Google Scholar 

  • Bird, R. B., Armstrong, R. C., Hassagar, O.: Dynamics of Polymer Liquids, Vol. I, 2nd edn., Wiley, New York (1987)

    Google Scholar 

  • Caro, C. G., Pedley, T. J., Schroter, R. C., Seed, W. A.: The Mechanics of the Circulation, Oxford University Press, Oxford, pp. 243–349 (1978)

    Google Scholar 

  • Chien, S.: Biophysical behavior of red blood cells in suspensions. In The Red Blood Cell, Vol. II, ed. by Surgenor, D. M., Academic Press, New York pp. 1031–1133 (1975)

    Google Scholar 

  • Ferrandez, A., David, T.: Computational models of blood flow in the circle of Willis. Comp. Methods Biomech. Biomed. Eng., 4, No. 1, 1–26 (2000)

    Article  Google Scholar 

  • Ferrandez, A., David, T., Brown, M. D.: Numerical models of auto-regulation and blood flow in the cerebral circulation. Comp. Methods Biomech. Biomed. Eng., 5, No. 1, 7–20 (2002)

    Article  Google Scholar 

  • Figriola, R. S., Mueller, T. J.: On the hemolytic and thrombogenic potential occluder prosthetic heart valves from in-vitro measurements. ASME J. Biomech. Eng., 103, 83–90 (1981)

    Article  Google Scholar 

  • Formaggia, L., Gerbeau, J. F., Nobile, F., Quarteroni, A.: Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J. Numer. Anal., 40, No. 1, 376–401 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Gijsen, F. J. H., Allanic, E., van de Vosse, F. N., Janssen, J. D.: The influence of non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90-degree curved tube. J. Biomech., 32, 705–713 (1999b)

    Article  Google Scholar 

  • Gijsen, F. J. H., van de Vosse, F. N., Janssen, J. D.: The influence of non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech., 32, 601–608 (1999a)

    Article  Google Scholar 

  • Giller, C. A., Bowman, G., Dyer, H., Mootz, L., Krippner, W.: Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery, 32, No. 5, 737–741 (1993)

    Article  Google Scholar 

  • Hunter, P. J., Smaill, B. H., Nielsen, P. M. F., Le Grice, I. J.: A mathematical model of cardiac anatomy. In Computational Biology of the Heart, ed. by Panfilov, A. V. and Holden, A. V., Wiley, New York (1997)

    Google Scholar 

  • Idelsohn, S. R., Costa, L. E., Ponso, R.: A comparative computational study of blood flow through prosthetic heart valves using the finite element method. J. Fluid Dyn., 18, No. 2, 97–115 (1985)

    Google Scholar 

  • Kim, C. S., Kiris, C., Kwak, D., David, T.: Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity. J. Biomech. Eng. Trans. ASME, 128, 194–202 (2006)

    Article  Google Scholar 

  • Kiris, C., Rogers, S. E., Kwak, D., Chang, I. D.: Computation of incompressible viscous flows through artificial heart devices with moving boundaries. In Fluid Dynamics in Biology, Proceeding of the AMS-IMS-SIAM Joint Research Conference, ed. by Cheer, A. Y. and van Dam, C. P., American Mathematical Society, Providence, RI, pp. 237–247 (1991)

    Google Scholar 

  • Kiris, C., Kwak, D., Benkowski, R.: Incompressible Navier-Stokes calculations for the development of a ventricular assist device. Comp. Fluids, 27, Nos. 5–6, 709–719 (1998)

    Article  MATH  Google Scholar 

  • Kiris, C., Kwak, D., Rogers, S.: Incompressible Navier-Stokes solvers in primitive variables and their applications to steady and unsteady flow simulations. In Numerical Simulations of Incompressible Flows, ed. by Hafez, M., World Scientific, Singapore (2002)

    Google Scholar 

  • Kiris, C., Kwak, D., Rogers, S., Chang, I-D.: Computational approach for probing the flow through artificial heart devices. ASME J. Biomech. Eng., 119, 452–460 (1997)

    Article  Google Scholar 

  • Kwak, D., Chang, J. L. C., Shanks, S. P., Chakravarthy, S.: A three-dimensional incompressible Navier-Stokes flow solver using primitive variables. AIAA J., 24, No. 3, 390–396 (1986) (Original version: AIAA Paper 84-0253, AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada, Jan. 9–12 (1984)

    Article  MATH  Google Scholar 

  • Kwak, D., Chang, J. L. C., Chang, Rogers, S. E., Rosenfeld, M.: Potential applications of computational fluid dynamics to biofluid analysis. International Symposium on Biofluid Mechanics, Palm Springs, CA, April 27–29 (1988)

    Google Scholar 

  • McCracken, M. F., Peskin, C. S.: A vortex method for blood flow through heart valve. J. Comp. Phys., 35, 183–205 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Merrill, E. W.: Rheology of blood. Physiol. Rev., 49, 863–888 (1969)

    Google Scholar 

  • Milnor, W. R.: Hemodynamics, 2nd edn., The Williams & Wilkins Co., Baltimore (1989)

    Google Scholar 

  • Nichols, W. W., O’Rourke, M. F.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 4th edn., Arnold, London (1998)

    Google Scholar 

  • Olufsen, M. S., Peskin, C. S., Kim, W. Y., Pedersen, E. M.: Numerical simulation and experimental validation of blood flow in arteries with structure-tree outflow conditions. Ann. Biomed. Eng., 28, 1281–1299 (2000)

    Article  Google Scholar 

  • Perktold, K., Resch, M., Florian, H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. ASME J. Biomech. Eng., 113, 463–475 (1991)

    Article  Google Scholar 

  • Perktold, K., Rappitsch, G.: Computer simulation of local flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech., 28, No. 7, 845–856 (1995)

    Article  Google Scholar 

  • Peskin, C. S.: The fluid dynamics of heart valves: experimental, theoretical and computational methods. Annu. Rev. Fluid Mech., 14, 235–259 (1982)

    Article  MathSciNet  Google Scholar 

  • Peskin, C. S., McQueen, D. M.: Modeling prosthetic heart valves for numerical analysis of blood flow in heart. J. Comp. Phys., 37, 113–132 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C. S., McQueen, D. M.: A three-dimensional computational method for the blood flow in heart. J Comput. Phys., 81, 372–405 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci., 2, No. 4, 163–197 (2000)

    Article  MATH  Google Scholar 

  • Reneman, R. S., Merode, T., van Hick, K., Muijtjens, A. M. M., Hoeks, A. P. G.: Age-related changes in carotid artery wall properties in man. Ultrasound Med. Biol., 12, 465–471 (1986)

    Article  Google Scholar 

  • Smith, N. P., Pullan, A. J., Hunter, P. J.: An anatomically based model of transient coronary blood flow, in the heart. SIAM J. Appl. Math., 62, No. 3, 990–1018 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Steinman, D. A., Ethier, C. R.: Effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. ASME J. Biomech. Eng., 116, 294–301 (1994)

    Article  Google Scholar 

  • Steinman, D. A., Thomas, J. B., Ladak, H. M., Milnor, J. S., Rutt, B. K., Spence, J. D.: Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. MAGMA., 47, No. 1, 149–159 (2002)

    Google Scholar 

  • Stevensen, D. M., Yoganathan, A. P., Williams, F. P.: Numerical simulation of steady turbulent flow through trileaflet aortic heart valves-II. Results on five models. J. Biomech., 16, No. 12, 909–926 (1985)

    Article  Google Scholar 

  • Tarbell, J. M., Gunshinan, J. P., Geselowitz, D. B., Rosenburg, G., Shung, K. K., Pierce, W. S.: Pulse ultrasonic doppler velocity measurements inside a left ventricular assist device. J. Biomech. Eng. Trans. ASME, 108, 232–238 (1986)

    Article  Google Scholar 

  • Taylor, C. A., Draney, M. T., Ku, J. P., Parker, D., Steele, B. N., Wang, K., Zarins, C. K.: Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg., 4, No. 5, 231–247 (1999)

    Article  Google Scholar 

  • Thurston, G. B.: Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood. Biorheology, 16, 149–162 (1979)

    Google Scholar 

  • Zhao, S. Z., Ariff, B., Long, Q., Hughes, A. D., Thom, S. A., Stanton, A. V., Xu, X. Y.: Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech., 35, 1367–1377 (2002)

    Article  Google Scholar 

  • Aber, G. S., Akkerman, J. W., Bozeman, R. J., Saucier, D. R.: Development of the NASA/Baylor VAD. (1993) (available in NASA Technology 2003: The Fourth National Technology Transfer Conference, 1, 151–157)

    Google Scholar 

  • Gray, H.: Anatomy of the Human Body, 20th edn., ed. by Lewis, W. H., Lea & Febiger, Philadelphia (1918); Bartleby.com, New York (2000)

    Google Scholar 

  • Kim, C. S., Kiris, C., Kwak, D., David, T.: Numerical models of human circulatory system under altered gravity: brain circulation. AIAA paper 2004-1092 (2004)

    Google Scholar 

  • Kiris, C., Chang, I., Kwak, D., Rogers, S. E.: Numerical simulation of the incompressible internal flow through a tilting disk valve. AIAA Paper 90-0682 (1990)

    Google Scholar 

  • Quarteroni, A.: Modeling the cardiovascular system-a mathematical venture: Part I. SIAM News, 34, No. 5, June 10 (2001)

    Google Scholar 

  • Rogers, S. E., Kwak, D., Kaul, U.: On the accuracy of the pseudocompressibility method in solving the incompressible Navier-Stokes equations. AIAA Paper 85-1689 (1985)

    Google Scholar 

  • Benek, J. A., Buning, P. G., Steger, J. L.: A 3-D chimera grid embedding technique. AIAA Paper 85-1523 (1985)

    Google Scholar 

  • Cebral, J. R., Lohner, R., Burgess, J.: Computer simulation of cerebral artery clipping: relevance to aneurysm neuro-surgery planning. Proceeding of the ECCOMAS, September 11–14, Barcelona, Spain (2000)

    Google Scholar 

  • Chang, J. L. C., Kwak, D.: Numerical study of turbulent internal shear layer flow in an axi-symmetric U-duct. AIAA Paper 88-0596 (1988a)

    Google Scholar 

  • Pulliam, T. H., Chaussee, D. S.: A diagonal form of an implicit approximate-factorization algorithm. J. Comput. Phys., 39, 347–363 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dochan Kwak .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kwak, D., Kiris, C.C. (2011). Hemodynamics. In: Computation of Viscous Incompressible Flows. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0193-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0193-9_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0192-2

  • Online ISBN: 978-94-007-0193-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics